

PyBaMM documentation

Version: 24.1

Useful links:
Project Home Page [https://www.pybamm.org] |
Installation |
Source Repository [https://github.com/pybamm-team/pybamm] |
Issue Tracker [https://github.com/pybamm-team/pybamm/issues] |
Discussions [https://github.com/pybamm-team/pybamm/discussions]

PyBaMM (Python Battery Mathematical Modelling) is an open-source battery simulation package
written in Python. Our mission is to accelerate battery modelling research by
providing open-source tools for multi-institutional, interdisciplinary collaboration.
Broadly, PyBaMM consists of

	a framework for writing and solving systems of differential equations,

	a library of battery models and parameters, and

	specialized tools for simulating battery-specific experiments and visualizing the results.

Together, these enable flexible model definitions and fast battery simulations, allowing users to
explore the effect of different battery designs and modeling assumptions under a variety of operating scenarios.

[image:]
User Guide

The user guide is the best place to start learning PyBaMM. It contains an installation
guide, an introduction to the main concepts and links to additional tutorials.

To the user guide

[image:]
Examples

Examples and tutorials can be viewed on the GitHub examples page,
which also provides a link to run them online through Google Colab.

To the examples

[image:]
API Documentation

The reference guide contains a detailed description of the functions,
modules, and objects included in PyBaMM. The reference describes how the
methods work and which parameters can be used.

To the API documentation

[image:]
Contributor’s Guide

Contributions to PyBaMM and its development are welcome! If you have ideas for
features, bug fixes, models, spatial methods, or solvers, we would love to hear from you.

To the contributor’s guide

PyBaMM user guide

This guide is an overview and explains the important features;
details are found in API documentation.

Getting started

	Installation

	Getting Started

Fundamentals and usage

	Fundamentals
	Core framework

	Model and Parameter Library

	Battery-specific tools

	Battery Models
	Review Articles

	Model References

Contributing guide

	Contributing to PyBaMM

Example notebooks

PyBaMM ships with example notebooks that demonstrate how to use it and reveal some of its
functionalities and its inner workings. For more examples, see the Examples section.

Getting Started

 [image:]

 Installation

Installation

PyBaMM is available on GNU/Linux, MacOS and Windows.
It can be installed using pip or conda, or from source.

GNU/Linux and Windows

pip
PyBaMM can be installed via pip from PyPI [https://pypi.org/project/pybamm].

pip install pybamm

conda
PyBaMM is part of the Anaconda [https://docs.continuum.io/anaconda/] distribution and is available as a conda package through the conda-forge channel.

conda install -c conda-forge pybamm

 GNU/Linux & macOS

GNU/Linux & macOS

Contents

	GNU/Linux & macOS

	Prerequisites

	Install PyBaMM

	User install

	Optional - JaxSolver

	Uninstall PyBaMM

Prerequisites

To use PyBaMM, you must have Python 3.8, 3.9, 3.10, 3.11, or 3.12 installed.

Debian-based distributions (Debian, Ubuntu)
To install Python 3 on Debian-based distributions (Debian, Ubuntu), open a terminal and run

sudo apt-get update
sudo apt-get install python3

macOS
On macOS, you can use the homebrew package manager. First, install
brew [https://docs.python-guide.org/starting/install3/osx/]:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

then follow instructions in the link on adding brew to path, and run

brew install python

 Windows

Windows

Contents

	Windows

	Prerequisites

	Install PyBaMM

	User install

	Optional - JaxSolver

	Uninstall PyBaMM

	Installation using WSL

Prerequisites

To use PyBaMM, you must have Python 3.9, 3.10, 3.11, or 3.12 installed.

To install Python 3 download the installation files from Python’s
website [https://www.python.org/downloads/windows/]. Make sure to
tick the box on Add Python 3.X to PATH. For more detailed
instructions please see the official Python on Windows
guide [https://docs.python.org/3.9/using/windows.html].

Install PyBaMM

User install

Launch the Command Prompt and go to the directory where you want to
install PyBaMM. You can find a reminder of how to navigate the terminal
here [http://www.cs.columbia.edu/~sedwards/classes/2015/1102-fall/Command%20Prompt%20Cheatsheet.pdf].

We recommend to install PyBaMM within a virtual environment, in order
not to alter any distribution python files.

To install virtualenv, type:

python -m pip install virtualenv

To create a virtual environment env within your current directory
type:

python -m virtualenv env

You can then “activate” the environment using:

env\Scripts\activate.bat

Now all the calls to pip described below will install PyBaMM and its
dependencies into the environment env. When you are ready to exit
the environment and go back to your original system, just type:

deactivate

PyBaMM can be installed via pip:

pip install pybamm

PyBaMM’s dependencies (such as numpy, scipy, etc) will be
installed automatically when you install PyBaMM using pip.

For an introduction to virtual environments, see
(https://realpython.com/python-virtual-environments-a-primer/).

Optional - JaxSolver

Users can install jax and jaxlib to use the Jax solver.

pip install "pybamm[jax]"

The pip install "pybamm[jax]" command automatically downloads and installs pybamm and the compatible versions of jax and jaxlib on your system. (pybamm_install_jax is deprecated.)

Uninstall PyBaMM

PyBaMM can be uninstalled by running

pip uninstall pybamm

in your virtual environment.

Installation using WSL

If you want to install the optional PyBaMM solvers, you have to use the
Windows Subsystem for Linux (WSL). You can find the installation
instructions here.

 Install from source (Windows Subsystem for Linux)

Install from source (Windows Subsystem for Linux)

To make it easier to install PyBaMM, we recommend using the Windows Subsystem for Linux (WSL) along with Visual Studio Code. This guide will walk you through the process.

Install WSL

Install Ubuntu 22.04 or 20.04 LTS as a distribution for WSL following Microsoft’s guide to install WSL [https://docs.microsoft.com/en-us/windows/wsl/install-win10]. For a seamless development environment, refer to this guide [https://docs.microsoft.com/en-us/windows/wsl/setup/environment].

Install PyBaMM

Get PyBaMM’s Source Code

	Open a terminal in your Ubuntu distribution by selecting “Ubuntu” from the Start menu. You’ll get a bash prompt in your home directory.

	Install Git by typing the following command:

sudo apt install git-core

	Clone the PyBaMM repository:

git clone https://github.com/pybamm-team/PyBaMM.git

	Enter the PyBaMM Directory by running:

cd PyBaMM

5. Follow the Installation Steps

Follow the installation instructions for PyBaMM on Linux.

Using Visual Studio Code with the WSL

To use Visual Studio Code with the Windows Subsystem for Linux (WSL), follow these steps:

	Open Visual Studio Code.

	Install the “Remote - WSL” extension if not already installed.

	Open the PyBaMM directory in Visual Studio Code.

	In the bottom pane, select the “+” sign and choose “New WSL Window.”

	This opens a WSL terminal in the PyBaMM directory within the WSL.

Now you can develop and edit PyBaMM code using Visual Studio Code while utilizing the WSL environment.

 Install from source (GNU Linux and macOS)

Install from source (GNU Linux and macOS)

Contents

	Install from source (GNU Linux and macOS)

	Prerequisites

	Installing the build-time requirements

	Manual install of build time requirements

	Installing PyBaMM

	Using Nox (recommended)

	Manual install

	Running the tests

	Using Nox (recommended)

	Using the test runner

	How to build the PyBaMM documentation

	Doctests, examples, and coverage

	Extra tips while using Nox

	Troubleshooting

This page describes the build and installation of PyBaMM from the source code, available on GitHub. Note that this is not the recommended approach for most users and should be reserved to people wanting to participate in the development of PyBaMM, or people who really need to use bleeding-edge feature(s) not yet available in the latest released version. If you do not fall in the two previous categories, you would be better off installing PyBaMM using pip or conda.

Lastly, familiarity with the Python ecosystem is recommended (pip, virtualenvs).
Here is a gentle introduction/refresher: Python Virtual Environments: A Primer [https://realpython.com/python-virtual-environments-a-primer/].

Prerequisites

The following instructions are valid for both GNU/Linux distributions and MacOS.
If you are running Windows, consider using the Windows Subsystem for Linux (WSL) [https://docs.microsoft.com/en-us/windows/wsl/install-win10].

To obtain the PyBaMM source code, clone the GitHub repository

git clone https://github.com/pybamm-team/PyBaMM.git

or download the source archive on the repository’s homepage.

To install PyBaMM, you will need:

	Python 3 (PyBaMM supports versions 3.9, 3.10, 3.11, and 3.12)

	The Python headers file for your current Python version.

	A BLAS library (for instance openblas [https://www.openblas.net/]).

	A C compiler (ex: gcc).

	A Fortran compiler (ex: gfortran).

	graphviz (optional), if you wish to build the documentation locally.

	pandoc (optional) to convert the example Jupyter notebooks when building the documentation.

You can install the above with

Ubuntu/Debian
sudo apt install python3.X python3.X-dev libopenblas-dev gcc gfortran graphviz cmake pandoc

Where X is the version sub-number.

MacOS
brew install python openblas gcc gfortran graphviz libomp cmake pandoc

 Install from source (Docker)

Install from source (Docker)

Contents

	Install from source (Docker)

	Prerequisites

	Pulling the Docker image

	Running the Docker container

	Exiting the Docker container

	Building Docker image locally from source

	Using Git inside a running Docker container

	Using Visual Studio Code inside a running Docker container

This page describes the build and installation of PyBaMM using a Dockerfile, available on GitHub. Note that this is not the recommended approach for most users and should be reserved to people wanting to participate in the development of PyBaMM, or people who really need to use bleeding-edge feature(s) not yet available in the latest released version. If you do not fall in the two previous categories, you would be better off installing PyBaMM using pip or conda.

Prerequisites

Before you begin, make sure you have Docker installed on your system. You can download and install Docker from the official Docker website [https://www.docker.com/get-started/].
Ensure Docker installation by running:

docker --version

Pulling the Docker image

Use the following command to pull the PyBaMM Docker image from Docker Hub:

docker pull pybamm/pybamm

Running the Docker container

Once you have pulled the Docker image, you can run a Docker container with the PyBaMM environment:

	In your terminal, use the following command to start a Docker container from the pulled image:

docker run -it pybamm/pybamm

	You will now be inside the Docker container’s shell. You can use PyBaMM and its dependencies as if you were in a virtual environment.

	You can execute PyBaMM-related commands, run tests develop & contribute from the container.

Note

The default user for the container is pybamm with pybamm as password. The user belongs to
sudoers and root group, so the sudo command can be issued to install additional packages to
the container. After a clean install, sudo apt-get update should be executed to update the source
list. Additional packages can be installed using sudo apt-get install [package_name].

Exiting the Docker container

To exit the Docker container’s shell, you can simply type:

exit

This will return you to your host machine’s terminal.

Building Docker image locally from source

If you want to build the PyBaMM Docker image locally from the PyBaMM source code, follow these steps:

	Clone the PyBaMM GitHub repository to your local machine if you haven’t already:

git clone https://github.com/pybamm-team/PyBaMM.git

	Change into the PyBaMM directory:

cd PyBaMM

	Build the Docker image using the following command:

docker build -t pybamm -f scripts/Dockerfile .

	Once the image is built, you can run a Docker container using:

docker run -it pybamm

	Activate PyBaMM development environment inside docker container using:

conda activate pybamm

Note

PyBaMM’s Docker image comes with all available solvers by default. These solvers include IDAKLU IDAS solver provided by the SUNDIALS linked with SuiteSparse’s KLU and the JAX solver.

Using Git inside a running Docker container

Note

You might require re-configuring git while running the docker container for the first time.
You can run git config --list to ensure if you have desired git configuration already.

	Setting up git configuration

git config --global user.name "Your Name"

git config --global user.email your@mail.com

	Setting a git remote

git remote set-url origin <fork_url>

git remote add upstream https://github.com/pybamm-team/PyBaMM

git fetch --all

Using Visual Studio Code inside a running Docker container

You can easily use Visual Studio Code inside a running Docker container by attaching it directly. This provides a seamless development environment within the container. Here’s how:

	Install the “Docker” extension from Microsoft in your local Visual Studio Code if it’s not already installed.

	Pull and run the Docker image containing PyBaMM development environment.

	In your local Visual Studio Code, open the “Docker” extension by clicking on the Docker icon in the sidebar.

	Under the “Containers” section, you’ll see a list of running containers. Right-click the running PyBaMM container.

	Select “Attach Visual Studio Code” from the context menu.

	Visual Studio Code will now connect to the container, and a new VS Code window will open up, running inside the container. You can now edit, debug, and work on your code using VS Code as if you were working directly on your local machine.

 Getting Started

Getting Started

The easiest way to use PyBaMM is to run a 1C constant-current discharge with a model of your choice with all the default settings:

import pybamm

model = pybamm.lithium_ion.DFN() # Doyle-Fuller-Newman model
sim = pybamm.Simulation(model)
sim.solve([0, 3600]) # solve for 1 hour
sim.plot()

or simulate an experiment such as a constant-current discharge followed by a constant-current-constant-voltage charge:

import pybamm

experiment = pybamm.Experiment(
 [
 (
 "Discharge at C/10 for 10 hours or until 3.3 V",
 "Rest for 1 hour",
 "Charge at 1 A until 4.1 V",
 "Hold at 4.1 V until 50 mA",
 "Rest for 1 hour",
)
]
 * 3,
)
model = pybamm.lithium_ion.DFN()
sim = pybamm.Simulation(model, experiment=experiment, solver=pybamm.CasadiSolver())
sim.solve()
sim.plot()

However, much greater customisation is available. It is possible to change the physics, parameter values, geometry, submesh type, number of submesh points, methods for spatial discretisation and solver for integration (see DFN script [https://github.com/pybamm-team/PyBaMM/blob/develop/examples/scripts/DFN.py] or notebook [https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/notebooks/models/DFN.ipynb]).

For new users we recommend the Getting Started [https://github.com/pybamm-team/PyBaMM/tree/develop/docs/source/examples/notebooks/getting_started/] guides. These are intended to be very simple step-by-step guides to show the basic functionality of PyBaMM, and can either be downloaded and used locally, or used online through Google Colab [https://colab.research.google.com/github/pybamm-team/PyBaMM/blob/main/].

Further details can be found in a number of detailed examples [https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/index.rst], hosted on
GitHub. In addition, full details of classes and methods can be found in the API documentation.
Additional supporting material can be found
here [https://github.com/pybamm-team/pybamm-supporting-material/].

 Fundamentals

Fundamentals

PyBaMM (Python Battery Mathematical Modelling) is an open-source battery simulation package
written in Python. Our mission is to accelerate battery modelling research by
providing open-source tools for multi-institutional, interdisciplinary collaboration.
Broadly, PyBaMM consists of

	a framework for writing and solving systems of differential equations,

	a library of battery models and parameters, and

	specialized tools for simulating battery-specific experiments and visualizing the results.

Together, these enable flexible model definitions and fast battery simulations, allowing users to
explore the effect of different battery designs and modeling assumptions under a variety of operating scenarios.

NOTE: This user-guide is a work-in-progress, we hope that this brief but incomplete overview will be useful to you.

Core framework

The core of the framework is a custom computer algebra system to define mathematical equations,
and a domain specific modeling language to combine these equations into systems of differential equations
(usually partial differential equations for variables depending on space and time).
The expression tree [https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/notebooks/expression_tree/expression-tree.ipynb] example gives an introduction to the computer algebra system, and the Getting Started [https://github.com/pybamm-team/PyBaMM/tree/develop/docs/source/examples/notebooks/getting_started/] tutorials
walk through creating models of increasing complexity.

Once a model has been defined symbolically, PyBaMM solves it using the Method of Lines. First, the equations are discretised in the spatial dimension, using the finite volume method. Then, the resulting system is solved using third-party numerical solvers. Depending on the form of the model, the system can be ordinary differential equations (ODEs) (if only model.rhs is defined), or algebraic equations (if only model.algebraic is defined), or differential-algebraic equations (DAEs) (if both model.rhs and model.algebraic are defined). Jupyter notebooks explaining the solvers can be found here [https://github.com/pybamm-team/PyBaMM/tree/develop/docs/source/examples/notebooks/solvers].

Model and Parameter Library

PyBaMM contains an extensive library of battery models and parameters.
The bulk of the library consists of models for lithium-ion, but there are also some other chemistries (lead-acid, lithium metal).
Models are first divided broadly into common named models of varying complexity, such as the single particle model (SPM) or Doyle-Fuller-Newman model (DFN).
Most options can be applied to any model, but some are model-specific (an error will be raised if you attempt to set an option is not compatible with a model).
See Base Battery Model for a list of options.

The parameter library is simply a collection of python files each defining a complete set of parameters
for a particular battery chemistry, covering all major lithium-ion chemistries (NMC, LFP, NCA, …).
External parameter sets can be linked using entry points (see Parameters Sets).

Battery-specific tools

One of PyBaMM’s unique features is the Experiment class, which allows users to define synthetic experiments using simple instructions in English

pybamm.Experiment(
 [
 (
 "Discharge at C/10 for 10 hours or until 3.3 V",
 "Rest for 1 hour",
 "Charge at 1 A until 4.1 V",
 "Hold at 4.1 V until 50 mA",
 "Rest for 1 hour",
)
]
 * 3,
)

The above instruction will conduct a standard discharge / rest / charge / rest cycle three times, with a 10 hour discharge and 1 hour rest at the end of each cycle.

The Simulation class handles simulating an Experiment, as well as calculating additional outputs such as capacity as a function of cycle number. For example, the following code will simulate the experiment above and plot the standard output variables:

import pybamm
import matplotlib.pyplot as plt

load model and parameter values
model = pybamm.lithium_ion.DFN()
sim = pybamm.Simulation(model, experiment=experiment)
solution = sim.solve()
solution.plot()

Finally, PyBaMM provides custom visualization tools:

	Quick Plot: for easily plotting simulation outputs in a grid, including comparing multiple simulations

	pybamm.plot_voltage_components: for plotting the component overpotentials that make up a voltage curve

Users are not limited to these tools and can plot the output of a simulation solution by accessing the underlying numpy array for the solution variables as

solution["variable name"].data

and using the plotting library of their choice.

 Battery Models

Battery Models

References for the battery models used in PyBaMM simulations can be found calling

pybamm.print_citations()

However, a few papers are provided in this section for anyone interested in reading the theory
behind the models before doing the tutorials.

Review Articles

Review of physics-based lithium-ion battery models [https://doi.org/10.1088/2516-1083/ac7d31]

Review of parameterisation and a novel database for Li-ion battery models [https://doi.org/10.1088/2516-1083/ac692c]

Model References

Lithium-Ion Batteries

Doyle-Fuller-Newman model [https://doi.org/10.1149/1.2221597]

Single particle model [https://doi.org/10.1149/2.0341915jes]

Lead-Acid Batteries

Isothermal porous-electrode model [https://doi.org/10.1149/2.0301910jes]

Leading-Order Quasi-Static model [https://doi.org/10.1149/2.0441908jes]

 Contributing to PyBaMM

Contributing to PyBaMM

If you’d like to contribute to PyBaMM (thanks!), please have a look at the guidelines below.

If you’re already familiar with our workflow, maybe have a quick look at the pre-commit checks directly below.

Pre-commit checks

Before you commit any code, please perform the following checks:

	All tests pass: $ nox -s unit

	The documentation builds: $ nox -s docs

Installing and using pre-commit

PyBaMM uses a set of pre-commit hooks and the pre-commit bot to format and prettify the codebase. The hooks can be installed locally using -

pip install pre-commit
pre-commit install

This would run the checks every time a commit is created locally. The checks will only run on the files modified by that commit, but the checks can be triggered for all the files using -

pre-commit run --all-files

If you would like to skip the failing checks and push the code for further discussion, use the --no-verify option with git commit.

Workflow

We use GIT [https://en.wikipedia.org/wiki/Git] and GitHub [https://en.wikipedia.org/wiki/GitHub] to coordinate our work. When making any kind of update, we try to follow the procedure below.

A. Before you begin

	Create an issue [https://guides.github.com/features/issues/] where new proposals can be discussed before any coding is done.

	Create a branch [https://help.github.com/articles/creating-and-deleting-branches-within-your-repository/] of this repo (ideally on your own fork [https://help.github.com/articles/fork-a-repo/]), where all changes will be made

	Download the source code onto your local system, by cloning [https://help.github.com/articles/cloning-a-repository/] the repository (or your fork of the repository).

	Install [https://docs.pybamm.org/en/latest/source/user_guide/installation/install-from-source.html] PyBaMM with the developer options.

	Test if your installation worked, using the test script: $ python run-tests.py --unit.

You now have everything you need to start making changes!

B. Writing your code

	PyBaMM is developed in Python [https://www.python.org]), and makes heavy use of NumPy [https://numpy.org/] (see also NumPy for MatLab users [https://numpy.org/doc/stable/user/numpy-for-matlab-users.html] and Python for R users [https://www.rebeccabarter.com/blog/2023-09-11-from_r_to_python]).

	Make sure to follow our coding style guidelines.

	Commit your changes to your branch with useful, descriptive commit messages [https://chris.beams.io/posts/git-commit/]: Remember these are
publicly visible and should still make sense a few months ahead in time.
While developing, you can keep using the GitHub issue you’re working on
as a place for discussion.

	If you want to add a dependency on another library, or re-use code you found somewhere else, have a look at these guidelines.

C. Merging your changes with PyBaMM

	Test your code!

	PyBaMM has online documentation at http://docs.pybamm.org/. To make sure any new methods or classes you added show up there, please read the documentation section.

	If you added a major new feature, perhaps it should be showcased in an example notebook.

	When you feel your code is finished, or at least warrants serious discussion, run the pre-commit checks and then create a pull request [https://help.github.com/articles/about-pull-requests/] (PR) on PyBaMM’s GitHub page [https://github.com/pybamm-team/PyBaMM].

	Once a PR has been created, it will be reviewed by any member of the community. Changes might be suggested which you can make by simply adding new commits to the branch. When everything’s finished, someone with the right GitHub permissions will merge your changes into PyBaMM main repository.

Finally, if you really, really, really love developing PyBaMM, have a look at the current project infrastructure.

Coding style guidelines

PyBaMM follows the PEP8 recommendations [https://www.python.org/dev/peps/pep-0008/] for coding style. These are very common guidelines, and community tools have been developed to check how well projects implement them. We recommend using pre-commit hooks to check your code before committing it. See installing and using pre-commit section for more details.

Ruff

We use ruff [https://github.com/charliermarsh/ruff] to check our PEP8 adherence. To try this on your system, navigate to the PyBaMM directory in a console and type

python -m pip install pre-commit
pre-commit run ruff

ruff is configured inside the file pre-commit-config.yaml, allowing us to ignore some errors. If you think this should be added or removed, please submit an issue [https://github.com/pybamm-team/PyBaMM/issues]

When you commit your changes they will be checked against ruff automatically (see Pre-commit checks).

Naming

Naming is hard. In general, we aim for descriptive class, method, and argument names. Avoid abbreviations when possible without making names overly long, so mean is better than mu, but a class name like MyClass is fine.

Class names are CamelCase, and start with an upper case letter, for example MyOtherClass. Method and variable names are lower case, and use underscores for word separation, for example x or iteration_count.

Dependencies and reusing code

While it’s a bad idea for developers to “reinvent the wheel”, it’s important for users to get a reasonably sized download and an easy install. In addition, external libraries can sometimes cease to be supported, and when they contain bugs it might take a while before fixes become available as automatic downloads to PyBaMM users.
For these reasons, all dependencies in PyBaMM should be thought about carefully, and discussed on GitHub.

Direct inclusion of code from other packages is possible, as long as their
license permits it and is compatible with ours, but again should be
considered carefully and discussed in the group. Snippets from blogs and
stackoverflow can often be included without attribution, but if they solve a
particularly nasty problem (or are very hard to read) it’s often a good idea to
attribute (and document) them, by making a comment with a link in the source code.

Separating dependencies

On the other hand… We do want to compare several tools, to generate documentation, and to speed up development. For this reason, the dependency structure is split into 4 parts:

	Core PyBaMM: A minimal set, including things like NumPy, SciPy, etc. All infrastructure should run against this set of dependencies, as well as any numerical methods we implement ourselves.

	Extras: Other inference packages and their dependencies. Methods we don’t want to implement ourselves, but do want to provide an interface to can have their dependencies added here.

	Documentation generating code: Everything you need to generate and work on the docs.

	Development code: Everything you need to do PyBaMM development (so all of the above packages, plus ruff and other testing tools).

Only ‘core pybamm’ is installed by default. The others have to be specified explicitly when running the installation command.

Managing Optional Dependencies and Their Imports

PyBaMM utilizes optional dependencies to allow users to choose which additional libraries they want to use. Managing these optional dependencies and their imports is essential to provide flexibility to PyBaMM users.

PyBaMM provides a utility function import_optional_dependency, to check for the availability of optional dependencies within methods. This function can be used to conditionally import optional dependencies only if they are available. Here’s how to use it:

Optional dependencies should never be imported at the module level, but always inside methods. For example:

def use_pybtex(x,y,z):
 pybtex = import_optional_dependency("pybtex")
 ...

While importing a specific module instead of an entire package/library:

def use_parse_file(x, y, z):
 parse_file = import_optional_dependency("pybtex.database", "parse_file")
 ...

This allows people to (1) use PyBaMM without importing optional dependencies by default and (2) configure module-dependent functionalities in their scripts, which must be done before e.g. print_citations method is first imported.

Writing Tests for Optional Dependencies

Below, we list the currently available test functions to provide an overview. If you find it useful to add new test cases please do so within tests/unit/test_util.py.

Currently, there are three functions to test what concerns optional dependencies:

	test_import_optional_dependency

	test_pybamm_import

	test_optional_dependencies

The test_import_optional_dependency function extracts the optional dependencies installed in the setup environment, makes them unimportable (by setting them to None among the sys.modules), and tests that the pybamm.util.import_optional_dependency function throws a ModuleNotFoundError exception when their import is attempted.

The test_pybamm_import function extracts the optional dependencies installed in the setup environment and makes them unimportable (by setting them to None among the sys.modules), unloads pybamm and its sub-modules, and finally tests that pybamm can be imported successfully. In fact, it is essential that the pybamm package is importable with only the mandatory dependencies.

The test_optional_dependencies function extracts pybamm mandatory distribution packages and verifies that they are not present in the optional distribution packages list in pyproject.toml. This test is crucial for ensuring the consistency of the released package information and potential updates to dependencies during development.

Testing

All code requires testing. We use the unittest [https://docs.python.org/3.3/library/unittest.html] package for our tests. (These tests typically just check that the code runs without error, and so, are more debugging than testing in a strict sense. Nevertheless, they are very useful to have!)

We also use pytest [https://docs.pytest.org/en/latest/] along with the nbmake [https://github.com/treebeardtech/nbmake] and the pytest-xdist [https://pypi.org/project/pytest-xdist/] plugins to test the example notebooks.

If you have nox installed, to run unit tests, type

nox -s unit

else, type

python run-tests.py --unit

Writing tests

Every new feature should have its own test. To create ones, have a look at the test directory and see if there’s a test for a similar method. Copy-pasting this is a good way to start.

Next, add some simple (and speedy!) tests of your main features. If these run without exceptions that’s a good start! Next, check the output of your methods using any of these assert methods [https://docs.python.org/3.3/library/unittest.html#assert-methods].

Running more tests

The tests are divided into unit tests, whose aim is to check individual bits of code (e.g. discretising a gradient operator, or solving a simple ODE), and integration tests, which check how parts of the program interact as a whole (e.g. solving a full model).
If you want to check integration tests as well as unit tests, type

nox -s tests

When you commit anything to PyBaMM, these checks will also be run automatically (see infrastructure).

Testing the example notebooks

To test all the example notebooks in the docs/source/examples/ folder with pytest and nbmake, type

nox -s examples

Alternatively, you may use pytest directly with the --nbmake flag:

pytest --nbmake

which runs all the notebooks in the docs/source/examples/notebooks/ folder in parallel by default, using the pytest-xdist plugin.

Sometimes, debugging a notebook can be a hassle. To run a single notebook, pass the path to it to pytest:

pytest --nbmake docs/source/examples/notebooks/notebook-name.ipynb

or, alternatively, you can use posargs to pass the path to the notebook to nox. For example:

nox -s examples -- docs/source/examples/notebooks/notebook-name.ipynb

You may also test multiple notebooks this way. Passing the path to a folder will run all the notebooks in that folder:

nox -s examples -- docs/source/examples/notebooks/models/

You may also use an appropriate glob pattern [https://docs.python.org/3/library/glob.html] to run all notebooks matching a particular folder or name pattern.

To edit the structure and how the Jupyter notebooks get rendered in the Sphinx documentation (using nbsphinx), install Pandoc [https://pandoc.org/installing.html] on your system, either using conda (through the conda-forge channel)

conda install -c conda-forge pandoc

or refer to the Pandoc installation instructions [https://pandoc.org/installing.html] specific to your platform.

Testing the example scripts

To test all the example scripts in the examples/ folder, type

nox -s scripts

Debugging

Often, the code you write won’t pass the tests straight away, at which stage it will become necessary to debug.
The key to successful debugging is to isolate the problem by finding the smallest possible example that causes the bug.
In practice, there are a few tricks to help you to do this, which we give below.
Once you’ve isolated the issue, it’s a good idea to add a unit test that replicates this issue, so that you can easily check whether it’s been fixed, and make sure that it’s easily picked up if it crops up again.
This also means that, if you can’t fix the bug yourself, it will be much easier to ask for help (by opening a bug-report issue [https://github.com/pybamm-team/PyBaMM/issues/new?template=bug_report.md]).

	Run individual test scripts instead of the whole test suite:

python tests/unit/path/to/test

You can also run an individual test from a particular script, e.g.

python tests/unit/test_quick_plot.py TestQuickPlot.test_failure

If you want to run several, but not all, the tests from a script, you can restrict which tests are run from a particular script by using the skipping decorator:

@unittest.skip("")
def test_bit_of_code(self):
 ...

or by just commenting out all the tests you don’t want to run.

	Set break points, either in your IDE or using the Python debugging module. To use the latter, add the following line where you want to set the break point

import ipdb

ipdb.set_trace()

This will start the Python interactive debugger [https://gist.github.com/mono0926/6326015]. If you want to be able to use magic commands from ipython, such as %timeit, then set

from IPython import embed

embed()
import ipdb

ipdb.set_trace()

at the break point instead.
Figuring out where to start the debugger is the real challenge. Some good ways to set debugging break points are:

	Try-except blocks. Suppose the line do_something_complicated() is raising a ValueError. Then you can put a try-except block around that line as:

try:
 do_something_complicated()
except ValueError:
 import ipdb

 ipdb.set_trace()

This will start the debugger at the point where the ValueError was raised, and allow you to investigate further. Sometimes, it is more informative to put the try-except block further up the call stack than exactly where the error is raised.

	Warnings. If functions are raising warnings instead of errors, it can be hard to pinpoint where this is coming from. Here, you can use the warnings module to convert warnings to errors:

import warnings

warnings.simplefilter("error")

Then you can use a try-except block, as in a., but with, for example, RuntimeWarning instead of ValueError.

	Stepping through the expression tree. Most calls in PyBaMM are operations on expression trees [https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/notebooks/expression_tree/expression-tree.ipynb]. To view an expression tree in ipython, you can use the render command:

expression_tree.render()

You can then step through the expression tree, using the children attribute, to pinpoint exactly where a bug is coming from. For example, if expression_tree.jac(y) is failing, you can check expression_tree.children[0].jac(y), then expression_tree.children[0].children[0].jac(y), etc.

	To isolate whether a bug is in a model, its Jacobian or its simplified version, you can set the use_jacobian and/or use_simplify attributes of the model to False (they are both True by default for most models).

	If a model isn’t giving the answer you expect, you can try comparing it to other models. For example, you can investigate parameter limits in which two models should give the same answer by setting some parameters to be small or zero. The StandardOutputComparison class can be used to compare some standard outputs from battery models.

	To get more information about what is going on under the hood, and hence understand what is causing the bug, you can set the logging [https://realpython.com/python-logging/] level to DEBUG by adding the following line to your test or script:

pybamm.set_logging_level("DEBUG")

	In models that inherit from pybamm.BaseBatteryModel (i.e. any battery model), you can use self.process_parameters_and_discretise to process a symbol and see what it will look like.

Profiling

Sometimes, a bit of code will take much longer than you expect to run. In this case, you can set

from IPython import embed

embed()
import ipdb

ipdb.set_trace()

as above, and then use some of the profiling tools. In order of increasing detail:

	Simple timer. In ipython, the command

%time command_to_time()

tells you how long the line command_to_time() takes. You can use %timeit instead to run the command several times and obtain more accurate timings.

	Simple profiler. Using %prun instead of %time will give a brief profiling report 3. Detailed profiler. You can install the detailed profiler snakeviz through pip:

pip install snakeviz

and then, in ipython, run

%load_ext snakeviz
%snakeviz command_to_time()

This will open a window in your browser with detailed profiling information.

Documentation

PyBaMM is documented in several ways.

First and foremost, every method and every class should have a docstring [https://www.python.org/dev/peps/pep-0257/] that describes in plain terms what it does, and what the expected input and output is.

These docstrings can be fairly simple, but can also make use of reStructuredText [http://docutils.sourceforge.net/docs/user/rst/quickref.html], a markup language designed specifically for writing technical documentation [https://en.wikipedia.org/wiki/ReStructuredText]. For example, you can link to other classes and methods by writing :class:`pybamm.Model` and :meth:`run()` .

In addition, we write a (very) small bit of documentation in separate reStructuredText files in the docs directory. Most of what these files do is simply import docstrings from the source code. But they also do things like add tables and indexes. If you’ve added a new class to a module, search the docs directory for that module’s .rst file and add your class (in alphabetical order) to its index. If you’ve added a whole new module, copy-paste another module’s file and add a link to your new file in the appropriate index.rst file.

Using Sphinx [http://www.sphinx-doc.org/en/stable/] the documentation in docs can be converted to HTML, PDF, and other formats. In particular, we use it to generate the documentation on http://docs.pybamm.org/

Building the documentation

To test and debug the documentation, it’s best to build it locally. To do this, navigate to your PyBaMM directory in a console, and then type (on GNU/Linux, macOS, and Windows):

nox -s docs

And then visit the webpage served at http://127.0.0.1:8000. Each time a change to the documentation source is detected, the HTML is rebuilt and the browser automatically reloaded. In CI, the docs are built and tested using the docs session in the noxfile.py file with warnings turned into errors, to fail the build. The warnings can be removed or ignored by adding the appropriate warning identifier to the suppress_warnings list in docs/conf.py.

Example notebooks

Major PyBaMM features are showcased in Jupyter notebooks [https://jupyter.org/] stored in the docs/source/examples directory [https://github.com/pybamm-team/PyBaMM/tree/develop/docs/source/examples]. Which features are “major” is of course wholly subjective, so please discuss on GitHub first!

All example notebooks should be listed in docs/source/examples/index.rst [https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/index.rst]. Please follow the (naming and writing) style of existing notebooks where possible.

All the notebooks are tested daily.

Citations

We aim to recognize all contributions by automatically generating citations to the relevant papers on which different parts of the code are built.
These will change depending on what models and solvers you use.
Adding the command

pybamm.print_citations()

to the end of a script will print all citations that were used by that script. This will print BibTeX information to the terminal; passing a filename to print_citations will print the BibTeX information to the specified file instead.

When you contribute code to PyBaMM, you can add your own papers that you would like to be cited if that code is used. First, add the BibTeX for your paper to CITATIONS.bib [https://github.com/pybamm-team/PyBaMM/blob/develop/pybamm/CITATIONS.bib]. Then, add the line

pybamm.citations.register("your_paper_bibtex_identifier")

wherever code is called that uses that citation (for example, in functions or in the __init__ method of a class such as a model or solver).

Infrastructure

Installation

Installation of PyBaMM and its dependencies is handled via pip [https://pip.pypa.io/en/stable/] and setuptools [http://setuptools.readthedocs.io/]. It uses CMake to compile C++ extensions using pybind11 [https://pybind11.readthedocs.io/en/stable/] and casadi [https://web.casadi.org/]. The installation process is described in detail in the source installation [https://docs.pybamm.org/en/latest/source/user_guide/installation/install-from-source.html] page and is configured through the CMakeLists.txt file.

Configuration files:

setup.py
pyproject.toml
MANIFEST.in

Note: MANIFEST.in is used to include and exclude non-Python files and auxiliary package data for PyBaMM when distributing it. If a file is not included in MANIFEST.in, it will not be included in the source distribution (SDist) and subsequently not be included in the binary distribution (wheel).

Continuous Integration using GitHub Actions

Each change pushed to the PyBaMM GitHub repository will trigger the test and benchmark suites to be run, using GitHub Actions [https://github.com/features/actions].

Tests are run for different operating systems, and for all Python versions officially supported by PyBaMM. If you opened a Pull Request, feedback is directly available on the corresponding page. If all tests pass, a green tick will be displayed next to the corresponding test run. If one or more test(s) fail, a red cross will be displayed instead.

Similarly, the benchmark suite is automatically run for the most recently pushed commit. Benchmark results are compared to the results available for the latest commit on the develop branch. Should any significant performance regression be found, a red cross will be displayed next to the benchmark run.

In all cases, more details can be obtained by clicking on a specific run.

Configuration files for various GitHub actions workflow can be found in .github/worklfows.

Codecov

Code coverage (how much of our code is actually seen by the (linux) unit tests) is tested using Codecov [https://docs.codecov.io/], a report is visible on https://codecov.io/gh/pybamm-team/PyBaMM.

Configuration files:

.coveragerc

Read the Docs

Documentation is built using https://readthedocs.org/ and published on http://docs.pybamm.org/.

Google Colab

Editable notebooks are made available using Google Colab [https://colab.research.google.com/notebooks/intro.ipynb] here [https://colab.research.google.com/github/pybamm-team/PyBaMM/blob/main/].

GitHub

GitHub does some magic with particular filenames. In particular:

	The first page people see when they go to our GitHub page [https://github.com/pybamm-team/PyBaMM] displays the contents of README.md [https://github.com/pybamm-team/PyBaMM/blob/develop/README.md], which is written in the Markdown [https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet] format. Some guidelines can be found here [https://help.github.com/articles/about-readmes/].

	The license for using PyBaMM is stored in LICENSE [https://github.com/pybamm-team/PyBaMM/blob/develop/LICENSE.txt], and automatically [https://help.github.com/articles/adding-a-license-to-a-repository/] linked to by GitHub.

	This file, CONTRIBUTING.md [https://github.com/pybamm-team/PyBaMM/blob/develop/CONTRIBUTING.md] is recognised as the contribution guidelines and a link is automatically [https://github.com/blog/1184-contributing-guidelines] displayed when new issues or pull requests are created.

Acknowledgements

This CONTRIBUTING.md file, along with large sections of the code infrastructure,
was copied from the excellent Pints GitHub repo [https://github.com/pints-team/pints]

 Tutorial 1 - How to run a model

 Tip

 An interactive online version of this notebook is available, which can be
 accessed via

 [image: Open this notebook in Google Colab]

 Alternatively, you may

 Tutorial 2 - Compare models

 Tip

 An interactive online version of this notebook is available, which can be
 accessed via

 [image: Open this notebook in Google Colab]

 Alternatively, you may

 Tutorial 3 - Basic plotting

 Tip

 An interactive online version of this notebook is available, which can be
 accessed via

 [image: Open this notebook in Google Colab]

 Alternatively, you may

 Tutorial 4 - Setting parameter values

 Tip

 An interactive online version of this notebook is available, which can be
 accessed via

 [image: Open this notebook in Google Colab]

 Alternatively, you may

 Tutorial 5 - Run experiments

 Tip

 An interactive online version of this notebook is available, which can be
 accessed via

 [image: Open this notebook in Google Colab]

 Alternatively, you may

 Tutorial 6 - Managing simulation outputs

