
PyBaMM Documentation
Release 24.1

The PyBaMM Team

Jan 31, 2024

CONTENTS

1 PyBaMM user guide 1

2 Example notebooks 35

3 API documentation 37

Python Module Index 225

Index 227

i

ii

CHAPTER

ONE

PYBAMM USER GUIDE

This guide is an overview and explains the important features; details are found in API documentation.

1.1 Installation

PyBaMM is available on GNU/Linux, MacOS and Windows. It can be installed using pip or conda, or from source.

PyBaMM can be installed via pip from PyPI.

pip install pybamm

PyBaMM is part of the Anaconda distribution and is available as a conda package through the conda-forge channel.

conda install -c conda-forge pybamm

PyBaMM can be installed via pip from PyPI.

brew install sundials && pip install pybamm

PyBaMM is part of the Anaconda distribution and is available as a conda package through the conda-forge channel.

conda install -c conda-forge pybamm

1.1.1 Optional solvers

Following GNU/Linux and macOS solvers are optionally available:

• scikits.odes -based solver, see Optional - scikits.odes solver.

• jax -based solver, see Optional - JaxSolver.

1

https://pypi.org/project/pybamm
https://docs.continuum.io/anaconda/
https://pypi.org/project/pybamm
https://docs.continuum.io/anaconda/
https://scikits-odes.readthedocs.io/en/latest/
https://docs.pybamm.org/en/latest/source/user_guide/installation/gnu-linux-mac.html#optional-scikits-odes-solver
https://jax.readthedocs.io/en/latest/notebooks/quickstart.html
https://docs.pybamm.org/en/latest/source/user_guide/installation/gnu-linux-mac.html#optional-jaxsolver

PyBaMM Documentation, Release 24.1

1.1.2 Dependencies

Required dependencies

PyBaMM requires the following dependencies.

Package Minimum supported version
NumPy 1.23.5
SciPy 1.9.3
CasADi 3.6.3
Xarray 2022.6.0
Anytree 2.8.0

Optional Dependencies

PyBaMM has a number of optional dependencies for different functionalities. If the optional dependency is not in-
stalled, PyBaMM will raise an ImportError when the method requiring that dependency is called.

If you are using pip, optional PyBaMM dependencies can be installed or managed in a file (e.g., setup.py, or
pyproject.toml) as optional extras (e.g.,``pybamm[dev,plot]``). All optional dependencies can be installed with
pybamm[all], and specific sets of dependencies are listed in the sections below.

Plot dependencies

Installable with pip install "pybamm[plot]"

Depen-
dency

Minimum Ver-
sion

pip ex-
tra

Notes

imageio 2.3.0 plot For generating simulation GIFs.
matplotlib 3.6.0 plot To plot various battery models, and analyzing battery perfor-

mance.

Pandas dependencies

Installable with pip install "pybamm[pandas]"

Dependency Minimum Version pip extra Notes
pandas 1.5.0 pandas For data manipulation and analysis.

2 Chapter 1. PyBaMM user guide

https://numpy.org
https://docs.scipy.org/doc/scipy/
https://web.casadi.org/docs/
https://docs.xarray.dev/en/stable/
https://anytree.readthedocs.io/en/stable/
https://imageio.readthedocs.io/en/stable/
https://matplotlib.org/stable/
https://pandas.pydata.org/docs/

PyBaMM Documentation, Release 24.1

Docs dependencies

Installable with pip install "pybamm[docs]"

Dependency Minimum Ver-
sion

pip ex-
tra

Notes

sphinx - docs Sphinx makes it easy to create intelligent and beautiful docu-
mentation.

pydata-sphinx-
theme

- docs A clean, Bootstrap-based Sphinx theme.

sphinx_design - docs A sphinx extension for designing.
sphinx-
copybutton

- docs To copy codeblocks.

myst-parser - docs For technical & scientific documentation.
sphinx-inline-tabs - docs Add inline tabbed content to your Sphinx documentation.
sphinxcontrib-
bibtex

- docs For BibTeX citations.

sphinx-autobuild - docs For re-building docs once triggered.

Examples dependencies

Installable with pip install "pybamm[examples]"

Dependency Minimum Version pip extra Notes
jupyter - examples For example notebooks rendering.

Dev dependencies

Installable with pip install "pybamm[dev]"

Depen-
dency

Minimum Ver-
sion

pip ex-
tra

Notes

pre-commit - dev For managing and maintaining multi-language pre-commit
hooks.

ruff - dev For code formatting.
nox - dev For running testing sessions in multiple environments.
coverage - dev For calculating coverage of tests.
pytest 6.0.0 dev For running Jupyter notebooks tests.
pytest-xdist - dev For running tests in parallel across distributed workers.
nbmake - dev A pytest plugin for executing Jupyter notebooks.

1.1. Installation 3

https://www.sphinx-doc.org/en/master/
https://pydata-sphinx-theme.readthedocs.io/en/stable/
https://pydata-sphinx-theme.readthedocs.io/en/stable/
https://sphinx-design.readthedocs.io/en/latest/
https://sphinx-copybutton.readthedocs.io/en/latest/
https://sphinx-copybutton.readthedocs.io/en/latest/
https://myst-parser.readthedocs.io/en/latest/
https://sphinx-inline-tabs.readthedocs.io/en/latest/
https://sphinxcontrib-bibtex.readthedocs.io/en/latest/
https://sphinxcontrib-bibtex.readthedocs.io/en/latest/
https://sphinx-extensions.readthedocs.io/en/latest/sphinx-autobuild.html
https://docs.jupyter.org/en/latest/
https://pre-commit.com/index.html
https://beta.ruff.rs/docs/
https://nox.thea.codes/en/stable/
https://coverage.readthedocs.io/en/
https://docs.pytest.org/en/stable/
https://pytest-xdist.readthedocs.io/en/latest/
https://github.com/treebeardtech/nbmake/

PyBaMM Documentation, Release 24.1

Cite dependencies

Installable with pip install "pybamm[cite]"

Dependency Minimum Version pip extra Notes
pybtex 0.24.0 cite BibTeX-compatible bibliography processor.

Latexify dependencies

Installable with pip install "pybamm[latexify]"

Dependency Minimum Version pip extra Notes
sympy 1.9.3 latexify For symbolic mathematics.

bpx dependencies

Installable with pip install "pybamm[bpx]"

Dependency Minimum Version pip extra Notes
bpx - bpx Battery Parameter eXchange

tqdm dependencies

Installable with pip install "pybamm[tqdm]"

Dependency Minimum Version pip extra Notes
tqdm - tqdm For logging loops.

Jax dependencies

Installable with pip install "pybamm[jax]", currently supported on Python 3.9-3.11.

Dependency Minimum Version pip extra Notes
JAX 0.4.20 jax For the JAX solver
jaxlib 0.4.20 jax Support library for JAX

4 Chapter 1. PyBaMM user guide

https://docs.pybtex.org/
https://docs.sympy.org/latest/index.html
https://pypi.org/project/bpx/
https://tqdm.github.io/
https://jax.readthedocs.io/en/latest/notebooks/quickstart.html
https://pypi.org/project/jaxlib/

PyBaMM Documentation, Release 24.1

odes dependencies

Installable with pip install "pybamm[odes]"

Dependency Minimum Version pip extra Notes
scikits.odes - odes For scikits ODE & DAE solvers

Note: Before running pip install "pybamm[odes]", make sure to install scikits.odes build-time requirements
as described here .

1.1.3 Full installation guide

Installing a specific version? Installing from source? Check the advanced installation pages below

GNU/Linux & macOS

Contents

• GNU/Linux & macOS

– Prerequisites

– Install PyBaMM

∗ User install

∗ Optional - scikits.odes solver

∗ Optional - JaxSolver

– Uninstall PyBaMM

Prerequisites

To use PyBaMM, you must have Python 3.8, 3.9, 3.10, 3.11, or 3.12 installed.

To install Python 3 on Debian-based distributions (Debian, Ubuntu, Linux Mint), open a terminal and run

sudo apt update
sudo apt install python3

On Fedora or CentOS, you can use DNF or Yum. For example

sudo dnf install python3

On macOS, you can use the homebrew package manager. First, install brew:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)
→˓"

1.1. Installation 5

https://docs.pybamm.org/en/latest/source/user_guide/installation/gnu-linux-mac.html#optional-scikits-odes-solver
https://docs.pybamm.org/en/latest/source/user_guide/installation/gnu-linux-mac.html#optional-scikits-odes-solver
https://docs.python-guide.org/starting/install3/osx/

PyBaMM Documentation, Release 24.1

then follow instructions in the link on adding brew to path, and run

brew install python3

Install PyBaMM

User install

We recommend to install PyBaMM within a virtual environment, in order not to alter any distribution Python files.
First, make sure you are using Python 3.8, 3.9, 3.10, 3.11, or 3.12. To create a virtual environment env within your
current directory type:

virtualenv env

You can then “activate” the environment using:

source env/bin/activate

Now all the calls to pip described below will install PyBaMM and its dependencies into the environment env. When
you are ready to exit the environment and go back to your original system, just type:

deactivate

PyBaMM can be installed via pip. On macOS, it is necessary to install the SUNDIALS library beforehand.

In a terminal, run the following command:

pip install pybamm

In a terminal, run the following commands:

brew install sundials
pip install pybamm

PyBaMM’s required dependencies (such as numpy, casadi, etc) will be installed automatically when you install Py-
BaMM using pip.

For an introduction to virtual environments, see (https://realpython.com/python-virtual-environments-a-primer/).

Optional - scikits.odes solver

Users can install scikits.odes to utilize its interfaced SUNDIALS ODE and DAE solvers wrapped in PyBaMM.

Note: Currently, only GNU/Linux and macOS are supported.

Note: The scikits.odes solver is not supported on Python 3.12 yet. Please refer to https://github.com/bmcage/
odes/issues/162. There is support for Python 3.8, 3.9, 3.10, and 3.11.

In a terminal, run the following commands:

6 Chapter 1. PyBaMM user guide

https://computing.llnl.gov/projects/sundials/
https://realpython.com/python-virtual-environments-a-primer/
https://github.com/bmcage/odes
https://docs.pybamm.org/en/latest/source/api/solvers/scikits_solvers.html
https://github.com/bmcage/odes/issues/162
https://github.com/bmcage/odes/issues/162

PyBaMM Documentation, Release 24.1

apt-get install libopenblas-dev
pip install wget cmake
pybamm_install_odes

system (under ~/.local), before installing scikits.odes. (Alternatively, one can install SUNDIALS without this
script and run pip install pybamm[odes] to install pybamm with scikits.odes.)

In a terminal, run the following command:

brew install openblas gcc gfortran
pip install wget cmake
pybamm_install_odes

The pybamm_install_odes command, installed with PyBaMM, automatically downloads and installs the SUNDI-
ALS library on your system (under ~/.local), before installing scikits.odes . (Alternatively, one can install SUNDI-
ALS without this script and run pip install pybamm[odes] to install pybamm with scikits.odes)

To avoid installation failures when using pip install pybamm[odes], make sure to set the SUNDIALS_INST envi-
ronment variable. If you have installed SUNDIALS using Homebrew, set the variable to the appropriate location. For
example:

export SUNDIALS_INST=$(brew --prefix sundials)

Ensure that the path matches the installation location on your system. You can verify the installation location by running:

brew info sundials

Look for the installation path, and use that path to set the SUNDIALS_INST variable.

Note: The location where Homebrew installs SUNDIALS might vary based on the system architecture (ARM or Intel).
Adjust the path in the export SUNDIALS_INST command accordingly.

To avoid manual setup of path the pybamm_install_odes is recommended for a smoother installation process, as it
takes care of automatically downloading and installing the SUNDIALS library on your system.

Optional - JaxSolver

Users can install jax and jaxlib to use the Jax solver.

Note: The Jax solver is only supported for Python versions 3.9 through 3.12.

pip install "pybamm[jax]"

The pip install "pybamm[jax]" command automatically downloads and installs pybamm and the compatible ver-
sions of jax and jaxlib on your system. (pybamm_install_jax is deprecated.)

1.1. Installation 7

https://scikits-odes.readthedocs.io/en/stable/installation.html
https://scikits-odes.readthedocs.io/en/stable/installation.html

PyBaMM Documentation, Release 24.1

Uninstall PyBaMM

PyBaMM can be uninstalled by running

pip uninstall pybamm

in your virtual environment.

Windows

Contents

• Windows

– Prerequisites

– Install PyBaMM

∗ User install

∗ Optional - JaxSolver

– Uninstall PyBaMM

– Installation using WSL

Prerequisites

To use PyBaMM, you must have Python 3.8, 3.9, 3.10, 3.11, or 3.12 installed.

To install Python 3 download the installation files from Python’s website. Make sure to tick the box on Add Python
3.X to PATH. For more detailed instructions please see the official Python on Windows guide.

Install PyBaMM

User install

Launch the Command Prompt and go to the directory where you want to install PyBaMM. You can find a reminder of
how to navigate the terminal here.

We recommend to install PyBaMM within a virtual environment, in order not to alter any distribution python files.

To install virtualenv, type:

python -m pip install virtualenv

To create a virtual environment env within your current directory type:

python -m virtualenv env

You can then “activate” the environment using:

env\Scripts\activate.bat

8 Chapter 1. PyBaMM user guide

https://www.python.org/downloads/windows/
https://docs.python.org/3.9/using/windows.html
http://www.cs.columbia.edu/~sedwards/classes/2015/1102-fall/Command%20Prompt%20Cheatsheet.pdf

PyBaMM Documentation, Release 24.1

Now all the calls to pip described below will install PyBaMM and its dependencies into the environment env. When
you are ready to exit the environment and go back to your original system, just type:

deactivate

PyBaMM can be installed via pip:

pip install pybamm

PyBaMM’s dependencies (such as numpy, scipy, etc) will be installed automatically when you install PyBaMM using
pip.

For an introduction to virtual environments, see (https://realpython.com/python-virtual-environments-a-primer/).

Optional - JaxSolver

Users can install jax and jaxlib to use the Jax solver.

Note: The Jax solver is only supported for Python versions 3.9 through 3.12.

pip install "pybamm[jax]"

The pip install "pybamm[jax]" command automatically downloads and installs pybamm and the compatible ver-
sions of jax and jaxlib on your system. (pybamm_install_jax is deprecated.)

Uninstall PyBaMM

PyBaMM can be uninstalled by running

pip uninstall pybamm

in your virtual environment.

Installation using WSL

If you want to install the optional PyBaMM solvers, you have to use the Windows Subsystem for Linux (WSL). You
can find the installation instructions here.

Install from source (Windows Subsystem for Linux)

To make it easier to install PyBaMM, we recommend using the Windows Subsystem for Linux (WSL) along with Visual
Studio Code. This guide will walk you through the process.

1.1. Installation 9

https://realpython.com/python-virtual-environments-a-primer/
windows-wsl.html

PyBaMM Documentation, Release 24.1

Install WSL

Install Ubuntu 22.04 or 20.04 LTS as a distribution for WSL following Microsoft’s guide to install WSL. For a seamless
development environment, refer to this guide.

Install PyBaMM

Get PyBaMM’s Source Code

1. Open a terminal in your Ubuntu distribution by selecting “Ubuntu” from the Start menu. You’ll get a bash prompt
in your home directory.

2. Install Git by typing the following command:

sudo apt install git-core

3. Clone the PyBaMM repository:

git clone https://github.com/pybamm-team/PyBaMM.git

4. Enter the PyBaMM Directory by running:

cd PyBaMM

5. Follow the Installation Steps

Follow the installation instructions for PyBaMM on Linux.

Using Visual Studio Code with the WSL

To use Visual Studio Code with the Windows Subsystem for Linux (WSL), follow these steps:

1. Open Visual Studio Code.

2. Install the “Remote - WSL” extension if not already installed.

3. Open the PyBaMM directory in Visual Studio Code.

4. In the bottom pane, select the “+” sign and choose “New WSL Window.”

5. This opens a WSL terminal in the PyBaMM directory within the WSL.

Now you can develop and edit PyBaMM code using Visual Studio Code while utilizing the WSL environment.

10 Chapter 1. PyBaMM user guide

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/setup/environment
gnu-linux-mac.html

PyBaMM Documentation, Release 24.1

Install from source (GNU Linux and macOS)

Contents

• Install from source (GNU Linux and macOS)

– Prerequisites

– Installing the build-time requirements

∗ Manual install of build time requirements

– Installing PyBaMM

∗ Using Nox (recommended)

∗ Manual install

– Running the tests

∗ Using Nox (recommended)

∗ Using the test runner

– How to build the PyBaMM documentation

– Doctests, examples, and coverage

– Extra tips while using Nox

– Troubleshooting

This page describes the build and installation of PyBaMM from the source code, available on GitHub. Note that this
is not the recommended approach for most users and should be reserved to people wanting to participate in the
development of PyBaMM, or people who really need to use bleeding-edge feature(s) not yet available in the latest
released version. If you do not fall in the two previous categories, you would be better off installing PyBaMM using
pip or conda.

Lastly, familiarity with the Python ecosystem is recommended (pip, virtualenvs). Here is a gentle introduc-
tion/refresher: Python Virtual Environments: A Primer.

Prerequisites

The following instructions are valid for both GNU/Linux distributions and MacOS. If you are running Windows, con-
sider using the Windows Subsystem for Linux (WSL).

To obtain the PyBaMM source code, clone the GitHub repository

git clone https://github.com/pybamm-team/PyBaMM.git

or download the source archive on the repository’s homepage.

To install PyBaMM, you will need:

• Python 3 (PyBaMM supports versions 3.8, 3.9, 3.10, 3.11, and 3.12)

• The Python headers file for your current Python version.

• A BLAS library (for instance openblas).

• A C compiler (ex: gcc).

1.1. Installation 11

https://realpython.com/python-virtual-environments-a-primer/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.openblas.net/

PyBaMM Documentation, Release 24.1

• A Fortran compiler (ex: gfortran).

• graphviz (optional), if you wish to build the documentation locally.

You can install the above with

sudo apt install python3.X python3.X-dev libopenblas-dev gcc gfortran graphviz

Where X is the version sub-number.

Note: On Windows, you can install graphviz using the Chocolatey package manager, or follow the instructions on
the graphviz website.

brew install python openblas gcc gfortran graphviz libomp

Finally, we recommend using Nox. You can install it with

python3.X -m pip install --user nox

Depending on your operating system, you may or may not have pip installed along Python. If pip is not found, you
probably want to install the python3-pip package.

Installing the build-time requirements

PyBaMM comes with a DAE solver based on the IDA solver provided by the SUNDIALS library. To use this solver,
you must make sure that you have the necessary SUNDIALS components installed on your system.

The IDA-based solver is currently unavailable on windows. If you are running windows, you can simply skip this
section and jump to Installing PyBaMM.

in the PyBaMM/ directory
nox -s pybamm-requires

This will download, compile and install the SuiteSparse and SUNDIALS libraries. Both libraries are installed in ~/.
local.

Manual install of build time requirements

If you’d rather do things yourself,

1. Make sure you have CMake installed

2. Compile and install SuiteSparse (PyBaMM only requires the KLU component).

3. Compile and install SUNDIALS.

4. Clone the pybind11 repository in the PyBaMM/ directory (make sure the directory is named pybind11).

PyBaMM ships with a Python script that automates points 2. and 3. You can run it with

python scripts/install_KLU_Sundials.py

12 Chapter 1. PyBaMM user guide

https://chocolatey.org/
https://graphviz.org/download/
https://nox.thea.codes/en/stable/

PyBaMM Documentation, Release 24.1

Installing PyBaMM

You should now have everything ready to build and install PyBaMM successfully.

Using Nox (recommended)

in the PyBaMM/ directory
nox -s dev

Note: It is recommended to use --verbose or -v to see outputs of all commands run.

This creates a virtual environment venv/ inside the PyBaMM/ directory. It comes ready with PyBaMM and some useful
development tools like pre-commit and ruff.

You can now activate the environment with

source venv/bin/activate

venv\Scripts\activate.bat

and run the tests to check your installation.

Manual install

From the PyBaMM/ directory, you can install PyBaMM using

pip install .

If you intend to contribute to the development of PyBaMM, it is convenient to install in “editable mode”, along with
all the optional dependencies and useful tools for development and documentation:

pip install -e .[all,dev,docs]

If you are using zsh, you would need to use different pattern matching:

pip install -e '.[all,dev,docs]'

Before you start contributing to PyBaMM, please read the contributing guidelines.

Running the tests

Using Nox (recommended)

You can use Nox to run the unit tests and example notebooks in isolated virtual environments.

The default command

nox

1.1. Installation 13

https://pre-commit.com/
https://beta.ruff.rs/docs/
https://github.com/pybamm-team/PyBaMM/blob/develop/CONTRIBUTING.md

PyBaMM Documentation, Release 24.1

will run pre-commit, install Linux and macOS dependencies, and run the unit tests. This can take several minutes.

To just run the unit tests, use

nox -s unit

Similarly, to run the integration tests, use

nox -s integration

Finally, to run the unit and the integration suites sequentially, use

nox -s tests

Using the test runner

You can run unit tests for PyBaMM using

in the PyBaMM/ directory
python run-tests.py --unit

The above starts a sub-process using the current python interpreter (i.e. using your current Python environment) and
run the unit tests. This can take a few minutes.

You can also use the test runner to run the doctests:

python run-tests.py --doctest

There is more to the PyBaMM test runner. To see a list of all options, type

python run-tests.py --help

How to build the PyBaMM documentation

The documentation is built using

nox -s docs

This will build the documentation and serve it locally (thanks to sphinx-autobuild) for preview. The preview will be
updated automatically following changes.

Doctests, examples, and coverage

Nox can also be used to run doctests, run examples, and generate a coverage report using:

• nox -s examples: Run the Jupyter notebooks in docs/source/examples/notebooks/.

• nox -s examples -- <path-to-notebook-1.ipynb> <path-to_notebook-2.ipynb>: Run specific
Jupyter notebooks.

• nox -s scripts: Run the example scripts in examples/scripts/.

• nox -s doctests: Run doctests.

• nox -s coverage: Measure current test coverage and generate a coverage report.

14 Chapter 1. PyBaMM user guide

https://github.com/GaretJax/sphinx-autobuild

PyBaMM Documentation, Release 24.1

• nox -s quick: Run integration tests, unit tests, and doctests sequentially.

Extra tips while using Nox

Here are some additional useful commands you can run with Nox:

• --verbose or -v: Enables verbose mode, providing more detailed output during the execution of Nox ses-
sions.

• --list or -l: Lists all available Nox sessions and their descriptions.

• --stop-on-first-error: Stops the execution of Nox sessions immediately after the first error or failure oc-
curs.

• --envdir <path>: Specifies the directory where Nox creates and manages the virtual environments used by
the sessions. In this case, the directory is set to <path>.

• --install-only: Skips the test execution and only performs the installation step defined in the Nox sessions.

• --nocolor: Disables the color output in the console during the execution of Nox sessions.

• --report output.json: Generates a JSON report of the Nox session execution and saves it to the specified
file, in this case, “output.json”.

• nox -s docs --non-interactive: Builds the documentation without serving it locally (using
sphinx-build instead of sphinx-autobuild).

Troubleshooting

Problem: I have made edits to source files in PyBaMM, but these are not being used when I run my Python script.

Solution: Make sure you have installed PyBaMM using the -e flag, i.e. pip install -e .. This sets the installed
location of the source files to your current directory.

Problem: Errors when solving model ValueError: Integrator name ida does not exist, or ValueError:
Integrator name cvode does not exist.

Solution: This could mean that you have not installed scikits.odes correctly, check the instructions given above
and make sure each command was successful.

One possibility is that you have not set your LD_LIBRARY_PATH to point to the sundials library, type echo
$LD_LIBRARY_PATH and make sure one of the directories printed out corresponds to where the SUNDIALS libraries
are located.

Another common reason is that you forget to install a BLAS library such as OpenBLAS before installing SUNDIALS.
Check the cmake output when you configured SUNDIALS, it might say:

-- A library with BLAS API not found. Please specify library location.
-- LAPACK requires BLAS

If this is the case, on a Debian or Ubuntu system you can install OpenBLAS using sudo apt-get install
libopenblas-dev (or brew install openblas for Mac OS) and then re-install SUNDIALS using the instructions
above.

1.1. Installation 15

PyBaMM Documentation, Release 24.1

Install from source (Docker)

Contents

• Install from source (Docker)

– Prerequisites

– Pulling the Docker image

– Running the Docker container

– Exiting the Docker container

– Building Docker image locally from source

– Building Docker images with optional arguments

– Using Git inside a running Docker container

– Using Visual Studio Code inside a running Docker container

This page describes the build and installation of PyBaMM using a Dockerfile, available on GitHub. Note that this
is not the recommended approach for most users and should be reserved to people wanting to participate in the
development of PyBaMM, or people who really need to use bleeding-edge feature(s) not yet available in the latest
released version. If you do not fall in the two previous categories, you would be better off installing PyBaMM using
pip or conda.

Prerequisites

Before you begin, make sure you have Docker installed on your system. You can download and install Docker from the
official Docker website. Ensure Docker installation by running:

docker --version

Pulling the Docker image

Use the following command to pull the PyBaMM Docker image from Docker Hub:

docker pull pybamm/pybamm:latest

docker pull pybamm/pybamm:odes

docker pull pybamm/pybamm:jax

docker pull pybamm/pybamm:idaklu

docker pull pybamm/pybamm:all

16 Chapter 1. PyBaMM user guide

https://www.docker.com/get-started/

PyBaMM Documentation, Release 24.1

Running the Docker container

Once you have pulled the Docker image, you can run a Docker container with the PyBaMM environment:

1. In your terminal, use the following command to start a Docker container from the pulled image:

docker run -it pybamm/pybamm:latest

docker run -it pybamm/pybamm:odes

docker run -it pybamm/pybamm:jax

docker run -it pybamm/pybamm:idaklu

docker run -it pybamm/pybamm:all

2. You will now be inside the Docker container’s shell. You can use PyBaMM and its dependencies as if you were
in a virtual environment.

3. You can execute PyBaMM-related commands, run tests develop & contribute from the container.

Exiting the Docker container

To exit the Docker container’s shell, you can simply type:

exit

This will return you to your host machine’s terminal.

Building Docker image locally from source

If you want to build the PyBaMM Docker image locally from the PyBaMM source code, follow these steps:

1. Clone the PyBaMM GitHub repository to your local machine if you haven’t already:

git clone https://github.com/pybamm-team/PyBaMM.git

2. Change into the PyBaMM directory:

cd PyBaMM

3. Build the Docker image using the following command:

docker build -t pybamm -f scripts/Dockerfile .

4. Once the image is built, you can run a Docker container using:

docker run -it pybamm

5. Activate PyBaMM development environment inside docker container using:

conda activate pybamm

1.1. Installation 17

PyBaMM Documentation, Release 24.1

Building Docker images with optional arguments

When building the PyBaMM Docker images locally, you have the option to include specific solvers by using optional
arguments. These solvers include:

• IDAKLU: For IDA solver provided by the SUNDIALS plus KLU.

• ODES: For scikits.odes solver for ODE & DAE problems.

• JAX: For Jax solver.

• ALL: For all the above solvers.

To build the Docker images with optional arguments, you can follow these steps for each solver:

docker build -t pybamm:odes -f scripts/Dockerfile --build-arg ODES=true .

docker build -t pybamm:jax -f scripts/Dockerfile --build-arg JAX=true .

docker build -t pybamm:idaklu -f scripts/Dockerfile --build-arg IDAKLU=true .

docker build -t pybamm:all -f scripts/Dockerfile --build-arg ALL=true .

After building the Docker images with the desired solvers, use the docker run command followed by the desired
image name. For example, to run a container from the image built with all optional solvers:

docker run -it pybamm:all

Activate PyBaMM development environment inside docker container using:

conda activate pybamm

If you want to exit the Docker container’s shell, you can simply type:

exit

Using Git inside a running Docker container

Note: You might require re-configuring git while running the docker container for the first time. You can run git
config --list to ensure if you have desired git configuration already.

1. Setting up git configuration

git config --global user.name "Your Name"

git config --global user.email your@mail.com

2. Setting a git remote

git remote set-url origin <fork_url>

git remote add upstream https://github.com/pybamm-team/PyBaMM
(continues on next page)

18 Chapter 1. PyBaMM user guide

PyBaMM Documentation, Release 24.1

(continued from previous page)

git fetch --all

Using Visual Studio Code inside a running Docker container

You can easily use Visual Studio Code inside a running Docker container by attaching it directly. This provides a
seamless development environment within the container. Here’s how:

1. Install the “Docker” extension from Microsoft in your local Visual Studio Code if it’s not already installed.

2. Pull and run the Docker image containing PyBaMM development environment.

3. In your local Visual Studio Code, open the “Docker” extension by clicking on the Docker icon in the sidebar.

4. Under the “Containers” section, you’ll see a list of running containers. Right-click the running PyBaMM con-
tainer.

5. Select “Attach Visual Studio Code” from the context menu.

6. Visual Studio Code will now connect to the container, and a new VS Code window will open up, running inside
the container. You can now edit, debug, and work on your code using VS Code as if you were working directly
on your local machine.

1.2 Getting Started

The easiest way to use PyBaMM is to run a 1C constant-current discharge with a model of your choice with all the
default settings:

import pybamm

model = pybamm.lithium_ion.DFN() # Doyle-Fuller-Newman model
sim = pybamm.Simulation(model)
sim.solve([0, 3600]) # solve for 1 hour
sim.plot()

or simulate an experiment such as a constant-current discharge followed by a constant-current-constant-voltage charge:

import pybamm

experiment = pybamm.Experiment(
[

(
"Discharge at C/10 for 10 hours or until 3.3 V",
"Rest for 1 hour",
"Charge at 1 A until 4.1 V",
"Hold at 4.1 V until 50 mA",
"Rest for 1 hour",

)
]
* 3,

)
model = pybamm.lithium_ion.DFN()

(continues on next page)

1.2. Getting Started 19

PyBaMM Documentation, Release 24.1

(continued from previous page)

sim = pybamm.Simulation(model, experiment=experiment, solver=pybamm.CasadiSolver())
sim.solve()
sim.plot()

However, much greater customisation is available. It is possible to change the physics, parameter values, geometry,
submesh type, number of submesh points, methods for spatial discretisation and solver for integration (see DFN script
or notebook).

For new users we recommend the Getting Started guides. These are intended to be very simple step-by-step guides
to show the basic functionality of PyBaMM, and can either be downloaded and used locally, or used online through
Google Colab.

Further details can be found in a number of detailed examples, hosted on GitHub. In addition, full details of classes
and methods can be found in the API documentation. Additional supporting material can be found here.

1.3 Fundamentals

PyBaMM (Python Battery Mathematical Modelling) is an open-source battery simulation package written in Python.
Our mission is to accelerate battery modelling research by providing open-source tools for multi-institutional, interdis-
ciplinary collaboration. Broadly, PyBaMM consists of

1. a framework for writing and solving systems of differential equations,

2. a library of battery models and parameters, and

3. specialized tools for simulating battery-specific experiments and visualizing the results.

Together, these enable flexible model definitions and fast battery simulations, allowing users to explore the effect of
different battery designs and modeling assumptions under a variety of operating scenarios.

NOTE: This user-guide is a work-in-progress, we hope that this brief but incomplete overview will be
useful to you.

1.3.1 Core framework

The core of the framework is a custom computer algebra system to define mathematical equations, and a domain specific
modeling language to combine these equations into systems of differential equations (usually partial differential equa-
tions for variables depending on space and time). The expression tree example gives an introduction to the computer
algebra system, and the Getting Started tutorials walk through creating models of increasing complexity.

Once a model has been defined symbolically, PyBaMM solves it using the Method of Lines. First, the equations are
discretised in the spatial dimension, using the finite volume method. Then, the resulting system is solved using third-
party numerical solvers. Depending on the form of the model, the system can be ordinary differential equations (ODEs)
(if only model.rhs is defined), or algebraic equations (if only model.algebraic is defined), or differential-algebraic
equations (DAEs) (if both model.rhs and model.algebraic are defined). Jupyter notebooks explaining the solvers
can be found here.

20 Chapter 1. PyBaMM user guide

https://github.com/pybamm-team/PyBaMM/blob/develop/examples/scripts/DFN.py
https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/notebooks/models/DFN.ipynb
https://github.com/pybamm-team/PyBaMM/tree/develop/docs/source/examples/notebooks/getting_started/
https://colab.research.google.com/github/pybamm-team/PyBaMM/blob/main/
https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/index.rst
https://github.com/pybamm-team/pybamm-supporting-material/
https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/notebooks/expression_tree/expression-tree.ipynb
https://github.com/pybamm-team/PyBaMM/tree/develop/docs/source/examples/notebooks/getting_started/
https://github.com/pybamm-team/PyBaMM/tree/develop/docs/source/examples/notebooks/solvers

PyBaMM Documentation, Release 24.1

1.3.2 Model and Parameter Library

PyBaMM contains an extensive library of battery models and parameters. The bulk of the library consists of models
for lithium-ion, but there are also some other chemistries (lead-acid, lithium metal). Models are first divided broadly
into common named models of varying complexity, such as the single particle model (SPM) or Doyle-Fuller-Newman
model (DFN). Most options can be applied to any model, but some are model-specific (an error will be raised if you
attempt to set an option is not compatible with a model). See Base Battery Model for a list of options.

The parameter library is simply a collection of python files each defining a complete set of parameters for a particular
battery chemistry, covering all major lithium-ion chemistries (NMC, LFP, NCA, . . .). External parameter sets can be
linked using entry points (see Parameters Sets).

1.3.3 Battery-specific tools

One of PyBaMM’s unique features is the Experiment class, which allows users to define synthetic experiments using
simple instructions in English

pybamm.Experiment(
[

(
"Discharge at C/10 for 10 hours or until 3.3 V",
"Rest for 1 hour",
"Charge at 1 A until 4.1 V",
"Hold at 4.1 V until 50 mA",
"Rest for 1 hour",

)
]
* 3,

)

The above instruction will conduct a standard discharge / rest / charge / rest cycle three times, with a 10 hour discharge
and 1 hour rest at the end of each cycle.

The Simulation class handles simulating an Experiment, as well as calculating additional outputs such as capacity
as a function of cycle number. For example, the following code will simulate the experiment above and plot the standard
output variables:

import pybamm
import matplotlib.pyplot as plt

load model and parameter values
model = pybamm.lithium_ion.DFN()
sim = pybamm.Simulation(model, experiment=experiment)
solution = sim.solve()
solution.plot()

Finally, PyBaMM provides custom visualization tools:

• Quick Plot: for easily plotting simulation outputs in a grid, including comparing multiple simulations

• pybamm.plot_voltage_components: for plotting the component overpotentials that make up a voltage curve

Users are not limited to these tools and can plot the output of a simulation solution by accessing the underlying numpy
array for the solution variables as

1.3. Fundamentals 21

PyBaMM Documentation, Release 24.1

solution["variable name"].data

and using the plotting library of their choice.

1.4 Battery Models

References for the battery models used in PyBaMM simulations can be found calling

pybamm.print_citations()

However, a few papers are provided in this section for anyone interested in reading the theory behind the models before
doing the tutorials.

1.4.1 Review Articles

Review of physics-based lithium-ion battery models

Review of parameterisation and a novel database for Li-ion battery models

1.4.2 Model References

Lithium-Ion Batteries

Doyle-Fuller-Newman model

Single particle model

Lead-Acid Batteries

Isothermal porous-electrode model

Leading-Order Quasi-Static model

1.5 Contributing to PyBaMM

If you’d like to contribute to PyBaMM (thanks!), please have a look at the guidelines below.

If you’re already familiar with our workflow, maybe have a quick look at the pre-commit checks directly below.

1.5.1 Pre-commit checks

Before you commit any code, please perform the following checks:

• All tests pass: $ nox -s unit

• The documentation builds: $ nox -s docs

22 Chapter 1. PyBaMM user guide

https://doi.org/10.1088/2516-1083/ac7d31
https://doi.org/10.1088/2516-1083/ac692c
https://doi.org/10.1149/1.2221597
https://doi.org/10.1149/2.0341915jes
https://doi.org/10.1149/2.0301910jes
https://doi.org/10.1149/2.0441908jes

PyBaMM Documentation, Release 24.1

Installing and using pre-commit

PyBaMM uses a set of pre-commit hooks and the pre-commit bot to format and prettify the codebase. The hooks can
be installed locally using -

pip install pre-commit
pre-commit install

This would run the checks every time a commit is created locally. The checks will only run on the files modified by
that commit, but the checks can be triggered for all the files using -

pre-commit run --all-files

If you would like to skip the failing checks and push the code for further discussion, use the --no-verify option with
git commit.

1.5.2 Workflow

We use GIT and GitHub to coordinate our work. When making any kind of update, we try to follow the procedure
below.

A. Before you begin

1. Create an issue where new proposals can be discussed before any coding is done.

2. Create a branch of this repo (ideally on your own fork), where all changes will be made

3. Download the source code onto your local system, by cloning the repository (or your fork of the repository).

4. Install PyBaMM with the developer options.

5. Test if your installation worked, using the test script: $ python run-tests.py --unit.

You now have everything you need to start making changes!

B. Writing your code

6. PyBaMM is developed in Python, and makes heavy use of NumPy (see also NumPy for MatLab users and Python
for R users).

7. Make sure to follow our coding style guidelines.

8. Commit your changes to your branch with useful, descriptive commit messages: Remember these are publicly
visible and should still make sense a few months ahead in time. While developing, you can keep using the GitHub
issue you’re working on as a place for discussion. Refer to your commits when discussing specific lines of code.

9. If you want to add a dependency on another library, or re-use code you found somewhere else, have a look at
these guidelines.

1.5. Contributing to PyBaMM 23

https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/GitHub
https://guides.github.com/features/issues/
https://help.github.com/articles/creating-and-deleting-branches-within-your-repository/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/cloning-a-repository/
https://docs.pybamm.org/en/latest/source/user_guide/installation/install-from-source.html
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/NumPy
https://numpy.org/doc/stable/user/numpy-for-matlab-users.html
https://www.rebeccabarter.com/blog/2023-09-11-from_r_to_python
https://www.rebeccabarter.com/blog/2023-09-11-from_r_to_python
https://chris.beams.io/posts/git-commit/
https://stackoverflow.com/questions/8910271/how-can-i-reference-a-commit-in-an-issue-comment-on-github

PyBaMM Documentation, Release 24.1

C. Merging your changes with PyBaMM

10. Test your code!

11. PyBaMM has online documentation at http://docs.pybamm.org/. To make sure any new methods or classes you
added show up there, please read the documentation section.

12. If you added a major new feature, perhaps it should be showcased in an example notebook.

13. When you feel your code is finished, or at least warrants serious discussion, run the pre-commit checks and then
create a pull request (PR) on PyBaMM’s GitHub page.

14. Once a PR has been created, it will be reviewed by any member of the community. Changes might be suggested
which you can make by simply adding new commits to the branch. When everything’s finished, someone with
the right GitHub permissions will merge your changes into PyBaMM main repository.

Finally, if you really, really, really love developing PyBaMM, have a look at the current project infrastructure.

1.5.3 Coding style guidelines

PyBaMM follows the PEP8 recommendations for coding style. These are very common guidelines, and community
tools have been developed to check how well projects implement them. We recommend using pre-commit hooks to
check your code before committing it. See installing and using pre-commit section for more details.

Ruff

We use ruff to check our PEP8 adherence. To try this on your system, navigate to the PyBaMM directory in a console
and type

python -m pip install pre-commit
pre-commit run ruff

ruff is configured inside the file pre-commit-config.yaml, allowing us to ignore some errors. If you think this
should be added or removed, please submit an issue

When you commit your changes they will be checked against ruff automatically (see Pre-commit checks).

Naming

Naming is hard. In general, we aim for descriptive class, method, and argument names. Avoid abbreviations when
possible without making names overly long, so mean is better than mu, but a class name like MyClass is fine.

Class names are CamelCase, and start with an upper case letter, for example MyOtherClass. Method and variable
names are lower case, and use underscores for word separation, for example x or iteration_count.

24 Chapter 1. PyBaMM user guide

https://help.github.com/articles/about-pull-requests/
https://github.com/pybamm-team/PyBaMM
https://www.python.org/dev/peps/pep-0008/
https://github.com/charliermarsh/ruff
https://github.com/pybamm-team/PyBaMM/issues

PyBaMM Documentation, Release 24.1

1.5.4 Dependencies and reusing code

While it’s a bad idea for developers to “reinvent the wheel”, it’s important for users to get a reasonably sized download
and an easy install. In addition, external libraries can sometimes cease to be supported, and when they contain bugs
it might take a while before fixes become available as automatic downloads to PyBaMM users. For these reasons, all
dependencies in PyBaMM should be thought about carefully, and discussed on GitHub.

Direct inclusion of code from other packages is possible, as long as their license permits it and is compatible with ours,
but again should be considered carefully and discussed in the group. Snippets from blogs and stackoverflow can often
be included without attribution, but if they solve a particularly nasty problem (or are very hard to read) it’s often a good
idea to attribute (and document) them, by making a comment with a link in the source code.

Separating dependencies

On the other hand. . . We do want to compare several tools, to generate documentation, and to speed up development.
For this reason, the dependency structure is split into 4 parts:

1. Core PyBaMM: A minimal set, including things like NumPy, SciPy, etc. All infrastructure should run against
this set of dependencies, as well as any numerical methods we implement ourselves.

2. Extras: Other inference packages and their dependencies. Methods we don’t want to implement ourselves, but
do want to provide an interface to can have their dependencies added here.

3. Documentation generating code: Everything you need to generate and work on the docs.

4. Development code: Everything you need to do PyBaMM development (so all of the above packages, plus ruff
and other testing tools).

Only ‘core pybamm’ is installed by default. The others have to be specified explicitly when running the installation
command.

Managing Optional Dependencies and Their Imports

PyBaMM utilizes optional dependencies to allow users to choose which additional libraries they want to use. Managing
these optional dependencies and their imports is essential to provide flexibility to PyBaMM users.

PyBaMM provides a utility function have_optional_dependency, to check for the availability of optional depen-
dencies within methods. This function can be used to conditionally import optional dependencies only if they are
available. Here’s how to use it:

Optional dependencies should never be imported at the module level, but always inside methods. For example:

def use_pybtex(x,y,z):
pybtex = have_optional_dependency("pybtex")
...

While importing a specific module instead of an entire package/library:

def use_parse_file(x, y, z):
parse_file = have_optional_dependency("pybtex.database", "parse_file")
...

This allows people to (1) use PyBaMM without importing optional dependencies by default and (2) configure module-
dependent functionalities in their scripts, which must be done before e.g. print_citationsmethod is first imported.

Writing Tests for Optional Dependencies

1.5. Contributing to PyBaMM 25

https://stackoverflow.com/

PyBaMM Documentation, Release 24.1

Whenever a new optional dependency is added for optional functionality, it is recommended to write a corresponding
unit test in test_util.py. This ensures that an error is raised upon the absence of said dependency. Here’s an
example:

from tests import TestCase
import pybamm

class TestUtil(TestCase):
def test_optional_dependency(self):

Test that an error is raised when pybtex is not available
with self.assertRaisesRegex(

ModuleNotFoundError, "Optional dependency pybtex is not available"
):

sys.modules["pybtex"] = None
pybamm.function_using_pybtex(x, y, z)

Test that the function works when pybtex is available
sys.modules["pybtex"] = pybamm.util.have_optional_dependency("pybtex")
pybamm.function_using_pybtex(x, y, z)

1.5.5 Testing

All code requires testing. We use the unittest package for our tests. (These tests typically just check that the code runs
without error, and so, are more debugging than testing in a strict sense. Nevertheless, they are very useful to have!)

We also use pytest along with the nbmake and the pytest-xdist plugins to test the example notebooks.

If you have nox installed, to run unit tests, type

nox -s unit

else, type

python run-tests.py --unit

26 Chapter 1. PyBaMM user guide

https://docs.python.org/3.3/library/unittest.html
https://docs.pytest.org/en/latest/
https://github.com/treebeardtech/nbmake
https://pypi.org/project/pytest-xdist/

PyBaMM Documentation, Release 24.1

Writing tests

Every new feature should have its own test. To create ones, have a look at the test directory and see if there’s a test
for a similar method. Copy-pasting this is a good way to start.

Next, add some simple (and speedy!) tests of your main features. If these run without exceptions that’s a good start!
Next, check the output of your methods using any of these assert methods.

Running more tests

The tests are divided into unit tests, whose aim is to check individual bits of code (e.g. discretising a gradient operator,
or solving a simple ODE), and integration tests, which check how parts of the program interact as a whole (e.g.
solving a full model). If you want to check integration tests as well as unit tests, type

nox -s tests

When you commit anything to PyBaMM, these checks will also be run automatically (see infrastructure).

Testing the example notebooks

To test all the example notebooks in the docs/source/examples/ folder with pytest and nbmake, type

nox -s examples

Alternatively, you may use pytest directly with the --nbmake flag:

pytest --nbmake

which runs all the notebooks in the docs/source/examples/notebooks/ folder in parallel by default, using the
pytest-xdist plugin.

Sometimes, debugging a notebook can be a hassle. To run a single notebook, pass the path to it to pytest:

pytest --nbmake docs/source/examples/notebooks/notebook-name.ipynb

or, alternatively, you can use posargs to pass the path to the notebook to nox. For example:

nox -s examples -- docs/source/examples/notebooks/notebook-name.ipynb

You may also test multiple notebooks this way. Passing the path to a folder will run all the notebooks in that folder:

nox -s examples -- docs/source/examples/notebooks/models/

You may also use an appropriate glob pattern to run all notebooks matching a particular folder or name pattern.

To edit the structure and how the Jupyter notebooks get rendered in the Sphinx documentation (using nbsphinx), install
Pandoc on your system, either using conda (through the conda-forge channel)

conda install -c conda-forge pandoc

or refer to the Pandoc installation instructions specific to your platform.

1.5. Contributing to PyBaMM 27

https://docs.python.org/3.3/library/unittest.html#assert-methods
https://docs.python.org/3/library/glob.html
https://pandoc.org/installing.html
https://pandoc.org/installing.html

PyBaMM Documentation, Release 24.1

Testing the example scripts

To test all the example scripts in the examples/ folder, type

nox -s scripts

Debugging

Often, the code you write won’t pass the tests straight away, at which stage it will become necessary to debug. The
key to successful debugging is to isolate the problem by finding the smallest possible example that causes the bug. In
practice, there are a few tricks to help you to do this, which we give below. Once you’ve isolated the issue, it’s a good
idea to add a unit test that replicates this issue, so that you can easily check whether it’s been fixed, and make sure that
it’s easily picked up if it crops up again. This also means that, if you can’t fix the bug yourself, it will be much easier
to ask for help (by opening a bug-report issue).

1. Run individual test scripts instead of the whole test suite:

python tests/unit/path/to/test

You can also run an individual test from a particular script, e.g.

python tests/unit/test_quick_plot.py TestQuickPlot.test_failure

If you want to run several, but not all, the tests from a script, you can restrict which tests are run from a particular
script by using the skipping decorator:

@unittest.skip("")
def test_bit_of_code(self):

...

or by just commenting out all the tests you don’t want to run.

2. Set break points, either in your IDE or using the Python debugging module. To use the latter, add the following
line where you want to set the break point

import ipdb

ipdb.set_trace()

This will start the Python interactive debugger. If you want to be able to use magic commands from ipython,
such as %timeit, then set

from IPython import embed

embed()
import ipdb

ipdb.set_trace()

at the break point instead. Figuring out where to start the debugger is the real challenge. Some good ways to set
debugging break points are:

1. Try-except blocks. Suppose the line do_something_complicated() is raising a ValueError. Then you
can put a try-except block around that line as:

28 Chapter 1. PyBaMM user guide

https://github.com/pybamm-team/PyBaMM/issues/new?template=bug_report.md
https://gist.github.com/mono0926/6326015

PyBaMM Documentation, Release 24.1

try:
do_something_complicated()

except ValueError:
import ipdb

ipdb.set_trace()

This will start the debugger at the point where the ValueError was raised, and allow you to investigate
further. Sometimes, it is more informative to put the try-except block further up the call stack than exactly
where the error is raised.

2. Warnings. If functions are raising warnings instead of errors, it can be hard to pinpoint where this is coming
from. Here, you can use the warnings module to convert warnings to errors:

import warnings

warnings.simplefilter("error")

Then you can use a try-except block, as in a., but with, for example, RuntimeWarning instead of
ValueError.

3. Stepping through the expression tree. Most calls in PyBaMM are operations on expression trees. To view
an expression tree in ipython, you can use the render command:

expression_tree.render()

You can then step through the expression tree, using the children attribute, to pinpoint exactly
where a bug is coming from. For example, if expression_tree.jac(y) is failing, you can check
expression_tree.children[0].jac(y), then expression_tree.children[0].children[0].
jac(y), etc.

3. To isolate whether a bug is in a model, its Jacobian or its simplified version, you can set the use_jacobian
and/or use_simplify attributes of the model to False (they are both True by default for most models).

4. If a model isn’t giving the answer you expect, you can try comparing it to other models. For example, you can
investigate parameter limits in which two models should give the same answer by setting some parameters to be
small or zero. The StandardOutputComparison class can be used to compare some standard outputs from
battery models.

5. To get more information about what is going on under the hood, and hence understand what is causing the bug,
you can set the logging level to DEBUG by adding the following line to your test or script:

pybamm.set_logging_level("DEBUG")

6. In models that inherit from pybamm.BaseBatteryModel (i.e. any battery model), you can use self.
process_parameters_and_discretise to process a symbol and see what it will look like.

1.5. Contributing to PyBaMM 29

https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/notebooks/expression_tree/expression-tree.ipynb
https://realpython.com/python-logging/

PyBaMM Documentation, Release 24.1

Profiling

Sometimes, a bit of code will take much longer than you expect to run. In this case, you can set

from IPython import embed

embed()
import ipdb

ipdb.set_trace()

as above, and then use some of the profiling tools. In order of increasing detail:

1. Simple timer. In ipython, the command

%time command_to_time()

tells you how long the line command_to_time() takes. You can use %timeit instead to run the command
several times and obtain more accurate timings.

2. Simple profiler. Using %prun instead of %time will give a brief profiling report 3. Detailed profiler. You can
install the detailed profiler snakeviz through pip:

pip install snakeviz

and then, in ipython, run

%load_ext snakeviz
%snakeviz command_to_time()

This will open a window in your browser with detailed profiling information.

1.5.6 Documentation

PyBaMM is documented in several ways.

First and foremost, every method and every class should have a docstring that describes in plain terms what it does,
and what the expected input and output is.

These docstrings can be fairly simple, but can also make use of reStructuredText, a markup language designed specifi-
cally for writing technical documentation. For example, you can link to other classes and methods by writing :class:
`pybamm.Model` and :meth:`run()` .

In addition, we write a (very) small bit of documentation in separate reStructuredText files in the docs directory. Most
of what these files do is simply import docstrings from the source code. But they also do things like add tables and
indexes. If you’ve added a new class to a module, search the docs directory for that module’s .rst file and add your
class (in alphabetical order) to its index. If you’ve added a whole new module, copy-paste another module’s file and
add a link to your new file in the appropriate index.rst file.

Using Sphinx the documentation in docs can be converted to HTML, PDF, and other formats. In particular, we use it
to generate the documentation on http://docs.pybamm.org/

30 Chapter 1. PyBaMM user guide

https://www.python.org/dev/peps/pep-0257/
http://docutils.sourceforge.net/docs/user/rst/quickref.html
https://en.wikipedia.org/wiki/ReStructuredText
http://www.sphinx-doc.org/en/stable/

PyBaMM Documentation, Release 24.1

Building the documentation

To test and debug the documentation, it’s best to build it locally. To do this, navigate to your PyBaMM directory in a
console, and then type (on GNU/Linux, macOS, and Windows):

nox -s docs

And then visit the webpage served at http://127.0.0.1:8000. Each time a change to the documentation source is
detected, the HTML is rebuilt and the browser automatically reloaded. In CI, the docs are built and tested using the
docs session in the noxfile.py file with warnings turned into errors, to fail the build. The warnings can be removed
or ignored by adding the appropriate warning identifier to the suppress_warnings list in docs/conf.py.

Example notebooks

Major PyBaMM features are showcased in Jupyter notebooks stored in the docs/source/examples directory. Which
features are “major” is of course wholly subjective, so please discuss on GitHub first!

All example notebooks should be listed in docs/source/examples/index.rst. Please follow the (naming and writing) style
of existing notebooks where possible.

All the notebooks are tested daily.

1.5.7 Citations

We aim to recognize all contributions by automatically generating citations to the relevant papers on which different
parts of the code are built. These will change depending on what models and solvers you use. Adding the command

pybamm.print_citations()

to the end of a script will print all citations that were used by that script. This will print BibTeX information to the
terminal; passing a filename to print_citations will print the BibTeX information to the specified file instead.

When you contribute code to PyBaMM, you can add your own papers that you would like to be cited if that code is
used. First, add the BibTeX for your paper to CITATIONS.bib. Then, add the line

pybamm.citations.register("your_paper_bibtex_identifier")

wherever code is called that uses that citation (for example, in functions or in the __init__ method of a class such as
a model or solver).

1.5.8 Infrastructure

Installation

Installation of PyBaMM and its dependencies is handled via pip and setuptools. It uses CMake to compile C++ exten-
sions using pybind11 and casadi. The installation process is described in detail in the source installation page and
is configured through the CMakeLists.txt file.

Configuration files:

setup.py
pyproject.toml
MANIFEST.in

1.5. Contributing to PyBaMM 31

https://jupyter.org/
https://github.com/pybamm-team/PyBaMM/tree/develop/docs/source/examples
https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/index.rst
https://github.com/pybamm-team/PyBaMM/blob/develop/pybamm/CITATIONS.bib
https://pip.pypa.io/en/stable/
http://setuptools.readthedocs.io/
https://pybind11.readthedocs.io/en/stable/
https://web.casadi.org/
https://docs.pybamm.org/en/latest/source/user_guide/installation/install-from-source.html

PyBaMM Documentation, Release 24.1

Note: MANIFEST.in is used to include and exclude non-Python files and auxiliary package data for PyBaMM when
distributing it. If a file is not included in MANIFEST.in, it will not be included in the source distribution (SDist) and
subsequently not be included in the binary distribution (wheel).

Continuous Integration using GitHub Actions

Each change pushed to the PyBaMM GitHub repository will trigger the test and benchmark suites to be run, using
GitHub Actions.

Tests are run for different operating systems, and for all Python versions officially supported by PyBaMM. If you opened
a Pull Request, feedback is directly available on the corresponding page. If all tests pass, a green tick will be displayed
next to the corresponding test run. If one or more test(s) fail, a red cross will be displayed instead.

Similarly, the benchmark suite is automatically run for the most recently pushed commit. Benchmark results are com-
pared to the results available for the latest commit on the develop branch. Should any significant performance regres-
sion be found, a red cross will be displayed next to the benchmark run.

In all cases, more details can be obtained by clicking on a specific run.

Configuration files for various GitHub actions workflow can be found in .github/worklfows.

Codecov

Code coverage (how much of our code is actually seen by the (linux) unit tests) is tested using Codecov, a report is
visible on https://codecov.io/gh/pybamm-team/PyBaMM.

Configuration files:

.coveragerc

Read the Docs

Documentation is built using https://readthedocs.org/ and published on http://docs.pybamm.org/.

Google Colab

Editable notebooks are made available using Google Colab here.

GitHub

GitHub does some magic with particular filenames. In particular:

• The first page people see when they go to our GitHub page displays the contents of README.md, which is
written in the Markdown format. Some guidelines can be found here.

• The license for using PyBaMM is stored in LICENSE, and automatically linked to by GitHub.

• This file, CONTRIBUTING.md is recognised as the contribution guidelines and a link is automatically displayed
when new issues or pull requests are created.

32 Chapter 1. PyBaMM user guide

https://github.com/features/actions
https://docs.codecov.io/
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/github/pybamm-team/PyBaMM/blob/main/
https://github.com/pybamm-team/PyBaMM
https://github.com/pybamm-team/PyBaMM/blob/develop/README.md
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://help.github.com/articles/about-readmes/
https://github.com/pybamm-team/PyBaMM/blob/develop/LICENSE.txt
https://help.github.com/articles/adding-a-license-to-a-repository/
https://github.com/pybamm-team/PyBaMM/blob/develop/CONTRIBUTING.md
https://github.com/blog/1184-contributing-guidelines

PyBaMM Documentation, Release 24.1

1.5.9 Acknowledgements

This CONTRIBUTING.md file, along with large sections of the code infrastructure, was copied from the excellent
Pints GitHub repo

1.5. Contributing to PyBaMM 33

https://github.com/pints-team/pints

PyBaMM Documentation, Release 24.1

34 Chapter 1. PyBaMM user guide

CHAPTER

TWO

EXAMPLE NOTEBOOKS

PyBaMM ships with example notebooks that demonstrate how to use it and reveal some of its functionalities and its
inner workings. For more examples, see the Examples section.

The notebooks are not included in PDF formats of the documentation. You may access them on PyBaMM’s hosted
documentation available at https://docs.pybamm.org/en/latest/source/examples/index.html

35

PyBaMM Documentation, Release 24.1

36 Chapter 2. Example notebooks

CHAPTER

THREE

API DOCUMENTATION

Release
24.1

Date
Jan 31, 2024

This reference manual details functions, modules, and objects included in PyBaMM, describing what they are and what
they do. For a high-level introduction to PyBaMM, see the user guide and the examples.

3.1 Expression Tree

3.1.1 Symbol

pybamm.simplify_if_constant(symbol)
Utility function to simplify an expression tree if it evalutes to a constant scalar, vector or matrix

class pybamm.Symbol(name, children=None, domain=None, auxiliary_domains=None, domains=None)
Base node class for the expression tree.

Parameters

• name (str) – name for the node

• children (iterable Symbol, optional) – children to attach to this node, default to an empty
list

• domain (iterable of str, or str) – list of domains over which the node is valid
(empty list indicates the symbol is valid over all domains)

• auxiliary_domains (dict of str) – dictionary of auxiliary domains over which the
node is valid (empty dictionary indicates no auxiliary domains). Keys can be “sec-
ondary”, “tertiary” or “quaternary”. The symbol is broadcast over its auxiliary do-
mains. For example, a symbol might have domain “negative particle”, secondary domain
“separator” and tertiary domain “current collector” (domain=”negative particle”, auxil-
iary_domains={“secondary”: “separator”, “tertiary”: “current collector”}).

• domains (dict) – A dictionary equivalent to {‘primary’: domain, auxiliary_domains}. Ei-
ther ‘domain’ and ‘auxiliary_domains’, or just ‘domains’, should be provided (not both). In
future, the ‘domain’ and ‘auxiliary_domains’ arguments may be deprecated.

__abs__()

return an AbsoluteValue object, or a smooth approximation.

37

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

__add__(other)
return an Addition object.

__array_ufunc__(ufunc, method, *inputs, **kwargs)
If a numpy ufunc is applied to a symbol, call the corresponding pybamm function instead.

__eq__(other)
Return self==value.

__ge__(other)
return a EqualHeaviside object, or a smooth approximation.

__gt__(other)
return a NotEqualHeaviside object, or a smooth approximation.

__hash__()

Return hash(self).

__init__(name, children=None, domain=None, auxiliary_domains=None, domains=None)

__le__(other)
return a EqualHeaviside object, or a smooth approximation.

__lt__(other)
return a NotEqualHeaviside object, or a smooth approximation.

__matmul__(other)
return a MatrixMultiplication object.

__mod__(other)
return an Modulo object.

__mul__(other)
return a Multiplication object.

__neg__()

return a Negate object.

__pow__(other)
return a Power object.

__radd__(other)
return an Addition object.

__repr__()

returns the string __class__(id, name, children, domain)

__rmatmul__(other)
return a MatrixMultiplication object.

__rmul__(other)
return a Multiplication object.

__rpow__(other)
return a Power object.

__rsub__(other)
return a Subtraction object.

38 Chapter 3. API documentation

PyBaMM Documentation, Release 24.1

__rtruediv__(other)
return a Division object.

__str__()

return a string representation of the node and its children.

__sub__(other)
return a Subtraction object.

__truediv__(other)
return a Division object.

__weakref__

list of weak references to the object (if defined)

property auxiliary_domains

Returns auxiliary domains.

property children

returns the cached children of this node.

Note: it is assumed that children of a node are not modified after initial creation

clear_domains()

Clear domains, bypassing checks.

copy_domains(symbol)
Copy the domains from a given symbol, bypassing checks.

create_copy()

Make a new copy of a symbol, to avoid Tree corruption errors while bypassing copy.deepcopy(), which is
slow.

diff(variable)
Differentiate a symbol with respect to a variable. For any symbol that can be differentiated, return 1 if
differentiating with respect to yourself, self._diff(variable) if variable is in the expression tree of the symbol,
and zero otherwise.

Parameters
variable (pybamm.Symbol) – The variable with respect to which to differentiate

property domain

list of applicable domains.

Return type
iterable of str

evaluate(t=None, y=None, y_dot=None, inputs=None)
Evaluate expression tree (wrapper to allow using dict of known values).

Parameters

• t (float or numeric type, optional) – time at which to evaluate (default None)

• y (numpy.array, optional) – array with state values to evaluate when solving (default
None)

• y_dot (numpy.array, optional) – array with time derivatives of state values to evalu-
ate when solving (default None)

• inputs (dict, optional) – dictionary of inputs to use when solving (default None)

3.1. Expression Tree 39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Returns
the node evaluated at (t,y)

Return type
number or array

evaluate_for_shape()

Evaluate expression tree to find its shape.

For symbols that cannot be evaluated directly (e.g. Variable or Parameter), a vector of the appropriate
shape is returned instead, using the symbol’s domain. See pybamm.Symbol.evaluate()

evaluate_ignoring_errors(t=0)
Evaluates the expression. If a node exists in the tree that cannot be evaluated as a scalar or vector (e.g.
Time, Parameter, Variable, StateVector), then None is returned. If there is an InputParameter in the tree
then a 1 is returned. Otherwise the result of the evaluation is given.

See also:

evaluate
evaluate the expression

evaluates_on_edges(dimension)
Returns True if a symbol evaluates on an edge, i.e. symbol contains a gradient operator, but not a divergence
operator, and is not an IndefiniteIntegral. Caches the solution for faster results.

Parameters
dimension (str) – The dimension (primary, secondary, etc) in which to query evaluation
on edges

Returns
Whether the symbol evaluates on edges (in the finite volume discretisation sense)

Return type
bool

evaluates_to_number()

Returns True if evaluating the expression returns a number. Returns False otherwise, including if NotIm-
plementedError or TyperError is raised. !Not to be confused with isinstance(self, pybamm.Scalar)!

See also:

evaluate
evaluate the expression

get_children_domains(children)
Combine domains from children, at all levels.

has_symbol_of_classes(symbol_classes)
Returns True if equation has a term of the class(es) symbol_class.

Parameters
symbol_classes (pybamm class or iterable of classes) – The classes to test the
symbol against

is_constant()

returns true if evaluating the expression is not dependent on t or y or inputs

See also:

40 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

evaluate
evaluate the expression

jac(variable, known_jacs=None, clear_domain=True)
Differentiate a symbol with respect to a (slice of) a StateVector or StateVectorDot. See pybamm.Jacobian.

property name

name of the node.

property ndim_for_testing

Number of dimensions of an object, found by evaluating it with appropriate t and y

new_copy()

Returns create_copy with added attributes

property orphans

Returning new copies of the children, with parents removed to avoid corrupting the expression tree internal
data

pre_order()

returns an iterable that steps through the tree in pre-order fashion.

Examples

>>> a = pybamm.Symbol('a')
>>> b = pybamm.Symbol('b')
>>> for node in (a*b).pre_order():
... print(node.name)
*
a
b

property quaternary_domain

Helper function to get the quaternary domain of a symbol.

relabel_tree(symbol, counter)
Finds all children of a symbol and assigns them a new id so that they can be visualised properly using the
graphviz output

render()

Print out a visual representation of the tree (this node and its children)

property secondary_domain

Helper function to get the secondary domain of a symbol.

set_id()

Set the immutable “identity” of a variable (e.g. for identifying y_slices).

Hashing can be slow, so we set the id when we create the node, and hence only need to hash once.

property shape

Shape of an object, found by evaluating it with appropriate t and y.

property shape_for_testing

Shape of an object for cases where it cannot be evaluated directly. If a symbol cannot be evaluated directly
(e.g. it is a Variable or Parameter), it is instead given an arbitrary domain-dependent shape.

3.1. Expression Tree 41

PyBaMM Documentation, Release 24.1

property size

Size of an object, found by evaluating it with appropriate t and y

property size_for_testing

Size of an object, based on shape for testing.

property tertiary_domain

Helper function to get the tertiary domain of a symbol.

test_shape()

Check that the discretised self has a pybamm shape, i.e. can be evaluated.

Raises
pybamm.ShapeError – If the shape of the object cannot be found

to_casadi(t=None, y=None, y_dot=None, inputs=None, casadi_symbols=None)
Convert the expression tree to a CasADi expression tree. See pybamm.CasadiConverter.

to_json()

Method to serialise a Symbol object into JSON.

visualise(filename)
Produces a .png file of the tree (this node and its children) with the name filename

Parameters
filename (str) – filename to output, must end in “.png”

3.1.2 Parameter

class pybamm.Parameter(name)
A node in the expression tree representing a parameter.

This node will be replaced by a pybamm.Scalar node

Parameters
name (str) – name of the node

Extends: pybamm.expression_tree.symbol.Symbol

create_copy()

See pybamm.Symbol.new_copy().

is_constant()

See pybamm.Symbol.is_constant().

to_equation()

Convert the node and its subtree into a SymPy equation.

to_json()

Method to serialise a Symbol object into JSON.

class pybamm.FunctionParameter(name, inputs, diff_variable=None, print_name='calculate')
A node in the expression tree representing a function parameter.

This node will be replaced by a pybamm.Function node if a callable function is passed to the parameter values,
and otherwise (in some rarer cases, such as constant current) a pybamm.Scalar node.

Parameters

42 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

• name (str) – name of the node

• inputs (dict) – A dictionary with string keys and pybamm.Symbol values representing the
function inputs. The string keys should provide a reasonable description of what the input to
the function is (e.g. “Electrolyte concentration [mol.m-3]”)

• diff_variable (pybamm.Symbol, optional) – if diff_variable is specified, the FunctionPa-
rameter node will be replaced by a pybamm.Function and then differentiated with respect
to diff_variable. Default is None.

• print_name (str, optional) – The name to show when printing. Default is ‘calculate’,
in which case the name is calculated using sys._getframe().

Extends: pybamm.expression_tree.symbol.Symbol

create_copy()

See pybamm.Symbol.new_copy().

diff(variable)
See pybamm.Symbol.diff().

set_id()

See pybamm.Symbol.set_id()

to_equation()

Convert the node and its subtree into a SymPy equation.

to_json()

Method to serialise a Symbol object into JSON.

3.1.3 Variable

class pybamm.Variable(name, domain=None, auxiliary_domains=None, domains=None, bounds=None,
print_name=None, scale=1, reference=0)

A node in the expression tree represending a dependent variable.

This node will be discretised by Discretisation and converted to a pybamm.StateVector node.

Parameters

• name (str) – name of the node domain : iterable of str, optional list of domains that this
variable is valid over

• auxiliary_domains (dict, optional) – dictionary of auxiliary domains ({‘secondary’:
. . . , ‘tertiary’: . . . , ‘quaternary’: . . . }). For example, for the single particle model, the particle
concentration would be a Variable with domain ‘negative particle’ and secondary auxiliary
domain ‘current collector’. For the DFN, the particle concentration would be a Variable
with domain ‘negative particle’, secondary domain ‘negative electrode’ and tertiary domain
‘current collector’

• domains (dict) – A dictionary equivalent to {‘primary’: domain, auxiliary_domains}. Ei-
ther ‘domain’ and ‘auxiliary_domains’, or just ‘domains’, should be provided (not both). In
future, the ‘domain’ and ‘auxiliary_domains’ arguments may be deprecated.

• bounds (tuple, optional) – Physical bounds on the variable

• print_name (str, optional) – The name to use for printing. Default is None, in which
case self.name is used.

3.1. Expression Tree 43

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

• scale (float or pybamm.Symbol, optional) – The scale of the variable, used for scaling the
model when solving. The state vector representing this variable will be multiplied by this
scale. Default is 1.

• reference (float or pybamm.Symbol, optional) – The reference value of the variable, used
for scaling the model when solving. This value will be added to the state vector representing
this variable. Default is 0.

Extends: pybamm.expression_tree.variable.VariableBase

diff(variable)
Differentiate a symbol with respect to a variable. For any symbol that can be differentiated, return 1 if
differentiating with respect to yourself, self._diff(variable) if variable is in the expression tree of the symbol,
and zero otherwise.

Parameters
variable (pybamm.Symbol) – The variable with respect to which to differentiate

class pybamm.VariableDot(name, domain=None, auxiliary_domains=None, domains=None, bounds=None,
print_name=None, scale=1, reference=0)

A node in the expression tree represending the time derviative of a dependent variable

This node will be discretised by Discretisation and converted to a pybamm.StateVectorDot node.

Parameters

• name (str) – name of the node

• domain (iterable of str) – list of domains that this variable is valid over

• auxiliary_domains (dict) – dictionary of auxiliary domains ({‘secondary’: . . . , ‘ter-
tiary’: . . . , ‘quaternary’: . . . }). For example, for the single particle model, the particle con-
centration would be a Variable with domain ‘negative particle’ and secondary auxiliary do-
main ‘current collector’. For the DFN, the particle concentration would be a Variable with
domain ‘negative particle’, secondary domain ‘negative electrode’ and tertiary domain ‘cur-
rent collector’

• domains (dict) – A dictionary equivalent to {‘primary’: domain, auxiliary_domains}. Ei-
ther ‘domain’ and ‘auxiliary_domains’, or just ‘domains’, should be provided (not both). In
future, the ‘domain’ and ‘auxiliary_domains’ arguments may be deprecated.

• bounds (tuple, optional) – Physical bounds on the variable. Included for compatibility
with VariableBase, but ignored.

• print_name (str, optional) – The name to use for printing. Default is None, in which
case self.name is used.

• scale (float or pybamm.Symbol, optional) – The scale of the variable, used for scaling the
model when solving. The state vector representing this variable will be multiplied by this
scale. Default is 1.

• reference (float or pybamm.Symbol, optional) – The reference value of the variable, used
for scaling the model when solving. This value will be added to the state vector representing
this variable. Default is 0.

Extends: pybamm.expression_tree.variable.VariableBase

diff(variable)
Differentiate a symbol with respect to a variable. For any symbol that can be differentiated, return 1 if
differentiating with respect to yourself, self._diff(variable) if variable is in the expression tree of the symbol,
and zero otherwise.

44 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

Parameters
variable (pybamm.Symbol) – The variable with respect to which to differentiate

get_variable()

return a Variable corresponding to this VariableDot

Note: Variable._jac adds a dash to the name of the corresponding VariableDot, so we remove this here

3.1.4 Independent Variable

class pybamm.IndependentVariable(name, domain=None, auxiliary_domains=None, domains=None)
A node in the expression tree representing an independent variable.

Used for expressing functions depending on a spatial variable or time

Parameters

• name (str) – name of the node

• domain (iterable of str) – list of domains that this variable is valid over

• auxiliary_domains (dict, optional) – dictionary of auxiliary domains, defaults to
empty dict

• domains (dict) – A dictionary equivalent to {‘primary’: domain, auxiliary_domains}. Ei-
ther ‘domain’ and ‘auxiliary_domains’, or just ‘domains’, should be provided (not both). In
future, the ‘domain’ and ‘auxiliary_domains’ arguments may be deprecated.

Extends: pybamm.expression_tree.symbol.Symbol

to_equation()

Convert the node and its subtree into a SymPy equation.

class pybamm.Time

A node in the expression tree representing time.

Extends: pybamm.expression_tree.independent_variable.IndependentVariable

create_copy()

See pybamm.Symbol.new_copy().

to_equation()

Convert the node and its subtree into a SymPy equation.

class pybamm.SpatialVariable(name, domain=None, auxiliary_domains=None, domains=None,
coord_sys=None)

A node in the expression tree representing a spatial variable.

Parameters

• name (str) – name of the node (e.g. “x”, “y”, “z”, “r”, “x_n”, “x_s”, “x_p”, “r_n”, “r_p”)

• domain (iterable of str) – list of domains that this variable is valid over (e.g. “carte-
sian”, “spherical polar”)

• auxiliary_domains (dict, optional) – dictionary of auxiliary domains, defaults to
empty dict

• domains (dict) – A dictionary equivalent to {‘primary’: domain, auxiliary_domains}. Ei-
ther ‘domain’ and ‘auxiliary_domains’, or just ‘domains’, should be provided (not both). In
future, the ‘domain’ and ‘auxiliary_domains’ arguments may be deprecated.

3.1. Expression Tree 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Extends: pybamm.expression_tree.independent_variable.IndependentVariable

create_copy()

See pybamm.Symbol.new_copy().

pybamm.t = the independent variable time

A node in the expression tree representing time.

3.1.5 Scalar

class pybamm.Scalar(value, name=None)
A node in the expression tree representing a scalar value.

Parameters

• value (numeric) – the value returned by the node when evaluated

• name (str, optional) – the name of the node. Defaulted to str(value) if not provided

Extends: pybamm.expression_tree.symbol.Symbol

create_copy()

See pybamm.Symbol.new_copy().

is_constant()

See pybamm.Symbol.is_constant().

set_id()

See pybamm.Symbol.set_id().

to_equation()

Returns the value returned by the node when evaluated.

to_json()

Method to serialise a Symbol object into JSON.

property value

The value returned by the node when evaluated.

3.1.6 Array

class pybamm.Array(entries, name=None, domain=None, auxiliary_domains=None, domains=None,
entries_string=None)

Node in the expression tree that holds an tensor type variable (e.g. numpy.array)

Parameters

• entries (numpy.array or list) – the array associated with the node. If a list is pro-
vided, it is converted to a numpy array

• name (str, optional) – the name of the node

• domain (iterable of str, optional) – list of domains the parameter is valid over,
defaults to empty list

• auxiliary_domains (dict, optional) – dictionary of auxiliary domains, defaults to
empty dict

46 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

• domains (dict) – A dictionary equivalent to {‘primary’: domain, auxiliary_domains}. Ei-
ther ‘domain’ and ‘auxiliary_domains’, or just ‘domains’, should be provided (not both). In
future, the ‘domain’ and ‘auxiliary_domains’ arguments may be deprecated.

• entries_string (str) – String representing the entries (slow to recalculate when copying)

Extends: pybamm.expression_tree.symbol.Symbol

create_copy()

See pybamm.Symbol.new_copy().

is_constant()

See pybamm.Symbol.is_constant().

property ndim

returns the number of dimensions of the tensor.

set_id()

See pybamm.Symbol.set_id().

property shape

returns the number of entries along each dimension.

to_equation()

Returns the value returned by the node when evaluated.

to_json()

Method to serialise an Array object into JSON.

pybamm.linspace(start, stop, num=50, **kwargs)
Creates a linearly spaced array by calling numpy.linspace with keyword arguments ‘kwargs’. For a list of ‘kwargs’
see the numpy linspace documentation

pybamm.meshgrid(x, y, **kwargs)
Return coordinate matrices as from coordinate vectors by calling numpy.meshgrid with keyword arguments
‘kwargs’. For a list of ‘kwargs’ see the numpy meshgrid documentation

3.1.7 Matrix

class pybamm.Matrix(entries, name=None, domain=None, auxiliary_domains=None, domains=None,
entries_string=None)

Node in the expression tree that holds a matrix type (e.g. numpy.array)

Extends: pybamm.expression_tree.array.Array

3.1.8 Vector

class pybamm.Vector(entries, name=None, domain=None, auxiliary_domains=None, domains=None,
entries_string=None)

node in the expression tree that holds a vector type (e.g. numpy.array)

Extends: pybamm.expression_tree.array.Array

3.1. Expression Tree 47

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://tinyurl.com/yc4ne47x
https://tinyurl.com/y8azewrj

PyBaMM Documentation, Release 24.1

3.1.9 State Vector

class pybamm.StateVector(*y_slices, name=None, domain=None, auxiliary_domains=None, domains=None,
evaluation_array=None)

Node in the expression tree that holds a slice to read from an external vector type.

Parameters

• y_slice (slice) – the slice of an external y to read

• name (str, optional) – the name of the node

• domain (iterable of str, optional) – list of domains the parameter is valid over,
defaults to empty list

• auxiliary_domains (dict of str, optional) – dictionary of auxiliary domains

• domains (dict) – A dictionary equivalent to {‘primary’: domain, auxiliary_domains}. Ei-
ther ‘domain’ and ‘auxiliary_domains’, or just ‘domains’, should be provided (not both). In
future, the ‘domain’ and ‘auxiliary_domains’ arguments may be deprecated.

• evaluation_array (list, optional) – List of boolean arrays representing slices. De-
fault is None, in which case the evaluation_array is computed from y_slices.

Extends: pybamm.expression_tree.state_vector.StateVectorBase

diff(variable)
Differentiate a symbol with respect to a variable. For any symbol that can be differentiated, return 1 if
differentiating with respect to yourself, self._diff(variable) if variable is in the expression tree of the symbol,
and zero otherwise.

Parameters
variable (pybamm.Symbol) – The variable with respect to which to differentiate

class pybamm.StateVectorDot(*y_slices, name=None, domain=None, auxiliary_domains=None,
domains=None, evaluation_array=None)

Node in the expression tree that holds a slice to read from the ydot.

Parameters

• y_slice (slice) – the slice of an external ydot to read

• name (str, optional) – the name of the node

• domain (iterable of str, optional) – list of domains the parameter is valid over,
defaults to empty list

• auxiliary_domains (dict of str, optional) – dictionary of auxiliary domains

• domains (dict) – A dictionary equivalent to {‘primary’: domain, auxiliary_domains}. Ei-
ther ‘domain’ and ‘auxiliary_domains’, or just ‘domains’, should be provided (not both). In
future, the ‘domain’ and ‘auxiliary_domains’ arguments may be deprecated.

• evaluation_array (list, optional) – List of boolean arrays representing slices. De-
fault is None, in which case the evaluation_array is computed from y_slices.

Extends: pybamm.expression_tree.state_vector.StateVectorBase

diff(variable)
Differentiate a symbol with respect to a variable. For any symbol that can be differentiated, return 1 if
differentiating with respect to yourself, self._diff(variable) if variable is in the expression tree of the symbol,
and zero otherwise.

48 Chapter 3. API documentation

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 24.1

Parameters
variable (pybamm.Symbol) – The variable with respect to which to differentiate

3.1.10 Binary Operators

class pybamm.BinaryOperator(name, left, right)
A node in the expression tree representing a binary operator (e.g. +, *)

Derived classes will specify the particular operator

Parameters

• name (str) – name of the node

• left (Symbol or Number) – lhs child node (converted to Scalar if Number)

• right (Symbol or Number) – rhs child node (converted to Scalar if Number)

Extends: pybamm.expression_tree.symbol.Symbol

create_copy()

See pybamm.Symbol.new_copy().

evaluate(t=None, y=None, y_dot=None, inputs=None)
See pybamm.Symbol.evaluate().

is_constant()

See pybamm.Symbol.is_constant().

to_equation()

Convert the node and its subtree into a SymPy equation.

to_json()

Method to serialise a BinaryOperator object into JSON.

class pybamm.Power(left, right)
A node in the expression tree representing a ** power operator.

Extends: pybamm.expression_tree.binary_operators.BinaryOperator

class pybamm.Addition(left, right)
A node in the expression tree representing an addition operator.

Extends: pybamm.expression_tree.binary_operators.BinaryOperator

class pybamm.Subtraction(left, right)
A node in the expression tree representing a subtraction operator.

Extends: pybamm.expression_tree.binary_operators.BinaryOperator

class pybamm.Multiplication(left, right)
A node in the expression tree representing a multiplication operator (Hadamard product). Overloads cases where
the “*” operator would usually return a matrix multiplication (e.g. scipy.sparse.coo.coo_matrix)

Extends: pybamm.expression_tree.binary_operators.BinaryOperator

class pybamm.MatrixMultiplication(left, right)
A node in the expression tree representing a matrix multiplication operator.

Extends: pybamm.expression_tree.binary_operators.BinaryOperator

3.1. Expression Tree 49

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

diff(variable)
See pybamm.Symbol.diff().

class pybamm.Division(left, right)
A node in the expression tree representing a division operator.

Extends: pybamm.expression_tree.binary_operators.BinaryOperator

class pybamm.Inner(left, right)
A node in the expression tree which represents the inner (or dot) product. This operator should be used to
take the inner product of two mathematical vectors (as opposed to the computational vectors arrived at post-
discretisation) of the form v = v_x e_x + v_y e_y + v_z e_z where v_x, v_y, v_z are scalars and e_x, e_y, e_z are
x-y-z-directional unit vectors. For v and w mathematical vectors, inner product returns v_x * w_x + v_y * w_y
+ v_z * w_z. In addition, for some spatial discretisations mathematical vector quantities (such as i = grad(phi))
are evaluated on a different part of the grid to mathematical scalars (e.g. for finite volume mathematical scalars
are evaluated on the nodes but mathematical vectors are evaluated on cell edges). Therefore, inner also transfers
the inner product of the vector onto the scalar part of the grid if required by a particular discretisation.

Extends: pybamm.expression_tree.binary_operators.BinaryOperator

class pybamm.expression_tree.binary_operators._Heaviside(name, left, right)
A node in the expression tree representing a heaviside step function. This class is semi-private and should not
be called directly, use EqualHeaviside or NotEqualHeaviside instead, or < or <=.

Adding this operation to the rhs or algebraic equations in a model can often cause a discontinuity in the solution.
For the specific cases listed below, this will be automatically handled by the solver. In the general case, you can
explicitly tell the solver of discontinuities by adding a Event object with EventType DISCONTINUITY to the
model’s list of events.

In the case where the Heaviside function is of the form pybamm.t < x, pybamm.t <= x, x < pybamm.t, or x <=
pybamm.t, where x is any constant equation, this DISCONTINUITY event will automatically be added by the
solver.

Extends: pybamm.expression_tree.binary_operators.BinaryOperator

diff(variable)
See pybamm.Symbol.diff().

class pybamm.EqualHeaviside(left, right)
A heaviside function with equality (return 1 when left = right)

Extends: pybamm.expression_tree.binary_operators._Heaviside

class pybamm.NotEqualHeaviside(left, right)
A heaviside function without equality (return 0 when left = right)

Extends: pybamm.expression_tree.binary_operators._Heaviside

class pybamm.Modulo(left, right)
Calculates the remainder of an integer division.

Extends: pybamm.expression_tree.binary_operators.BinaryOperator

class pybamm.Minimum(left, right)
Returns the smaller of two objects.

Extends: pybamm.expression_tree.binary_operators.BinaryOperator

50 Chapter 3. API documentation

PyBaMM Documentation, Release 24.1

class pybamm.Maximum(left, right)
Returns the greater of two objects.

Extends: pybamm.expression_tree.binary_operators.BinaryOperator

pybamm.minimum(left, right)
Returns the smaller of two objects, possibly with a smoothing approximation. Not to be confused with pybamm.
min(), which returns min function of child.

pybamm.maximum(left, right)
Returns the larger of two objects, possibly with a smoothing approximation. Not to be confused with pybamm.
max(), which returns max function of child.

pybamm.softminus(left, right, k)
Softminus approximation to the minimum function. k is the smoothing parameter, set by py-
bamm.settings.min_max_smoothing. The recommended value is k=10.

pybamm.softplus(left, right, k)
Softplus approximation to the maximum function. k is the smoothing parameter, set by py-
bamm.settings.min_max_smoothing. The recommended value is k=10.

pybamm.sigmoid(left, right, k)
Sigmoidal approximation to the heaviside function. k is the smoothing parameter, set by py-
bamm.settings.heaviside_smoothing. The recommended value is k=10. Note that the concept of deciding
which side to pick when left=right does not apply for this smooth approximation. When left=right, the value
is (left+right)/2.

pybamm.source(left, right, boundary=False)
A convenience function for creating (part of) an expression tree representing a source term. This is necessary for
spatial methods where the mass matrix is not the identity (e.g. finite element formulation with piecwise linear
basis functions). The left child is the symbol representing the source term and the right child is the symbol of the
equation variable (currently, the finite element formulation in PyBaMM assumes all functions are constructed
using the same basis, and the matrix here is constructed accoutning for the boundary conditions of the right
child). The method returns the matrix-vector product of the mass matrix (adjusted to account for any Dirichlet
boundary conditions imposed the the right symbol) and the discretised left symbol.

Parameters

• left (Symbol) – The left child node, which represents the expression for the source term.

• right (Symbol) – The right child node. This is the symbol whose boundary conditions are
accounted for in the construction of the mass matrix.

• boundary (bool, optional) – If True, then the mass matrix should is assembled over the
boundary, corresponding to a source term which only acts on the boundary of the domain.
If False (default), the matrix is assembled over the entire domain, corresponding to a source
term in the bulk.

3.1. Expression Tree 51

https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

3.1.11 Unary Operators

class pybamm.UnaryOperator(name, child, domains=None)
A node in the expression tree representing a unary operator (e.g. ‘-’, grad, div)

Derived classes will specify the particular operator

Parameters

• name (str) – name of the node

• child (Symbol) – child node

Extends: pybamm.expression_tree.symbol.Symbol

create_copy()

See pybamm.Symbol.new_copy().

evaluate(t=None, y=None, y_dot=None, inputs=None)
See pybamm.Symbol.evaluate().

is_constant()

See pybamm.Symbol.is_constant().

to_equation()

Convert the node and its subtree into a SymPy equation.

class pybamm.Negate(child)
A node in the expression tree representing a - negation operator.

Extends: pybamm.expression_tree.unary_operators.UnaryOperator

class pybamm.AbsoluteValue(child)
A node in the expression tree representing an abs operator.

Extends: pybamm.expression_tree.unary_operators.UnaryOperator

diff(variable)
See pybamm.Symbol.diff().

class pybamm.Sign(child)
A node in the expression tree representing a sign operator.

Extends: pybamm.expression_tree.unary_operators.UnaryOperator

diff(variable)
See pybamm.Symbol.diff().

class pybamm.Index(child, index, name=None, check_size=True)
A node in the expression tree, which stores the index that should be extracted from its child after the child has
been evaluated.

Parameters

• child (pybamm.Symbol) – The symbol of which to take the index

• index (int or slice) – The index (if int) or indices (if slice) to extract from the symbol

• name (str, optional) – The name of the symbol

52 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

• check_size (bool, optional) – Whether to check if the slice size exceeds the child size.
Default is True. This should always be True when creating a new symbol so that the appro-
priate check is performed, but should be False for creating a new copy to avoid unnecessarily
repeating the check.

Extends: pybamm.expression_tree.unary_operators.UnaryOperator

set_id()

See pybamm.Symbol.set_id()

to_json()

Method to serialise an Index object into JSON.

class pybamm.SpatialOperator(name, child, domains=None)
A node in the expression tree representing a unary spatial operator (e.g. grad, div)

Derived classes will specify the particular operator

This type of node will be replaced by the Discretisation class with a Matrix

Parameters

• name (str) – name of the node

• child (Symbol) – child node

Extends: pybamm.expression_tree.unary_operators.UnaryOperator

to_json()

Method to serialise a Symbol object into JSON.

class pybamm.Gradient(child)
A node in the expression tree representing a grad operator.

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

class pybamm.Divergence(child)
A node in the expression tree representing a div operator.

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

class pybamm.Laplacian(child)
A node in the expression tree representing a Laplacian operator. This is currently only implemeted in the weak
form for finite element formulations.

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

class pybamm.GradientSquared(child)
A node in the expression tree representing a the inner product of the grad operator with itself. In particular, this
is useful in the finite element formualtion where we only require the (sclar valued) square of the gradient, and
not the gradient itself.

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

class pybamm.Mass(child)
Returns the mass matrix for a given symbol, accounting for Dirchlet boundary conditions where necessary (e.g.
in the finite element formualtion)

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

3.1. Expression Tree 53

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

class pybamm.BoundaryMass(child)
Returns the mass matrix for a given symbol assembled over the boundary of the domain, accounting for Dirchlet
boundary conditions where necessary (e.g. in the finite element formualtion)

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

class pybamm.Integral(child, integration_variable)
A node in the expression tree representing an integral operator.

𝐼 =

∫︁ 𝑏

𝑎

𝑓(𝑢) 𝑑𝑢,

where 𝑎 and 𝑏 are the left-hand and right-hand boundaries of the domain respectively, and 𝑢 ∈ domain.

Parameters

• function (pybamm.Symbol) – The function to be integrated (will become self.children[0])

• integration_variable (pybamm.IndependentVariable) – The variable over which to
integrate

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

set_id()

See pybamm.Symbol.set_id()

class pybamm.IndefiniteIntegral(child, integration_variable)
A node in the expression tree representing an indefinite integral operator.

𝐼 =

∫︁ 𝑥

𝑥𝑒𝑥𝑡𝑚𝑖𝑛

𝑓(𝑢) 𝑑𝑢

where 𝑢 ∈ domain which can represent either a spatial or temporal variable.

Parameters

• function (pybamm.Symbol) – The function to be integrated (will become self.children[0])

• integration_variable (pybamm.IndependentVariable) – The variable over which to
integrate

Extends: pybamm.expression_tree.unary_operators.BaseIndefiniteIntegral

class pybamm.DefiniteIntegralVector(child, vector_type='row')
A node in the expression tree representing an integral of the basis used for discretisation

𝐼 =

∫︁ 𝑏

𝑎

𝜓(𝑥) 𝑑𝑥,

where 𝑎 and 𝑏 are the left-hand and right-hand boundaries of the domain respectively and 𝜓 is the basis function.

Parameters

• variable (pybamm.Symbol) – The variable whose basis will be integrated over the entire
domain (will become self.children[0])

• vector_type (str, optional) – Whether to return a row or column vector (default is
row)

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

set_id()

See pybamm.Symbol.set_id()

54 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

class pybamm.BoundaryIntegral(child, region='entire')
A node in the expression tree representing an integral operator over the boundary of a domain

𝐼 =

∫︁
𝜕𝑎

𝑓(𝑢) 𝑑𝑢,

where 𝜕𝑎 is the boundary of the domain, and 𝑢 ∈ domain boundary.

Parameters

• function (pybamm.Symbol) – The function to be integrated (will become self.children[0])

• region (str, optional) – The region of the boundary over which to integrate. If region
is entire (default) the integration is carried out over the entire boundary. If region is negative
tab or positive tab then the integration is only carried out over the appropriate part of the
boundary corresponding to the tab.

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

set_id()

See pybamm.Symbol.set_id()

class pybamm.DeltaFunction(child, side, domain)
Delta function. Currently can only be implemented at the edge of a domain.

Parameters

• child (pybamm.Symbol) – The variable that sets the strength of the delta function

• side (str) – Which side of the domain to implement the delta function on

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

evaluate_for_shape()

See pybamm.Symbol.evaluate_for_shape_using_domain()

set_id()

See pybamm.Symbol.set_id()

class pybamm.BoundaryOperator(name, child, side)
A node in the expression tree which gets the boundary value of a variable on its primary domain.

Parameters

• name (str) – The name of the symbol

• child (pybamm.Symbol) – The variable whose boundary value to take

• side (str) – Which side to take the boundary value on (“left” or “right”)

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

set_id()

See pybamm.Symbol.set_id()

class pybamm.BoundaryValue(child, side)
A node in the expression tree which gets the boundary value of a variable on its primary domain.

Parameters

• child (pybamm.Symbol) – The variable whose boundary value to take

• side (str) – Which side to take the boundary value on (“left” or “right”)

Extends: pybamm.expression_tree.unary_operators.BoundaryOperator

3.1. Expression Tree 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

class pybamm.BoundaryGradient(child, side)
A node in the expression tree which gets the boundary flux of a variable on its primary domain.

Parameters

• child (pybamm.Symbol) – The variable whose boundary flux to take

• side (str) – Which side to take the boundary flux on (“left” or “right”)

Extends: pybamm.expression_tree.unary_operators.BoundaryOperator

class pybamm.EvaluateAt(child, position)
A node in the expression tree which evaluates a symbol at a given position in space in its primary domain.
Currently this is only implemented for 1D primary domains.

Parameters

• child (pybamm.Symbol) – The variable to evaluate

• position (pybamm.Symbol) – The position in space on the symbol’s primary domain at
which to evaluate the symbol.

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

set_id()

See pybamm.Symbol.set_id()

class pybamm.UpwindDownwind(name, child)
A node in the expression tree representing an upwinding or downwinding operator. Usually to be used for better
stability in convection-dominated equations.

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

class pybamm.Upwind(child)
Upwinding operator. To be used if flow velocity is positive (left to right).

Extends: pybamm.expression_tree.unary_operators.UpwindDownwind

class pybamm.Downwind(child)
Downwinding operator. To be used if flow velocity is negative (right to left).

Extends: pybamm.expression_tree.unary_operators.UpwindDownwind

pybamm.grad(symbol)
convenience function for creating a Gradient

Parameters
symbol (Symbol) – the gradient will be performed on this sub-symbol

Returns
the gradient of symbol

Return type
Gradient

pybamm.div(symbol)
convenience function for creating a Divergence

Parameters
symbol (Symbol) – the divergence will be performed on this sub-symbol

Returns
the divergence of symbol

56 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

Return type
Divergence

pybamm.laplacian(symbol)
convenience function for creating a Laplacian

Parameters
symbol (Symbol) – the Laplacian will be performed on this sub-symbol

Returns
the Laplacian of symbol

Return type
Laplacian

pybamm.grad_squared(symbol)
convenience function for creating a GradientSquared

Parameters
symbol (Symbol) – the inner product of the gradient with itself will be performed on this sub-
symbol

Returns
inner product of the gradient of symbol with itself

Return type
GradientSquared

pybamm.surf(symbol)
convenience function for creating a right BoundaryValue, usually in the spherical geometry.

Parameters
symbol (pybamm.Symbol) – the surface value of this symbol will be returned

Returns
the surface value of symbol

Return type
pybamm.BoundaryValue

pybamm.x_average(symbol)
Convenience function for creating an average in the x-direction.

Parameters
symbol (pybamm.Symbol) – The function to be averaged

Returns
the new averaged symbol

Return type
Symbol

pybamm.r_average(symbol)
Convenience function for creating an average in the r-direction.

Parameters
symbol (pybamm.Symbol) – The function to be averaged

Returns
the new averaged symbol

Return type
Symbol

3.1. Expression Tree 57

PyBaMM Documentation, Release 24.1

pybamm.size_average(symbol, f_a_dist=None)
Convenience function for averaging over particle size R using the area-weighted particle-size distribution.

Parameters
symbol (pybamm.Symbol) – The function to be averaged

Returns
the new averaged symbol

Return type
Symbol

pybamm.z_average(symbol)
Convenience function for creating an average in the z-direction.

Parameters
symbol (pybamm.Symbol) – The function to be averaged

Returns
the new averaged symbol

Return type
Symbol

pybamm.yz_average(symbol)
Convenience function for creating an average in the y-z-direction.

Parameters
symbol (pybamm.Symbol) – The function to be averaged

Returns
the new averaged symbol

Return type
Symbol

pybamm.boundary_value(symbol, side)
convenience function for creating a pybamm.BoundaryValue

Parameters

• symbol (pybamm.Symbol) – The symbol whose boundary value to take

• side (str) – Which side to take the boundary value on (“left” or “right”)

Returns
the new integrated expression tree

Return type
BoundaryValue

pybamm.smooth_absolute_value(symbol, k)
Smooth approximation to the absolute value function. k is the smoothing parameter, set by py-
bamm.settings.abs_smoothing. The recommended value is k=10.

pybamm.sign(symbol)
Returns a Sign object.

pybamm.upwind(symbol)
convenience function for creating a Upwind

pybamm.downwind(symbol)
convenience function for creating a Downwind

58 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

3.1.12 Concatenations

class pybamm.Concatenation(*children, name=None, check_domain=True, concat_fun=None)
A node in the expression tree representing a concatenation of symbols.

Parameters
children (iterable of pybamm.Symbol) – The symbols to concatenate

Extends: pybamm.expression_tree.symbol.Symbol

create_copy()

See pybamm.Symbol.new_copy().

evaluate(t=None, y=None, y_dot=None, inputs=None)
See pybamm.Symbol.evaluate().

get_children_domains(children)
Combine domains from children, at all levels.

is_constant()

See pybamm.Symbol.is_constant().

to_equation()

Convert the node and its subtree into a SymPy equation.

class pybamm.NumpyConcatenation(*children)
A node in the expression tree representing a concatenation of equations, when we don’t care about domains. The
class pybamm.DomainConcatenation, which is careful about domains and uses broadcasting where appropri-
ate, should be used whenever possible instead.

Upon evaluation, equations are concatenated using numpy concatenation.

Parameters
children (iterable of pybamm.Symbol) – The equations to concatenate

Extends: pybamm.expression_tree.concatenations.Concatenation

class pybamm.DomainConcatenation(children, full_mesh, copy_this=None)
A node in the expression tree representing a concatenation of symbols, being careful about domains.

It is assumed that each child has a domain, and the final concatenated vector will respect the sizes and ordering
of domains established in mesh keys

Parameters

• children (iterable of pybamm.Symbol) – The symbols to concatenate

• full_mesh (pybamm.BaseMesh) – The underlying mesh for discretisation, used to obtain
the number of mesh points in each domain.

• copy_this (pybamm.DomainConcatenation (optional)) – if provided, this class is ini-
tialised by copying everything except the children from copy_this. mesh is not used in this
case

Extends: pybamm.expression_tree.concatenations.Concatenation

to_json()

Method to serialise a DomainConcatenation object into JSON.

3.1. Expression Tree 59

PyBaMM Documentation, Release 24.1

class pybamm.SparseStack(*children)
A node in the expression tree representing a concatenation of sparse matrices. As with NumpyConcatenation,
we don’t care about domains. The class pybamm.DomainConcatenation, which is careful about domains and
uses broadcasting where appropriate, should be used whenever possible instead.

Parameters
children (iterable of Concatenation) – The equations to concatenate

Extends: pybamm.expression_tree.concatenations.Concatenation

pybamm.numpy_concatenation(*children)
Helper function to create numpy concatenations.

pybamm.domain_concatenation(children, mesh)
Helper function to create domain concatenations.

3.1.13 Broadcasting Operators

class pybamm.Broadcast(child, domains, name=None)
A node in the expression tree representing a broadcasting operator. Broadcasts a child to a specified domain.
After discretisation, this will evaluate to an array of the right shape for the specified domain.

For an example of broadcasts in action, see this example notebook

Parameters

• child (Symbol) – child node

• domains (iterable of str) – Domain(s) of the symbol after broadcasting

• name (str) – name of the node

Extends: pybamm.expression_tree.unary_operators.SpatialOperator

to_json()

Method to serialise a Symbol object into JSON.

class pybamm.FullBroadcast(child, broadcast_domain=None, auxiliary_domains=None,
broadcast_domains=None, name=None)

A class for full broadcasts.

Extends: pybamm.expression_tree.broadcasts.Broadcast

check_and_set_domains(child, broadcast_domains)
See Broadcast.check_and_set_domains()

reduce_one_dimension()

Reduce the broadcast by one dimension.

class pybamm.PrimaryBroadcast(child, broadcast_domain, name=None)
A node in the expression tree representing a primary broadcasting operator. Broadcasts in a primary dimension
only. That is, makes explicit copies of the symbol in the domain specified by broadcast_domain. This should
be used for broadcasting from a “larger” scale to a “smaller” scale, for example broadcasting temperature T(x)
from the electrode to the particles, or broadcasting current collector current i(y, z) from the current collector to
the electrodes.

Parameters

• child (Symbol) – child node

60 Chapter 3. API documentation

https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/notebooks/expression_tree/broadcasts.ipynb
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

• broadcast_domain (iterable of str) – Primary domain for broadcast. This will be-
come the domain of the symbol

• name (str) – name of the node

Extends: pybamm.expression_tree.broadcasts.Broadcast

check_and_set_domains(child, broadcast_domain)
See Broadcast.check_and_set_domains()

reduce_one_dimension()

Reduce the broadcast by one dimension.

class pybamm.SecondaryBroadcast(child, broadcast_domain, name=None)
A node in the expression tree representing a secondary broadcasting operator. Broadcasts in a secondary di-
mension only. That is, makes explicit copies of the symbol in the domain specified by broadcast_domain. This
should be used for broadcasting from a “smaller” scale to a “larger” scale, for example broadcasting SPM particle
concentrations c_s(r) from the particles to the electrodes. Note that this wouldn’t be used to broadcast particle
concentrations in the DFN, since these already depend on both x and r.

Parameters

• child (Symbol) – child node

• broadcast_domain (iterable of str) – Secondary domain for broadcast. This will
become the secondary domain of the symbol, shifting the child’s secondary and tertiary (if
present) over by one position.

• name (str) – name of the node

Extends: pybamm.expression_tree.broadcasts.Broadcast

check_and_set_domains(child, broadcast_domain)
See Broadcast.check_and_set_domains()

reduce_one_dimension()

Reduce the broadcast by one dimension.

class pybamm.FullBroadcastToEdges(child, broadcast_domain=None, auxiliary_domains=None,
broadcast_domains=None, name=None)

A full broadcast onto the edges of a domain (edges of primary dimension, nodes of other dimensions)

Extends: pybamm.expression_tree.broadcasts.FullBroadcast

reduce_one_dimension()

Reduce the broadcast by one dimension.

class pybamm.PrimaryBroadcastToEdges(child, broadcast_domain, name=None)
A primary broadcast onto the edges of the domain.

Extends: pybamm.expression_tree.broadcasts.PrimaryBroadcast

class pybamm.SecondaryBroadcastToEdges(child, broadcast_domain, name=None)
A secondary broadcast onto the edges of a domain.

Extends: pybamm.expression_tree.broadcasts.SecondaryBroadcast

pybamm.ones_like(*symbols)
Returns an array with the same shape and domains as the sum of the input symbols, with each entry equal to one.

Parameters
symbols (Symbol) – Symbols whose shape to copy

3.1. Expression Tree 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

pybamm.zeros_like(*symbols)
Returns an array with the same shape and domains as the sum of the input symbols, with each entry equal to
zero.

Parameters
symbols (Symbol) – Symbols whose shape to copy

pybamm.full_like(symbols, fill_value)
Returns an array with the same shape and domains as the sum of the input symbols, with a constant value given
by fill_value.

Parameters

• symbols (Symbol) – Symbols whose shape to copy

• fill_value (number) – Value to assign

3.1.14 Functions

class pybamm.Function(function, *children, name=None, derivative='autograd', differentiated_function=None)
A node in the expression tree representing an arbitrary function.

Parameters

• function (method) – A function can have 0 or many inputs. If no inputs are
given, self.evaluate() simply returns func(). Otherwise, self.evaluate(t, y, u) returns
func(child0.evaluate(t, y, u), child1.evaluate(t, y, u), etc).

• children (pybamm.Symbol) – The children nodes to apply the function to

• derivative (str, optional) – Which derivative to use when differentiating (“autograd”
or “derivative”). Default is “autograd”.

• differentiated_function (method, optional) – The function which was differenti-
ated to obtain this one. Default is None.

Extends: pybamm.expression_tree.symbol.Symbol

create_copy()

See pybamm.Symbol.new_copy().

diff(variable)
See pybamm.Symbol.diff().

evaluate(t=None, y=None, y_dot=None, inputs=None)
See pybamm.Symbol.evaluate().

is_constant()

See pybamm.Symbol.is_constant().

to_equation()

Convert the node and its subtree into a SymPy equation.

to_json()

Method to serialise a Symbol object into JSON.

class pybamm.SpecificFunction(function, child)
Parent class for the specific functions, which implement their own diff operators directly.

Parameters

62 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

• function (method) – Function to be applied to child

• child (pybamm.Symbol) – The child to apply the function to

Extends: pybamm.expression_tree.functions.Function

to_json()

Method to serialise a SpecificFunction object into JSON.

class pybamm.Arcsinh(child)
Arcsinh function.

Extends: pybamm.expression_tree.functions.SpecificFunction

pybamm.arcsinh(child)
Returns arcsinh function of child.

class pybamm.Arctan(child)
Arctan function.

Extends: pybamm.expression_tree.functions.SpecificFunction

pybamm.arctan(child)
Returns hyperbolic tan function of child.

class pybamm.Cos(child)
Cosine function.

Extends: pybamm.expression_tree.functions.SpecificFunction

pybamm.cos(child)
Returns cosine function of child.

class pybamm.Cosh(child)
Hyberbolic cosine function.

Extends: pybamm.expression_tree.functions.SpecificFunction

pybamm.cosh(child)
Returns hyperbolic cosine function of child.

class pybamm.Erf(child)
Error function.

Extends: pybamm.expression_tree.functions.SpecificFunction

pybamm.erf(child)
Returns error function of child.

pybamm.erfc(child)
Returns complementary error function of child.

class pybamm.Exp(child)
Exponential function.

Extends: pybamm.expression_tree.functions.SpecificFunction

pybamm.exp(child)
Returns exponential function of child.

3.1. Expression Tree 63

PyBaMM Documentation, Release 24.1

class pybamm.Log(child)
Logarithmic function.

Extends: pybamm.expression_tree.functions.SpecificFunction

pybamm.log(child, base='e')
Returns logarithmic function of child (any base, default ‘e’).

pybamm.log10(child)
Returns logarithmic function of child, with base 10.

class pybamm.Max(child)
Max function.

Extends: pybamm.expression_tree.functions.SpecificFunction

pybamm.max(child)
Returns max function of child. Not to be confused with pybamm.maximum(), which returns the larger of two
objects.

class pybamm.Min(child)
Min function.

Extends: pybamm.expression_tree.functions.SpecificFunction

pybamm.min(child)
Returns min function of child. Not to be confused with pybamm.minimum(), which returns the smaller of two
objects.

pybamm.sech(child)
Returns hyperbolic sec function of child.

class pybamm.Sin(child)
Sine function.

Extends: pybamm.expression_tree.functions.SpecificFunction

pybamm.sin(child)
Returns sine function of child.

class pybamm.Sinh(child)
Hyperbolic sine function.

Extends: pybamm.expression_tree.functions.SpecificFunction

pybamm.sinh(child)
Returns hyperbolic sine function of child.

class pybamm.Sqrt(child)
Square root function.

Extends: pybamm.expression_tree.functions.SpecificFunction

pybamm.sqrt(child)
Returns square root function of child.

class pybamm.Tanh(child)
Hyperbolic tan function.

Extends: pybamm.expression_tree.functions.SpecificFunction

64 Chapter 3. API documentation

PyBaMM Documentation, Release 24.1

pybamm.tanh(child)
Returns hyperbolic tan function of child.

3.1.15 Input Parameter

class pybamm.InputParameter(name, domain=None, expected_size=None)
A node in the expression tree representing an input parameter.

This node’s value can be set at the point of solving, allowing parameter estimation and control

Parameters

• name (str) – name of the node

• domain (iterable of str, or str) – list of domains over which the node is valid
(empty list indicates the symbol is valid over all domains)

• expected_size (int) – The size of the input parameter expected, defaults to 1 (scalar input)

Extends: pybamm.expression_tree.symbol.Symbol

create_copy()

See pybamm.Symbol.new_copy().

to_json()

Method to serialise an InputParameter object into JSON.

3.1.16 Interpolant

class pybamm.Interpolant(x, y, children, name=None, interpolator='linear', extrapolate=True,
entries_string=None)

Interpolate data in 1D, 2D, or 3D. Interpolation in 3D requires the input data to be on a regular grid (as per
scipy.interpolate.RegularGridInterpolator).

Parameters

• x (iterable of numpy.ndarray) – The data point coordinates. If 1-D, then this is an array(s)
of real values. If, 2D or 3D interpolation, then this is to ba a tuple of 1D arrays (one for each
dimension) which together define the coordinates of the points.

• y (numpy.ndarray) – The values of the function to interpolate at the data points. In 2D and
3D, this should be a matrix of two and three dimensions respectively.

• children (iterable of pybamm.Symbol) – Node(s) to use when evaluating the interpolant.
Each child corresponds to an entry of x

• name (str, optional) – Name of the interpolant. Default is None, in which case the name
“interpolating function” is given.

• interpolator (str, optional) – Which interpolator to use. Can be “linear”, “cubic”,
or “pchip”. Default is “linear”. For 3D interpolation, only “linear” an “cubic” are currently
supported.

• extrapolate (bool, optional) – Whether to extrapolate for points that are outside of
the parametrisation range, or return NaN (following default behaviour from scipy). Default
is True. Generally, it is best to set this to be False for 3D interpolation due to the higher
potential for errors in extrapolation.

Extends: pybamm.expression_tree.functions.Function

3.1. Expression Tree 65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

set_id()

See pybamm.Symbol.set_id().

to_json()

Method to serialise an Interpolant object into JSON.

3.1.17 Operations on expression trees

Classes and functions that operate on the expression tree

EvaluatorPython

class pybamm.EvaluatorPython(symbol)
Converts a pybamm expression tree into pure python code that will calculate the result of calling evaluate(t, y)
on the given expression tree.

Parameters
symbol (pybamm.Symbol) – The symbol to convert to python code

Jacobian

class pybamm.Jacobian(known_jacs=None, clear_domain=True)
Helper class to calculate the Jacobian of an expression.

Parameters

• known_jacs (dict {variable ids -> pybamm.Symbol}) – cached jacobians

• clear_domain (bool) – whether or not the Jacobian clears the domain (default True)

jac(symbol, variable)
This function recurses down the tree, computing the Jacobian using the Jacobians defined in classes derived
from pybamm.Symbol. E.g. the Jacobian of a ‘pybamm.Multiplication’ is computed via the product rule.
If the Jacobian of a symbol has already been calculated, the stored value is returned. Note: The Jacobian
is the derivative of a symbol with respect to a (slice of) a State Vector.

Parameters

• symbol (pybamm.Symbol) – The symbol to calculate the Jacobian of

• variable (pybamm.Symbol) – The variable with respect to which to differentiate

Returns
Symbol representing the Jacobian

Return type
pybamm.Symbol

66 Chapter 3. API documentation

https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

Convert to CasADi

class pybamm.CasadiConverter(casadi_symbols=None)

convert(symbol, t, y, y_dot, inputs)
This function recurses down the tree, converting the PyBaMM expression tree to a CasADi expression tree

Parameters

• symbol (pybamm.Symbol) – The symbol to convert

• t (casadi.MX) – A casadi symbol representing time

• y (casadi.MX) – A casadi symbol representing state vectors

• y_dot (casadi.MX) – A casadi symbol representing time derivatives of state vectors

• inputs (dict) – A dictionary of casadi symbols representing parameters

Returns
The converted symbol

Return type
casadi.MX

Serialise

class pybamm.expression_tree.operations.serialise.Serialise

Converts a discretised model to and from a JSON file.

load_model(filename: str, battery_model: BaseModel | None = None)→ BaseModel
Loads a discretised, ready to solve model into PyBaMM.

A new pybamm battery model instance will be created, which can be solved and the results plotted as usual.

Currently only available for pybamm models which have previously been written out using the save_model()
option.

Warning: This only loads in discretised models. If you wish to make edits to the model or initial conditions,
a new model will need to be constructed seperately.

Parameters

• filename (str) – Path to the JSON file containing the serialised model file

• battery_model (pybamm.BaseModel (optional)) – PyBaMM model to be created (e.g.
pybamm.lithium_ion.SPM), which will override any model names within the file. If None,
the function will look for the saved object path, present if the original model came from
PyBaMM.

Returns
A PyBaMM model object, of type specified either in the JSON or in battery_model.

Return type
pybamm.BaseModel

save_model(model: BaseModel, mesh: Mesh | None = None, variables: FuzzyDict | None = None, filename:
str | None = None)

Saves a discretised model to a JSON file.

As the model is discretised and ready to solve, only the right hand side, algebraic and initial condition
variables are saved.

3.1. Expression Tree 67

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

PyBaMM Documentation, Release 24.1

Parameters

• model (pybamm.BaseModel) – The discretised model to be saved

• mesh (pybamm.Mesh (optional)) – The mesh the model has been discretised over. Not
neccesary to solve the model when read in, but required to use pybamm’s plotting tools.

• variables (pybamm.FuzzyDict (optional)) – The discretised model varaibles. Not nec-
essary to solve a model, but required to use pybamm’s plotting tools.

• filename (str (optional)) – The desired name of the JSON file. If no name is pro-
vided, one will be created based on the model name, and the current datetime.

Symbol Unpacker

class pybamm.SymbolUnpacker(classes_to_find, unpacked_symbols=None)
Helper class to unpack a (set of) symbol(s) to find all instances of a class. Uses caching to speed up the process.

Parameters

• classes_to_find (list of pybamm classes) – Classes to identify in the equations

• unpacked_symbols (set, optional) – cached unpacked equations

unpack_list_of_symbols(list_of_symbols)
Unpack a list of symbols. See SymbolUnpacker.unpack()

Parameters
list_of_symbols (list of pybamm.Symbol) – List of symbols to unpack

Returns
Set of unpacked symbols with class in self.classes_to_find

Return type
list of pybamm.Symbol

unpack_symbol(symbol)
This function recurses down the tree, unpacking the symbols and saving the ones that have a class in
self.classes_to_find.

Parameters
symbol (list of pybamm.Symbol) – The symbols to unpack

Returns
List of unpacked symbols with class in self.classes_to_find

Return type
list of pybamm.Symbol

3.2 Models

Below is an overview of all the battery models included in PyBaMM. Each of the pre-built models contains a reference
to the paper in which it is derived.

The models can be customised using the options dictionary defined in the pybamm.BaseBatteryModel (which also
provides information on which options and models are compatible) Visit our examples page to see how these models
can be solved, and compared, using PyBaMM.

68 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set
https://github.com/pybamm-team/PyBaMM/tree/develop/docs/source/examples/notebooks/models

PyBaMM Documentation, Release 24.1

3.2.1 Base Models

Base Model

class pybamm.BaseModel(name='Unnamed model')
Base model class for other models to extend.

name

A string giving the name of the model.

Type
str

options

A dictionary of options to be passed to the model.

Type
dict

submodels

A dictionary of submodels that the model is composed of.

Type
dict

rhs

A dictionary that maps expressions (variables) to expressions that represent the rhs.

Type
dict

algebraic

A dictionary that maps expressions (variables) to expressions that represent the algebraic equations. The
algebraic expressions are assumed to equate to zero. Note that all the variables in the model must exist in
the keys of rhs or algebraic.

Type
dict

initial_conditions

A dictionary that maps expressions (variables) to expressions that represent the initial conditions for the
state variables y. The initial conditions for algebraic variables are provided as initial guesses to a root
finding algorithm that calculates consistent initial conditions.

Type
dict

boundary_conditions

A dictionary that maps expressions (variables) to expressions that represent the boundary conditions.

Type
dict

variables

A dictionary that maps strings to expressions that represent the useful variables.

Type
dict

3.2. Models 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

events

A list of events. Each event can either cause the solver to terminate (e.g. concentration goes negative), or
be used to inform the solver of the existance of a discontinuity (e.g. discontinuity in the input current).

Type
list of pybamm.Event

concatenated_rhs

After discretisation, contains the expressions representing the rhs equations concatenated into a single ex-
pression.

Type
pybamm.Concatenation

concatenated_algebraic

After discretisation, contains the expressions representing the algebraic equations concatenated into a single
expression.

Type
pybamm.Concatenation

concatenated_initial_conditions

After discretisation, contains the vector of initial conditions.

Type
numpy.array

mass_matrix

After discretisation, contains the mass matrix for the model. This is computed automatically.

Type
pybamm.Matrix

mass_matrix_inv

After discretisation, contains the inverse mass matrix for the differential (rhs) part of model. This is com-
puted automatically.

Type
pybamm.Matrix

jacobian

Contains the Jacobian for the model. If model.use_jacobian is True, the Jacobian is computed automatically
during solver set up.

Type
pybamm.Concatenation

jacobian_rhs

Contains the Jacobian for the part of the model which contains time derivatives. If model.use_jacobian is
True, the Jacobian is computed automatically during solver set up.

Type
pybamm.Concatenation

jacobian_algebraic

Contains the Jacobian for the algebraic part of the model. This may be used by the solver when calculating
consistent initial conditions. If model.use_jacobian is True, the Jacobian is computed automatically during
solver set up.

Type
pybamm.Concatenation

70 Chapter 3. API documentation

PyBaMM Documentation, Release 24.1

use_jacobian

Whether to use the Jacobian when solving the model (default is True).

Type
bool

convert_to_format

Whether to convert the expression trees representing the rhs and algebraic equations, Jacobain (if using)
and events into a different format:

• None: keep PyBaMM expression tree structure.

• “python”: convert into pure python code that will calculate the result of calling evaluate(t, y) on the
given expression treeself.

• “casadi”: convert into CasADi expression tree, which then uses CasADi’s algorithm to calculate the
Jacobian.

Default is “casadi”.

Type
str

check_algebraic_equations(post_discretisation)
Check that the algebraic equations are well-posed. After discretisation, there must be at least one StateVec-
tor in each algebraic equation.

check_discretised_or_discretise_inplace_if_0D()

Discretise model if it isn’t already discretised This only works with purely 0D models, as otherwise the
mesh and spatial method should be specified by the user

check_ics_bcs()

Check that the initial and boundary conditions are well-posed.

check_no_repeated_keys()

Check that no equation keys are repeated.

check_well_determined(post_discretisation)
Check that the model is not under- or over-determined.

check_well_posedness(post_discretisation=False)
Check that the model is well-posed by executing the following tests: - Model is not over- or underde-
termined, by comparing keys and equations in rhs and algebraic. Overdetermined if more equations
than variables, underdetermined if more variables than equations. - There is an initial condition in
self.initial_conditions for each variable/equation pair in self.rhs - There are appropriate boundary con-
ditions in self.boundary_conditions for each variable/equation pair in self.rhs and self.algebraic

Parameters
post_discretisation (boolean) – A flag indicating tests to be skipped after discretisation

property default_solver

Return default solver based on whether model is ODE/DAE or algebraic

classmethod deserialise(properties: dict)
Create a model instance from a serialised object.

export_casadi_objects(variable_names, input_parameter_order=None)
Export the constituent parts of the model (rhs, algebraic, initial conditions, etc) as casadi objects.

Parameters

3.2. Models 71

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

• variable_names (list) – Variables to be exported alongside the model structure

• input_parameter_order (list, optional) – Order in which the input parameters
should be stacked. If input_parameter_order=None and len(self.input_parameters) > 1,
a ValueError is raised (this helps to avoid accidentally using the wrong order)

Returns
casadi_dict – Dictionary of {str: casadi object} pairs representing the model in casadi format

Return type
dict

generate(filename, variable_names, input_parameter_order=None, cg_options=None)
Generate the model in C, using CasADi.

Parameters

• filename (str) – Name of the file to which to save the code

• variable_names (list) – Variables to be exported alongside the model structure

• input_parameter_order (list, optional) – Order in which the input parameters
should be stacked. If input_parameter_order=None and len(self.input_parameters) > 1,
a ValueError is raised (this helps to avoid accidentally using the wrong order)

• cg_options (dict) – Options to pass to the code generator. See https://web.casadi.org/
docs/#generating-c-code

get_parameter_info()

Extracts the parameter information and returns it as a dictionary. To get a list of all parameter-like objects
without extra information, use model.parameters.

info(symbol_name)
Provides helpful summary information for a symbol.

Parameters
parameter_name (str) –

property input_parameters

Returns all the input parameters in the model

latexify(filename=None, newline=True, output_variables=None)
Converts all model equations in latex.

Parameters

• filename (str (optional)) – Accepted file formats - any image format, pdf and tex
Default is None, When None returns all model equations in latex If not None, returns all
model equations in given file format.

• newline (bool (optional)) – Default is True, If True, returns every equation in a new
line. If False, returns the list of all the equations.

• model (Load) –

• pybamm.lithium_ion.SPM() (>>> model =) –

• png (This will returns all model equations in) –

• model.latexify("equations.png") (>>>) –

• latex (This will return all the model equations in) –

• model.latexify() (>>>) –

72 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://web.casadi.org/docs/#generating-c-code
https://web.casadi.org/docs/#generating-c-code
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

• equations (This will return first five model) –

• model.latexify(newline=False) (>>>) –

• equations –

• model.latexify(newline=False)[1 (>>>) –

new_copy()

Creates a copy of the model, explicitly copying all the mutable attributes to avoid issues with shared objects.

property parameters

Returns all the parameters in the model

print_parameter_info()

Print parameter information in a formatted table from a dictionary of parameters

process_parameters_and_discretise(symbol, parameter_values, disc)
Process parameters and discretise a symbol using supplied parameter values and discretisation. Note: care
should be taken if using spatial operators on dimensional symbols. Operators in pybamm are written in
non-dimensional form, so may need to be scaled by the appropriate length scale. It is recommended to use
this method on non-dimensional symbols.

Parameters

• symbol (pybamm.Symbol) – Symbol to be processed

• parameter_values (pybamm.ParameterValues) – The parameter values to use during
processing

• disc (pybamm.Discretisation) – The discrisation to use

Returns
Processed symbol

Return type
pybamm.Symbol

save_model(filename=None, mesh=None, variables=None)
Write out a discretised model to a JSON file

Parameters

• filename (str, optional) –

• provided (The desired name of the JSON file. If no name is) –

• created (one will be) –

• name (based on the model) –

• datetime. (and the current) –

set_initial_conditions_from(solution, inplace=True, return_type='model')
Update initial conditions with the final states from a Solution object or from a dictionary. This assumes
that, for each variable in self.initial_conditions, there is a corresponding variable in the solution with the
same name and size.

Parameters

• solution (pybamm.Solution, or dict) – The solution to use to initialize the model

• inplace (bool, optional) – Whether to modify the model inplace or create a new
model (default True)

3.2. Models 73

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

• return_type (str, optional) – Whether to return the model (default) or initial condi-
tions (“ics”)

update(*submodels)
Update model to add new physics from submodels

Parameters
submodel (iterable of pybamm.BaseModel) – The submodels from which to create new
model

property variables_and_events

Returns variables and events in a single dictionary

Base Battery Model

class pybamm.BaseBatteryModel(options=None, name='Unnamed battery model')
Base model class with some default settings and required variables

Parameters

• options (dict-like, optional) – A dictionary of options to be passed to the
model. If this is a dict (and not a subtype of dict), it will be processed by pybamm.
BatteryModelOptions to ensure that the options are valid. If this is a subtype of dict, it is
assumed that the options have already been processed and are valid. This allows for the use of
custom options classes. The default options are given by pybamm.BatteryModelOptions.

• name (str, optional) – The name of the model. The default is “Unnamed battery model”.

Extends: pybamm.models.base_model.BaseModel

classmethod deserialise(properties: dict)
Create a model instance from a serialised object.

save_model(filename=None, mesh=None, variables=None)
Write out a discretised model to a JSON file

Parameters

• filename (str, optional) –

• provided (The desired name of the JSON file. If no name is) –

• created (one will be) –

• name (based on the model) –

• datetime. (and the current) –

set_degradation_variables()

Set variables that quantify degradation. This function is overriden by the base battery models

set_external_circuit_submodel()

Define how the external circuit defines the boundary conditions for the model, e.g. (not necessarily constant-
) current, voltage, etc

set_soc_variables()

Set variables relating to the state of charge. This function is overriden by the base battery models

class pybamm.BatteryModelOptions(extra_options)

74 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

options

A dictionary of options to be passed to the model. The options that can be set are listed below. Note that
not all of the options are compatible with each other and with all of the models implemented in PyBaMM.
Each option is optional and takes a default value if not provided. In general, the option provided must be
a string, but there are some cases where a 2-tuple of strings can be provided instead to indicate a different
option for the negative and positive electrodes.

• “calculate discharge energy”: str
Whether to calculate the discharge energy, throughput energy and throughput capacity in addition
to discharge capacity. Must be one of “true” or “false”. “false” is the default, since calculating
discharge energy can be computationally expensive for simple models like SPM.

• “cell geometry”
[str] Sets the geometry of the cell. Can be “arbitrary” (default) or “pouch”. The arbitrary geometry
option solves a 1D electrochemical model with prescribed cell volume and cross-sectional area,
and (if thermal effects are included) solves a lumped thermal model with prescribed surface area
for cooling.

• “calculate heat source for isothermal models”
[str] Whether to calculate the heat source terms during isothermal operation. Can be “true” or
“false”. If “false”, the heat source terms are set to zero. Default is “false” since this option may
require additional parameters not needed by the electrochemical model.

• “convection”
[str] Whether to include the effects of convection in the model. Can be “none” (default), “uniform
transverse” or “full transverse”. Must be “none” for lithium-ion models.

• “current collector”
[str] Sets the current collector model to use. Can be “uniform” (default), “potential pair” or “po-
tential pair quite conductive”.

• “diffusivity”
[str] Sets the model for the diffusivity. Can be “single” (default) or “current sigmoid”. A 2-tuple
can be provided for different behaviour in negative and positive electrodes.

• “dimensionality”
[int] Sets the dimension of the current collector problem. Can be 0 (default), 1 or 2.

• “electrolyte conductivity”
[str] Can be “default” (default), “full”, “leading order”, “composite” or “integrated”.

• “exchange-current density”
[str] Sets the model for the exchange-current density. Can be “single” (default) or “current sig-
moid”. A 2-tuple can be provided for different behaviour in negative and positive electrodes.

• “hydrolysis”
[str] Whether to include hydrolysis in the model. Only implemented for lead-acid models. Can be
“false” (default) or “true”. If “true”, then “surface form” cannot be ‘false’.

• “intercalation kinetics”
[str] Model for intercalation kinetics. Can be “symmetric Butler-Volmer” (default), “asymmetric
Butler-Volmer”, “linear”, “Marcus”, “Marcus-Hush-Chidsey” (which uses the asymptotic form
from Zeng 2014), or “MSMR” (which uses the form from Baker 2018). A 2-tuple can be provided
for different behaviour in negative and positive electrodes.

• “interface utilisation”: str
Can be “full” (default), “constant”, or “current-driven”.

• “lithium plating”

3.2. Models 75

PyBaMM Documentation, Release 24.1

[str] Sets the model for lithium plating. Can be “none” (default), “reversible”, “partially re-
versible”, or “irreversible”.

• “lithium plating porosity change”
[str] Whether to include porosity change due to lithium plating, can be “false” (default) or “true”.

• “loss of active material”
[str] Sets the model for loss of active material. Can be “none” (default), “stress-driven”, “reaction-
driven”, “current-driven”, or “stress and reaction-driven”. A 2-tuple can be provided for different
behaviour in negative and positive electrodes.

• “number of MSMR reactions”
[str] Sets the number of reactions to use in the MSMR model in each electrode. A 2-tuple can be
provided to give a different number of reactions in the negative and positive electrodes. Default
is “none”. Can be any 2-tuple of strings of integers. For example, set to (“6”, “4”) for a negative
electrode with 6 reactions and a positive electrode with 4 reactions.

• “open-circuit potential”
[str] Sets the model for the open circuit potential. Can be “single” (default), “current sigmoid”,
or “MSMR”. If “MSMR” then the “particle” option must also be “MSMR”. A 2-tuple can be
provided for different behaviour in negative and positive electrodes.

• “operating mode”
[str] Sets the operating mode for the model. This determines how the current is set. Can be:

– “current” (default) : the current is explicity supplied

– “voltage”/”power”/”resistance” : solve an algebraic equation for current such that volt-
age/power/resistance is correct

– “differential power”/”differential resistance” : solve a differential equation for the power or re-
sistance

– “explicit power”/”explicit resistance” : current is defined in terms of the voltage such that
power/resistance is correct

– “CCCV”: a special implementation of the common constant-current constant-voltage charging
protocol, via an ODE for the current

– callable : if a callable is given as this option, the function defines the residual of an algebraic
equation. The applied current will be solved for such that the algebraic constraint is satisfied.

• “particle”
[str] Sets the submodel to use to describe behaviour within the particle. Can be “Fickian diffusion”
(default), “uniform profile”, “quadratic profile”, “quartic profile”, or “MSMR”. If “MSMR” then
the “open-circuit potential” option must also be “MSMR”. A 2-tuple can be provided for different
behaviour in negative and positive electrodes.

• “particle mechanics”
[str] Sets the model to account for mechanical effects such as particle swelling and cracking. Can
be “none” (default), “swelling only”, or “swelling and cracking”. A 2-tuple can be provided for
different behaviour in negative and positive electrodes.

• “particle phases”: str
Number of phases present in the electrode. A 2-tuple can be provided for different behaviour in
negative and positive electrodes. For example, set to (“2”, “1”) for a negative electrode with 2
phases, e.g. graphite and silicon.

• “particle shape”
[str] Sets the model shape of the electrode particles. This is used to calculate the surface area to
volume ratio. Can be “spherical” (default), or “no particles”.

76 Chapter 3. API documentation

PyBaMM Documentation, Release 24.1

• “particle size”
[str] Sets the model to include a single active particle size or a distribution of sizes at any
macroscale location. Can be “single” (default) or “distribution”. Option applies to both elec-
trodes.

• “SEI”
[str] Set the SEI submodel to be used. Options are:

– “none”: pybamm.sei.NoSEI (no SEI growth)

– “constant”: pybamm.sei.Constant (constant SEI thickness)

– “reaction limited”, “reaction limited (asymmetric)”, “solvent-diffusion limited”, “electron-
migration limited”, “interstitial-diffusion limited”, “ec reaction limited” or “ec reaction limited
(asymmetric)”: pybamm.sei.SEIGrowth

• “SEI film resistance”
[str] Set the submodel for additional term in the overpotential due to SEI. The default value is
“none” if the “SEI” option is “none”, and “distributed” otherwise. This is because the “distributed”
model is more complex than the model with no additional resistance, which adds unnecessary
complexity if there is no SEI in the first place

– “none”: no additional resistance

𝜂𝑟 =
𝐹

𝑅𝑇
* (𝜑𝑠 − 𝜑𝑒 − 𝑈)

– “distributed”: properly included additional resistance term

𝜂𝑟 =
𝐹

𝑅𝑇
* (𝜑𝑠 − 𝜑𝑒 − 𝑈 −𝑅𝑠𝑒𝑖 * 𝐿𝑠𝑒𝑖 * 𝑗)

– “average”: constant additional resistance term (approximation to the true model). This
model can give similar results to the “distributed” case without needing to make j an
algebraic state

𝜂𝑟 =
𝐹

𝑅𝑇
* (𝜑𝑠 − 𝜑𝑒 − 𝑈 −𝑅𝑠𝑒𝑖 * 𝐿𝑠𝑒𝑖 *

𝐼

𝑎𝐿
)

• “SEI on cracks”
[str] Whether to include SEI growth on particle cracks, can be “false” (default) or “true”.

• “SEI porosity change”
[str] Whether to include porosity change due to SEI formation, can be “false” (default) or “true”.

• “stress-induced diffusion”
[str] Whether to include stress-induced diffusion, can be “false” or “true”. The default is “false”
if “particle mechanics” is “none” and “true” otherwise. A 2-tuple can be provided for different
behaviour in negative and positive electrodes.

• “surface form”
[str] Whether to use the surface formulation of the problem. Can be “false” (default), “differential”
or “algebraic”.

• “thermal”
[str] Sets the thermal model to use. Can be “isothermal” (default), “lumped”, “x-lumped”, or “x-
full”. The ‘cell geometry’ option must be set to ‘pouch’ for ‘x-lumped’ or ‘x-full’ to be valid.
Using the ‘x-lumped’ option with ‘dimensionality’ set to 0 is equivalent to using the ‘lumped’
option.

3.2. Models 77

PyBaMM Documentation, Release 24.1

• “total interfacial current density as a state”
[str] Whether to make a state for the total interfacial current density and solve an algebraic equation
for it. Default is “false”, unless “SEI film resistance” is distributed in which case it is automatically
set to “true”.

• “working electrode”
[str] Can be “both” (default) for a standard battery or “positive” for a half-cell where the negative
electrode is replaced with a lithium metal counter electrode.

• “x-average side reactions”: str
Whether to average the side reactions (SEI growth, lithium plating and the respective porosity
change) over the x-axis in Single Particle Models, can be “false” or “true”. Default is “false” for
SPMe and “true” for SPM.

Type
dict

Extends: pybamm.util.FuzzyDict

property negative

Returns the options for the negative electrode

property positive

Returns the options for the positive electrode

print_detailed_options()

Print the docstring for Options

print_options()

Print the possible options with the ones currently selected

Event

class pybamm.Event(name, expression, event_type=EventType.TERMINATION)
Defines an event for use within a pybamm model

name

A string giving the name of the event.

Type
str

expression

An expression that defines when the event occurs.

Type
pybamm.Symbol

event_type

An enum defining the type of event. By default it is set to TERMINATION.

Type
pybamm.EventType (optional)

evaluate(t=None, y=None, y_dot=None, inputs=None)
Acts as a drop-in replacement for pybamm.Symbol.evaluate()

78 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

to_json()

Method to serialise an Event object into JSON.

The expression is written out seperately, See pybamm.Serialise._SymbolEncoder.default()

class pybamm.EventType(value, names=None, *values, module=None, qualname=None, type=None, start=1,
boundary=None)

Defines the type of event, see pybamm.Event

TERMINATION indicates an event that will terminate the solver, the expression should return 0 when the event
is triggered

DISCONTINUITY indicates an expected discontinuity in the solution, the expression should return the time
that the discontinuity occurs. The solver will integrate up to the discontinuity and then restart just after the
discontinuity.

INTERPOLANT_EXTRAPOLATION indicates that a pybamm.Interpolant object has been evaluated outside
of the range.

SWITCH indicates an event switch that is used in CasADI “fast with events” model.

Extends: enum.Enum

3.2.2 Lithium-ion Models

Base Lithium-ion Model

class pybamm.lithium_ion.BaseModel(options=None, name='Unnamed lithium-ion model', build=False)
Overwrites default parameters from Base Model with default parameters for lithium-ion models

Parameters

• options (dict-like, optional) – A dictionary of options to be passed to the
model. If this is a dict (and not a subtype of dict), it will be processed by pybamm.
BatteryModelOptions to ensure that the options are valid. If this is a subtype of dict, it is
assumed that the options have already been processed and are valid. This allows for the use of
custom options classes. The default options are given by pybamm.BatteryModelOptions.

• name (str, optional) – The name of the model. The default is “Unnamed battery model”.

• build (bool, optional) – Whether to build the model on instantiation. Default is True.
Setting this option to False allows users to change any number of the submodels before build-
ing the complete model (submodels cannot be changed after the model is built).

Extends: pybamm.models.full_battery_models.base_battery_model.BaseBatteryModel

insert_reference_electrode(position=None)
Insert a reference electrode to measure the electrolyte potential at a given position in space. Adds model
variables for the electrolyte potential at the reference electrode and for the potential difference between the
electrode potentials measured at the electrode/current collector interface and the reference electrode. Only
implemented for 1D models (i.e. where the ‘dimensionality’ option is 0).

Parameters
position (pybamm.Symbol, optional) – The position in space at which to measure the elec-
trolyte potential. If None, defaults to the mid-point of the separator.

set_degradation_variables()

Sets variables that quantify degradation (LAM, LLI, etc)

3.2. Models 79

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

set_summary_variables()

Sets the default summary variables.

Single Particle Model (SPM)

class pybamm.lithium_ion.SPM(options=None, name='Single Particle Model', build=True)
Single Particle Model (SPM) of a lithium-ion battery, from Marquis et al.1. See pybamm.lithium_ion.
BaseModel for more details.

Examples

>>> model = pybamm.lithium_ion.SPM()
>>> model.name
'Single Particle Model'

Extends: pybamm.models.full_battery_models.lithium_ion.base_lithium_ion_model.
BaseModel

class pybamm.lithium_ion.BasicSPM(name='Single Particle Model')
Single Particle Model (SPM) model of a lithium-ion battery, from Marquis et al.1.

This class differs from the pybamm.lithium_ion.SPM model class in that it shows the whole model in a single
class. This comes at the cost of flexibility in combining different physical effects, and in general the main SPM
class should be used instead.

Parameters
name (str, optional) – The name of the model.

Extends: pybamm.models.full_battery_models.lithium_ion.base_lithium_ion_model.
BaseModel

References

Single Particle Model with Electrolyte (SPMe)

class pybamm.lithium_ion.SPMe(options=None, name='Single Particle Model with electrolyte', build=True)
Single Particle Model with Electrolyte (SPMe) of a lithium-ion battery, from Marquis et al.1. Inherits most
submodels from SPM, only modifies potentials and electrolyte. See pybamm.lithium_ion.BaseModel for
more details.

1 Scott G. Marquis, Valentin Sulzer, Robert Timms, Colin P. Please, and S. Jon Chapman. An asymptotic derivation of a single particle model
with electrolyte. Journal of The Electrochemical Society, 166(15):A3693–A3706, 2019. doi:10.1149/2.0341915jes.

1 Scott G. Marquis, Valentin Sulzer, Robert Timms, Colin P. Please, and S. Jon Chapman. An asymptotic derivation of a single particle model
with electrolyte. Journal of The Electrochemical Society, 166(15):A3693–A3706, 2019. doi:10.1149/2.0341915jes.

80 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://doi.org/10.1149/2.0341915jes
https://doi.org/10.1149/2.0341915jes

PyBaMM Documentation, Release 24.1

Examples

>>> model = pybamm.lithium_ion.SPMe()
>>> model.name
'Single Particle Model with electrolyte'

Extends: pybamm.models.full_battery_models.lithium_ion.spm.SPM

References

Many Particle Model (MPM)

class pybamm.lithium_ion.MPM(options=None, name='Many-Particle Model', build=True)
Many-Particle Model (MPM) of a lithium-ion battery with particle-size distributions for each electrode, from
Kirk et al.1. See pybamm.lithium_ion.BaseModel for more details.

Examples

>>> model = pybamm.lithium_ion.MPM()
>>> model.name
'Many-Particle Model'

Extends: pybamm.models.full_battery_models.lithium_ion.spm.SPM

References

Doyle-Fuller-Newman (DFN)

class pybamm.lithium_ion.DFN(options=None, name='Doyle-Fuller-Newman model', build=True)
Doyle-Fuller-Newman (DFN) model of a lithium-ion battery, from Marquis et al.1. See pybamm.lithium_ion.
BaseModel for more details.

Examples

>>> model = pybamm.lithium_ion.DFN()
>>> model.name
'Doyle-Fuller-Newman model'

Extends: pybamm.models.full_battery_models.lithium_ion.base_lithium_ion_model.
BaseModel

class pybamm.lithium_ion.BasicDFN(name='Doyle-Fuller-Newman model')
Doyle-Fuller-Newman (DFN) model of a lithium-ion battery, from Marquis et al.Page 81, 1.

This class differs from the pybamm.lithium_ion.DFN model class in that it shows the whole model in a single
class. This comes at the cost of flexibility in comparing different physical effects, and in general the main DFN
class should be used instead.

1 Toby L. Kirk, Jack Evans, Colin P. Please, and S. Jonathan Chapman. Modelling electrode heterogeneity in lithium-ion batteries: unimodal
and bimodal particle-size distributions. arXiv:2006.12208, 2020. URL: https://arxiv.org/abs/2006.12208, arXiv:2006.12208.

1 Scott G. Marquis, Valentin Sulzer, Robert Timms, Colin P. Please, and S. Jon Chapman. An asymptotic derivation of a single particle model
with electrolyte. Journal of The Electrochemical Society, 166(15):A3693–A3706, 2019. doi:10.1149/2.0341915jes.

3.2. Models 81

https://arxiv.org/abs/2006.12208
https://arxiv.org/abs/2006.12208
https://doi.org/10.1149/2.0341915jes

PyBaMM Documentation, Release 24.1

Parameters
name (str, optional) – The name of the model.

Extends: pybamm.models.full_battery_models.lithium_ion.base_lithium_ion_model.
BaseModel

class pybamm.lithium_ion.BasicDFNComposite(name='Composite graphite/silicon Doyle-Fuller-Newman
model')

Doyle-Fuller-Newman (DFN) model of a lithium-ion battery with composite particles of graphite and silicon,
from Ai et al.2.

This class differs from the pybamm.lithium_ion.DFN model class in that it shows the whole model in a single
class. This comes at the cost of flexibility in comparing different physical effects, and in general the main DFN
class should be used instead.

Parameters
name (str, optional) – The name of the model.

Extends: pybamm.models.full_battery_models.lithium_ion.base_lithium_ion_model.
BaseModel

class pybamm.lithium_ion.BasicDFNHalfCell(options=None, name='Doyle-Fuller-Newman half cell
model')

Doyle-Fuller-Newman (DFN) model of a lithium-ion battery with lithium counter electrode, adapted from Doyle
et al.3.

This class differs from the pybamm.lithium_ion.BasicDFN model class in that it is for a cell with a lithium
counter electrode (half cell). This is a feature under development (for example, it cannot be used with the Experi-
ment class for the moment) and in the future it will be incorporated as a standard model with the full functionality.

The electrode labeled “positive electrode” is the working electrode, and the electrode labeled “negative electrode”
is the counter electrode. This facilitates compatibility with the full-cell models.

Parameters

• options (dict) – A dictionary of options to be passed to the model. For the half cell it
should include which is the working electrode.

• name (str, optional) – The name of the model.

Extends: pybamm.models.full_battery_models.lithium_ion.base_lithium_ion_model.
BaseModel

References

Newman-Tobias

class pybamm.lithium_ion.NewmanTobias(options=None, name='Newman-Tobias model', build=True)
Newman-Tobias model of a lithium-ion battery based on the formulation in Newman and Tobias1. This model
assumes a uniform concentration profile in the electrolyte. Unlike the model posed in Newman and TobiasPage 82, 1,
this model accounts for nonlinear Butler-Volmer kinetics. It also tracks the average concentration in the solid

2 Weilong Ai, Niall Kirkaldy, Yang Jiang, Gregory Offer, Huizhi Wang, and Billy Wu. A composite electrode model for lithium-ion batteries
with silicon/graphite negative electrodes. Journal of Power Sources, 527:231142, 2022. URL: https://www.sciencedirect.com/science/article/pii/
S0378775322001604, doi:https://doi.org/10.1016/j.jpowsour.2022.231142.

3 Marc Doyle, Thomas F. Fuller, and John Newman. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell.
Journal of the Electrochemical society, 140(6):1526–1533, 1993. doi:10.1149/1.2221597.

1 John S Newman and Charles W Tobias. Theoretical analysis of current distribution in porous electrodes. Journal of The Electrochemical
Society, 109(12):1183, 1962.

82 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://www.sciencedirect.com/science/article/pii/S0378775322001604
https://www.sciencedirect.com/science/article/pii/S0378775322001604
https://doi.org/https://doi.org/10.1016/j.jpowsour.2022.231142
https://doi.org/10.1149/1.2221597

PyBaMM Documentation, Release 24.1

phase in each electrode, which is equivalent to including an equation for the local state of charge as in Chu et
al.2. The user can pass the “particle” option to include mass transport in the particles.

See pybamm.lithium_ion.BaseModel for more details.

Extends: pybamm.models.full_battery_models.lithium_ion.dfn.DFN

References

Multi-Species Multi-Reaction (MSMR) Model

class pybamm.lithium_ion.MSMR(options=None, name='MSMR', build=True)

Yang et al 2017

class pybamm.lithium_ion.Yang2017(options=None, name='Yang2017', build=True)

Electrode SOH models

class pybamm.lithium_ion.ElectrodeSOHSolver(parameter_values, param=None, known_value='cyclable
lithium capacity', options=None)

Class used to check if the electrode SOH model is feasible, and solve it if it is.

Parameters

• parameter_values (pybamm.ParameterValues.Parameters) – The parameters of the
simulation

• param (pybamm.LithiumIonParameters, optional) – Specific instance of the symbolic
lithium-ion parameter class. If not provided, the default set of symbolic lithium-ion param-
eters will be used.

• known_value (str, optional) – The known value needed to complete the electrode SOH
model. Can be “cyclable lithium capacity” (default) or “cell capacity”.

• options (dict-like, optional) – A dictionary of options to be passed to the model, see
pybamm.BatteryModelOptions.

get_initial_ocps(initial_value)
Calculate initial open-circuit potentials to start off the simulation at a particular state of charge, given voltage
limits, open-circuit potentials, etc defined by parameter_values

Parameters
initial_value (float) – Target SOC, must be between 0 and 1.

Returns
The initial open-circuit potentials at the desired initial state of charge

Return type
Un, Up

2 Howie N Chu, Sun Ung Kim, Saeed Khaleghi Rahimian, Jason B Siegel, and Charles W Monroe. Parameterization of prismatic
lithium–iron–phosphate cells through a streamlined thermal/electrochemical model. Journal of Power Sources, 453:227787, 2020.

3.2. Models 83

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

PyBaMM Documentation, Release 24.1

get_initial_stoichiometries(initial_value)
Calculate initial stoichiometries to start off the simulation at a particular state of charge, given voltage limits,
open-circuit potentials, etc defined by parameter_values

Parameters
initial_value (float) – Target initial value. If integer, interpreted as SOC, must be be-
tween 0 and 1. If string e.g. “4 V”, interpreted as voltage, must be between V_min and
V_max.

Returns
The initial stoichiometries that give the desired initial state of charge

Return type
x, y

get_min_max_ocps()

Calculate min/max open-circuit potentials given voltage limits, open-circuit potentials, etc defined by pa-
rameter_values

Returns
The min/max ocps

Return type
Un_0, Un_100, Up_100, Up_0

get_min_max_stoichiometries()

Calculate min/max stoichiometries given voltage limits, open-circuit potentials, etc defined by parame-
ter_values

Returns
The min/max stoichiometries

Return type
x_0, x_100, y_100, y_0

pybamm.lithium_ion.get_initial_stoichiometries(initial_value, parameter_values, param=None,
known_value='cyclable lithium capacity',
options=None)

Calculate initial stoichiometries to start off the simulation at a particular state of charge, given voltage limits,
open-circuit potentials, etc defined by parameter_values

Parameters

• initial_value (float) – Target initial value. If integer, interpreted as SOC, must be
between 0 and 1. If string e.g. “4 V”, interpreted as voltage, must be between V_min and
V_max.

• parameter_values (pybamm.ParameterValues) – The parameter values class that will
be used for the simulation. Required for calculating appropriate initial stoichiometries.

• param (pybamm.LithiumIonParameters, optional) – The symbolic parameter set to use
for the simulation. If not provided, the default parameter set will be used.

• known_value (str, optional) – The known value needed to complete the electrode SOH
model. Can be “cyclable lithium capacity” (default) or “cell capacity”.

• options (dict-like, optional) – A dictionary of options to be passed to the model, see
pybamm.BatteryModelOptions.

Returns
The initial stoichiometries that give the desired initial state of charge

84 Chapter 3. API documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

Return type
x, y

pybamm.lithium_ion.get_min_max_stoichiometries(parameter_values, param=None,
known_value='cyclable lithium capacity',
options=None)

Calculate min/max stoichiometries given voltage limits, open-circuit potentials, etc defined by parameter_values

Parameters

• parameter_values (pybamm.ParameterValues) – The parameter values class that will
be used for the simulation. Required for calculating appropriate initial stoichiometries.

• param (pybamm.LithiumIonParameters, optional) – The symbolic parameter set to use
for the simulation. If not provided, the default parameter set will be used.

• known_value (str, optional) – The known value needed to complete the electrode SOH
model. Can be “cyclable lithium capacity” (default) or “cell capacity”.

• options (dict-like, optional) – A dictionary of options to be passed to the model, see
pybamm.BatteryModelOptions.

Returns
The min/max stoichiometries

Return type
x_0, x_100, y_100, y_0

pybamm.lithium_ion.get_initial_ocps(initial_value, parameter_values, param=None,
known_value='cyclable lithium capacity', options=None)

Calculate initial open-circuit potentials to start off the simulation at a particular state of charge, given voltage
limits, open-circuit potentials, etc defined by parameter_values

Parameters

• initial_value (float) – Target initial value. If integer, interpreted as SOC, must be
between 0 and 1. If string e.g. “4 V”, interpreted as voltage, must be between V_min and
V_max.

• parameter_values (pybamm.ParameterValues) – The parameter values class that will
be used for the simulation. Required for calculating appropriate initial stoichiometries.

• param (pybamm.LithiumIonParameters, optional) – The symbolic parameter set to use
for the simulation. If not provided, the default parameter set will be used.

• known_value (str, optional) – The known value needed to complete the electrode SOH
model. Can be “cyclable lithium capacity” (default) or “cell capacity”.

• options (dict-like, optional) – A dictionary of options to be passed to the model, see
pybamm.BatteryModelOptions.

Returns
The initial electrode OCPs that give the desired initial state of charge

Return type
Un, Up

pybamm.lithium_ion.get_min_max_ocps(parameter_values, param=None, known_value='cyclable lithium
capacity', options=None)

Calculate min/max open-circuit potentials given voltage limits, open-circuit potentials, etc defined by parame-
ter_values

3.2. Models 85

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

Parameters

• parameter_values (pybamm.ParameterValues) – The parameter values class that will
be used for the simulation. Required for calculating appropriate initial open-circuit poten-
tials.

• param (pybamm.LithiumIonParameters, optional) – The symbolic parameter set to use
for the simulation. If not provided, the default parameter set will be used.

• known_value (str, optional) – The known value needed to complete the electrode SOH
model. Can be “cyclable lithium capacity” (default) or “cell capacity”.

• options (dict-like, optional) – A dictionary of options to be passed to the model, see
pybamm.BatteryModelOptions.

Returns
The min/max OCPs

Return type
Un_0, Un_100, Up_100, Up_0

3.2.3 Lead Acid Models

Base Model

class pybamm.lead_acid.BaseModel(options=None, name='Unnamed lead-acid model', build=False)
Overwrites default parameters from Base Model with default parameters for lead-acid models

Parameters

• options (dict-like, optional) – A dictionary of options to be passed to the
model. If this is a dict (and not a subtype of dict), it will be processed by pybamm.
BatteryModelOptions to ensure that the options are valid. If this is a subtype of dict, it is
assumed that the options have already been processed and are valid. This allows for the use of
custom options classes. The default options are given by pybamm.BatteryModelOptions.

• name (str, optional) – The name of the model. The default is “Unnamed battery model”.

• build (bool, optional) – Whether to build the model on instantiation. Default is True.
Setting this option to False allows users to change any number of the submodels before build-
ing the complete model (submodels cannot be changed after the model is built).

Extends: pybamm.models.full_battery_models.base_battery_model.BaseBatteryModel

set_soc_variables()

Set variables relating to the state of charge.

Leading-Order Quasi-Static Model

class pybamm.lead_acid.LOQS(options=None, name='LOQS model', build=True)
Leading-Order Quasi-Static model for lead-acid, from Sulzer et al.1. See pybamm.lead_acid.BaseModel for
more details.

Extends: pybamm.models.full_battery_models.lead_acid.base_lead_acid_model.BaseModel

1 Valentin Sulzer, S. Jon Chapman, Colin P. Please, David A. Howey, and Charles W. Monroe. Faster Lead-Acid Battery Simulations from Porous-
Electrode Theory: Part II. Asymptotic Analysis. Journal of The Electrochemical Society, 166(12):A2372–A2382, 2019. doi:10.1149/2.0441908jes.

86 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://doi.org/10.1149/2.0441908jes

PyBaMM Documentation, Release 24.1

set_external_circuit_submodel()

Define how the external circuit defines the boundary conditions for the model, e.g. (not necessarily constant-
) current, voltage, etc

References

Full Model

class pybamm.lead_acid.Full(options=None, name='Full model', build=True)
Porous electrode model for lead-acid, from Sulzer et al.1, based on the Newman-Tiedemann model. See pybamm.
lead_acid.BaseModel for more details.

Extends: pybamm.models.full_battery_models.lead_acid.base_lead_acid_model.BaseModel

class pybamm.lead_acid.BasicFull(name='Basic full model')
Porous electrode model for lead-acid, from Sulzer et al.Page 87, 1.

This class differs from the pybamm.lead_acid.Full model class in that it shows the whole model in a single
class. This comes at the cost of flexibility in comparing different physical effects, and in general the main DFN
class should be used instead.

Parameters
name (str, optional) – The name of the model.

Extends: pybamm.models.full_battery_models.lead_acid.base_lead_acid_model.BaseModel

References

3.2.4 Equivalent Circuit Models

Thevenin Model

class pybamm.equivalent_circuit.Thevenin(name='Thevenin Equivalent Circuit Model', options=None,
build=True)

The classical Thevenin Equivalent Circuit Model of a battery as described in, for example, Barletta et al.1.

This equivalent circuit model consists of an OCV element, a resistor element, and a number of RC elements (by
default 1). The model is coupled to two lumped thermal models, one for the cell and one for the surrounding jig.
Heat generation terms for each element follow equation (1) of Nieto et al.2.

Parameters

• name (str, optional) – The name of the model. The default is “Thevenin Equivalent
Circuit Model”.

• options (dict, optional) – A dictionary of options to be passed to the model. The
default is None. Possible options are:

– ”number of rc elements”
[str] The number of RC elements to be added to the model. The default is 1.

1 Valentin Sulzer, S. Jon Chapman, Colin P. Please, David A. Howey, and Charles W. Monroe. Faster Lead-Acid Battery Simulations from Porous-
Electrode Theory: Part II. Asymptotic Analysis. Journal of The Electrochemical Society, 166(12):A2372–A2382, 2019. doi:10.1149/2.0441908jes.

1 Giulio Barletta, Piera DiPrima, and Davide Papurello. Thévenin’s battery model parameter estimation based on simulink. Energies,
15(17):6207, 2022.

2 Nerea Nieto, Luis Diaz, Jon Gastelurrutia, Isabel Alava, Francisco Blanco, Juan Ramos, and Alejandro Rivas. Thermal modeling of large
format lithium-ion cells. Journal of the Electrochemical Society, 160:A212–A217, 11 2012. doi:10.1149/2.042302jes.

3.2. Models 87

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1149/2.0441908jes
https://doi.org/10.1149/2.042302jes

PyBaMM Documentation, Release 24.1

– ”calculate discharge energy”: str
Whether to calculate the discharge energy, throughput energy and throughput capacity
in addition to discharge capacity. Must be one of “true” or “false”. “false” is the default,
since calculating discharge energy can be computationally expensive for simple models
like SPM.

– ”operating mode”
[str] Sets the operating mode for the model. This determines how the current is set. Can
be:

∗ ”current” (default) : the current is explicity supplied

∗ ”voltage”/”power”/”resistance” : solve an algebraic equation for current such that
voltage/power/resistance is correct

∗ ”differential power”/”differential resistance” : solve a differential equation for the
power or resistance

∗ ”CCCV”: a special implementation of the common constant-current constant-voltage
charging protocol, via an ODE for the current

∗ callable : if a callable is given as this option, the function defines the residual of
an algebraic equation. The applied current will be solved for such that the algebraic
constraint is satisfied.

• build (bool, optional) – Whether to build the model on instantiation. Default is True.
Setting this option to False allows users to change any number of the submodels before build-
ing the complete model (submodels cannot be changed after the model is built).

Examples

>>> model = pybamm.equivalent_circuit.Thevenin()
>>> model.name
'Thevenin Equivalent Circuit Model'

Extends: pybamm.models.base_model.BaseModel

set_external_circuit_submodel()

Define how the external circuit defines the boundary conditions for the model, e.g. (not necessarily
constant-) current, voltage, etc

References

3.2.5 Submodels

Base Submodel

class pybamm.BaseSubModel(param, domain=None, name='Unnamed submodel', external=False,
options=None, phase=None)

The base class for all submodels. All submodels inherit from this class and must only provide public methods
which overwrite those in this base class. Any methods added to a submodel that do not overwrite those in this
bass class are made private with the prefix ‘_’, providing a consistent public interface for all submodels.

Parameters

• param (parameter class) – The model parameter symbols

88 Chapter 3. API documentation

https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

• name (str) – A string giving the name of the submodel

• external (bool, optional) – Whether the variables defined by the submodel will be
provided externally by the users. Default is ‘False’.

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is None).

param

The model parameter symbols

Type
parameter class

rhs

A dictionary that maps expressions (variables) to expressions that represent the rhs

Type
dict

algebraic

A dictionary that maps expressions (variables) to expressions that represent the algebraic equations. The
algebraic expressions are assumed to equate to zero. Note that all the variables in the model must exist in
the keys of rhs or algebraic.

Type
dict

initial_conditions

A dictionary that maps expressions (variables) to expressions that represent the initial conditions for the
state variables y. The initial conditions for algebraic variables are provided as initial guesses to a root
finding algorithm that calculates consistent initial conditions.

Type
dict

boundary_conditions

A dictionary that maps expressions (variables) to expressions that represent the boundary conditions

Type
dict

variables

A dictionary that maps strings to expressions that represent the useful variables

Type
dict

events

A list of events. Each event can either cause the solver to terminate (e.g. concentration goes negative), or
be used to inform the solver of the existance of a discontinuity (e.g. discontinuity in the input current)

Type
list

Extends: pybamm.models.base_model.BaseModel

3.2. Models 89

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 24.1

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as implemented in
pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

90 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Active Material

Submodels for (loss of) active material

Base Model

class pybamm.active_material.BaseModel(param, domain, options, phase='primary')
Base class for active material volume fraction

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

• options (dict) – Additional options to pass to the model

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

Constant Active Material

class pybamm.active_material.Constant(param, domain, options, phase='primary')
Submodel for constant active material

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

• options (dict) – Additional options to pass to the model

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.active_material.base_active_material.BaseModel

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

3.2. Models 91

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Loss of Active Material

class pybamm.active_material.LossActiveMaterial(param, domain, options, x_average)
Submodel for varying active material volume fraction from Ai et al.1 and Reniers et al.2.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

• options (dict) – Additional options to pass to the model

• x_average (bool) – Whether to use x-averaged variables (SPM, SPMe, etc) or full vari-
ables (DFN)

Extends: pybamm.models.submodels.active_material.base_active_material.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

1 Weilong Ai, Ludwig Kraft, Johannes Sturm, Andreas Jossen, and Billy Wu. Electrochemical thermal-mechanical modelling of stress inhomo-
geneity in lithium-ion pouch cells. Journal of The Electrochemical Society, 167(1):013512, 2019. doi:10.1149/2.0122001JES.

2 Jorn M. Reniers, Grietus Mulder, and David A. Howey. Review and performance comparison of mechanical-chemical degradation models for
lithium-ion batteries. Journal of The Electrochemical Society, 166(14):A3189, 2019. doi:10.1149/2.0281914jes.

92 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1149/2.0122001JES
https://doi.org/10.1149/2.0281914jes

PyBaMM Documentation, Release 24.1

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

References

Current Collector

Base Model

class pybamm.current_collector.BaseModel(param)
Base class for current collector submodels

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

Effective Current collector Resistance models

class pybamm.current_collector.EffectiveResistance(options=None, name='Effective resistance in
current collector model')

A model which calculates the effective Ohmic resistance of the current collectors in the limit of large electrical
conductivity. For details see Timms et al.1. Note that this formulation assumes uniform potential across the
tabs. See pybamm.AlternativeEffectiveResistance2D for the formulation that assumes a uniform current
density at the tabs (in 1D the two formulations are equivalent).

Parameters

• options (dict) – A dictionary of options to be passed to the model. The options that
can be set are listed below.

– ”dimensionality”
[int, optional] Sets the dimension of the current collector problem. Can be 1 (de-
fault) or 2.

• name (str, optional) – The name of the model.

Extends: pybamm.models.submodels.current_collector.effective_resistance_current_collector.
BaseEffectiveResistance

post_process(solution, param_values, V_av, I_av)
Calculates the potentials in the current collector and the terminal voltage given the average voltage and
current. Note: This takes in the processed V_av and I_av from a 1D simulation representing the average
cell behaviour and returns a dictionary of processed potentials.

1 Robert Timms, Scott G Marquis, Valentin Sulzer, Colin P. Please, and S Jonathan Chapman. Asymptotic Reduction of a Lithium-ion Pouch
Cell Model. SIAM Journal on Applied Mathematics, 81(3):765–788, 2021. doi:10.1137/20M1336898.

3.2. Models 93

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://doi.org/10.1137/20M1336898

PyBaMM Documentation, Release 24.1

class pybamm.current_collector.AlternativeEffectiveResistance2D

A model which calculates the effective Ohmic resistance of the 2D current collectors in the limit of large electrical
conductivity. This model assumes a uniform current density at the tabs and the solution is computed by first
solving and auxilliary problem which is the related to the resistances.

Extends: pybamm.models.submodels.current_collector.effective_resistance_current_collector.
BaseEffectiveResistance

post_process(solution, param_values, V_av, I_av)
Calculates the potentials in the current collector given the average voltage and current. Note: This takes
in the processed V_av and I_av from a 1D simulation representing the average cell behaviour and returns
a dictionary of processed potentials.

References

Uniform

class pybamm.current_collector.Uniform(param)
A submodel for uniform potential in the current collectors which is valid in the limit of fast conductivity in the
current collectors.

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.current_collector.base_current_collector.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

94 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Potential Pair models

class pybamm.current_collector.BasePotentialPair(param)
A submodel for Ohm’s law plus conservation of current in the current collectors. For details on the potential pair
formulation see Timms et al.1 and Marquis2.

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.current_collector.base_current_collector.BaseModel

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

class pybamm.current_collector.PotentialPair2plus1D(param)
Base class for a 2+1D potential pair model

Extends: pybamm.models.submodels.current_collector.potential_pair.BasePotentialPair

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

class pybamm.current_collector.PotentialPair1plus1D(param)
Base class for a 1+1D potential pair model.

Extends: pybamm.models.submodels.current_collector.potential_pair.BasePotentialPair
1 Robert Timms, Scott G Marquis, Valentin Sulzer, Colin P. Please, and S Jonathan Chapman. Asymptotic Reduction of a Lithium-ion Pouch

Cell Model. SIAM Journal on Applied Mathematics, 81(3):765–788, 2021. doi:10.1137/20M1336898.
2 Scott G. Marquis. Long-term degradation of lithium-ion batteries. PhD thesis, University of Oxford, 2020.

3.2. Models 95

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1137/20M1336898

PyBaMM Documentation, Release 24.1

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

References

Convection

The convection submodels are split up into “through-cell”, which is the x-direction problem in the electrode domains,
and “transverse”, which is the z-direction problem in the separator domain

Base Convection

class pybamm.convection.BaseModel(param, options=None)
Base class for convection submodels.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

Through-cell Convection

Base Model

class pybamm.convection.through_cell.BaseThroughCellModel(param, options=None)
Base class for convection submodels in the through-cell direction.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.convection.base_convection.BaseModel

No Convection

class pybamm.convection.through_cell.NoConvection(param, options=None)
A submodel for case where there is no convection.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.convection.through_cell.base_through_cell_convection.
BaseThroughCellModel

96 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

Leading-Order Through-cell Model

class pybamm.convection.through_cell.Explicit(param)
A submodel for the leading-order approximation of pressure-driven convection

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.convection.through_cell.base_through_cell_convection.
BaseThroughCellModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

3.2. Models 97

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Full Through-cell Model

class pybamm.convection.through_cell.Full(param)
Submodel for the full model of pressure-driven convection

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.convection.through_cell.base_through_cell_convection.
BaseThroughCellModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

98 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Parameters
variables (dict) – The variables in the whole model.

Transverse Convection

Base Model

class pybamm.convection.transverse.BaseTransverseModel(param, options=None)
Base class for convection submodels in transverse directions.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.convection.base_convection.BaseModel

No Transverse Convection

class pybamm.convection.transverse.NoConvection(param, options=None)
Submodel for no convection in transverse directions

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.convection.transverse.base_transverse_convection.
BaseTransverseModel

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

Uniform Transverse Model

class pybamm.convection.transverse.Uniform(param)
Submodel for uniform convection in transverse directions

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.convection.transverse.base_transverse_convection.
BaseTransverseModel

3.2. Models 99

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

Full Transverse Convection

class pybamm.convection.transverse.Full(param)
Submodel for the full model of pressure-driven convection in transverse directions

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.convection.transverse.base_transverse_convection.
BaseTransverseModel

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

100 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Parameters
variables (dict) – The variables in the whole model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Electrode

Electrode Base Model

class pybamm.electrode.BaseElectrode(param, domain, options=None, set_positive_potential=True)
Base class for electrode submodels.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘negative’ or ‘positive’

• options (dict, optional) – A dictionary of options to be passed to the model.

• set_positive_potential (bool, optional) – If True the battery model sets the pos-
itive potential based on the current. If False, the potential is specified by the user. Default
is True.

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

Ohmic

Base Model

class pybamm.electrode.ohm.BaseModel(param, domain, options=None, set_positive_potential=True)
A base class for electrode submodels that employ Ohm’s law.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘negative’ or ‘positive’

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrode.base_electrode.BaseElectrode

3.2. Models 101

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Leading Order Model

class pybamm.electrode.ohm.LeadingOrder(param, domain, options=None, set_positive_potential=True)
An electrode submodel that employs Ohm’s law the leading-order approximation to governing equations.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘negative’ or ‘positive’

• options (dict, optional) – A dictionary of options to be passed to the model.

• set_positive_potential (bool, optional) – If True the battery model sets the
positve potential based on the current. If False, the potential is specified by the user.
Default is True.

Extends: pybamm.models.submodels.electrode.ohm.base_ohm.BaseModel

get_coupled_variables(variables)
Returns variables which are derived from the fundamental variables in the model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Composite Model

class pybamm.electrode.ohm.Composite(param, domain, options=None)
An explicit composite leading and first order solution to solid phase current conservation with ohm’s law. Note
that the returned current density is only the leading order approximation.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘Negative electrode’ or ‘Positive electrode’

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrode.ohm.base_ohm.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

102 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Full Model

class pybamm.electrode.ohm.Full(param, domain, options=None)
Full model of electrode employing Ohm’s law.

Extends: pybamm.models.submodels.electrode.ohm.base_ohm.BaseModel

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘negative’ or ‘positive’

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrode.ohm.base_ohm.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

3.2. Models 103

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Surface Form

class pybamm.electrode.ohm.SurfaceForm(param, domain, options=None)
A submodel for the electrode with Ohm’s law in the surface potential formulation.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘negative’ or ‘positive’

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrode.ohm.base_ohm.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

104 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Explicit potential drop for lithium metal

class pybamm.electrode.ohm.LithiumMetalExplicit(param, domain, options=None)
Explicit model for potential drop across a lithium metal electrode.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrode.ohm.li_metal.LithiumMetalBaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

Electrolyte Conductivity

Base Electrolyte Conductivity Submodel

class pybamm.electrolyte_conductivity.BaseElectrolyteConductivity(param, domain=None,
options=None)

Base class for conservation of charge in the electrolyte.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str, optional) – The domain in which the model holds

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

3.2. Models 105

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Leading Order Model

class pybamm.electrolyte_conductivity.LeadingOrder(param, domain=None, options=None)
Leading-order model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive
equations. (Leading refers to leading-order in the asymptotic reduction)

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str, optional) – The domain in which the model holds

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrolyte_conductivity.base_electrolyte_conductivity.
BaseElectrolyteConductivity

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

Composite Model

class pybamm.electrolyte_conductivity.Composite(param, domain=None, options=None)
Base class for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str, optional) – The domain in which the model holds

• options (dict, optional) – A dictionary of options to be passed to the model.

• higher_order_terms (str) – What kind of higher-order terms to use (‘composite’ or
‘first-order’)

Extends: pybamm.models.submodels.electrolyte_conductivity.base_electrolyte_conductivity.
BaseElectrolyteConductivity

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

106 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

Integrated Model

class pybamm.electrolyte_conductivity.Integrated(param, domain=None, options=None)
Integrated model for conservation of charge in the electrolyte derived from integrating the Stefan-Maxwell con-
stitutive equations, from Brosa Planella et al.1.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str, optional) – The domain in which the model holds

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrolyte_conductivity.base_electrolyte_conductivity.
BaseElectrolyteConductivity

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

References

Full Model

class pybamm.electrolyte_conductivity.Full(param, options=None)
Full model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations.
(Full refers to unreduced by asymptotic methods)

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrolyte_conductivity.base_electrolyte_conductivity.
BaseElectrolyteConductivity

1 Ferran Brosa Planella, Muhammad Sheikh, and W. Dhammika Widanage. Systematic derivation and validation of a re-
duced thermal-electrochemical model for lithium-ion batteries using asymptotic methods. Electrochimica Acta, 388:138524, 2021.
doi:10.1016/j.electacta.2021.138524.

3.2. Models 107

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1016/j.electacta.2021.138524

PyBaMM Documentation, Release 24.1

check_algebraic_equations(post_discretisation)
Check that the algebraic equations are well-posed. After discretisation, there must be at least one Stat-
eVector in each algebraic equation.

check_discretised_or_discretise_inplace_if_0D()

Discretise model if it isn’t already discretised This only works with purely 0D models, as otherwise the
mesh and spatial method should be specified by the user

check_ics_bcs()

Check that the initial and boundary conditions are well-posed.

check_no_repeated_keys()

Check that no equation keys are repeated.

check_well_determined(post_discretisation)
Check that the model is not under- or over-determined.

check_well_posedness(post_discretisation=False)
Check that the model is well-posed by executing the following tests: - Model is not over- or underde-
termined, by comparing keys and equations in rhs and algebraic. Overdetermined if more equations
than variables, underdetermined if more variables than equations. - There is an initial condition in
self.initial_conditions for each variable/equation pair in self.rhs - There are appropriate boundary con-
ditions in self.boundary_conditions for each variable/equation pair in self.rhs and self.algebraic

Parameters
post_discretisation (boolean) – A flag indicating tests to be skipped after discreti-
sation

property default_solver

Return default solver based on whether model is ODE/DAE or algebraic

classmethod deserialise(properties: dict)
Create a model instance from a serialised object.

export_casadi_objects(variable_names, input_parameter_order=None)
Export the constituent parts of the model (rhs, algebraic, initial conditions, etc) as casadi objects.

Parameters

• variable_names (list) – Variables to be exported alongside the model structure

• input_parameter_order (list, optional) – Order in which the in-
put parameters should be stacked. If input_parameter_order=None and
len(self.input_parameters) > 1, a ValueError is raised (this helps to avoid acci-
dentally using the wrong order)

Returns
casadi_dict – Dictionary of {str: casadi object} pairs representing the model in casadi
format

Return type
dict

generate(filename, variable_names, input_parameter_order=None, cg_options=None)
Generate the model in C, using CasADi.

Parameters

• filename (str) – Name of the file to which to save the code

• variable_names (list) – Variables to be exported alongside the model structure

108 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 24.1

• input_parameter_order (list, optional) – Order in which the in-
put parameters should be stacked. If input_parameter_order=None and
len(self.input_parameters) > 1, a ValueError is raised (this helps to avoid acci-
dentally using the wrong order)

• cg_options (dict) – Options to pass to the code generator. See https://web.casadi.
org/docs/#generating-c-code

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

get_parameter_info()

Extracts the parameter information and returns it as a dictionary. To get a list of all parameter-like objects
without extra information, use model.parameters.

info(symbol_name)
Provides helpful summary information for a symbol.

Parameters
parameter_name (str) –

property input_parameters

Returns all the input parameters in the model

latexify(filename=None, newline=True, output_variables=None)
Converts all model equations in latex.

Parameters

• filename (str (optional)) – Accepted file formats - any image format, pdf and
tex Default is None, When None returns all model equations in latex If not None,
returns all model equations in given file format.

• newline (bool (optional)) – Default is True, If True, returns every equation in a
new line. If False, returns the list of all the equations.

3.2. Models 109

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://web.casadi.org/docs/#generating-c-code
https://web.casadi.org/docs/#generating-c-code
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

• model (Load) –

• pybamm.lithium_ion.SPM() (>>> model =) –

• png (This will returns all model equations in) –

• model.latexify("equations.png") (>>>) –

• latex (This will return all the model equations in) –

• model.latexify() (>>>) –

• equations (This will return first five model) –

• model.latexify(newline=False) (>>>) –

• equations –

• model.latexify(newline=False)[1 (>>>) –

new_copy()

Creates a copy of the model, explicitly copying all the mutable attributes to avoid issues with shared objects.

property parameters

Returns all the parameters in the model

print_parameter_info()

Print parameter information in a formatted table from a dictionary of parameters

process_parameters_and_discretise(symbol, parameter_values, disc)
Process parameters and discretise a symbol using supplied parameter values and discretisation. Note: care
should be taken if using spatial operators on dimensional symbols. Operators in pybamm are written in
non-dimensional form, so may need to be scaled by the appropriate length scale. It is recommended to use
this method on non-dimensional symbols.

Parameters

• symbol (pybamm.Symbol) – Symbol to be processed

• parameter_values (pybamm.ParameterValues) – The parameter values to use
during processing

• disc (pybamm.Discretisation) – The discrisation to use

Returns
Processed symbol

Return type
pybamm.Symbol

save_model(filename=None, mesh=None, variables=None)
Write out a discretised model to a JSON file

Parameters

• filename (str, optional) –

• provided (The desired name of the JSON file. If no name is) –

• created (one will be) –

• name (based on the model) –

• datetime. (and the current) –

110 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as implemented in
pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions_from(solution, inplace=True, return_type='model')
Update initial conditions with the final states from a Solution object or from a dictionary. This assumes
that, for each variable in self.initial_conditions, there is a corresponding variable in the solution with the
same name and size.

Parameters

• solution (pybamm.Solution, or dict) – The solution to use to initialize the model

• inplace (bool, optional) – Whether to modify the model inplace or create a new
model (default True)

• return_type (str, optional) – Whether to return the model (default) or initial
conditions (“ics”)

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

update(*submodels)
Update model to add new physics from submodels

Parameters
submodel (iterable of pybamm.BaseModel) – The submodels from which to create new
model

3.2. Models 111

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

property variables_and_events

Returns variables and events in a single dictionary

Surface Form

Full Model

class pybamm.electrolyte_conductivity.surface_potential_form.FullDifferential(param,
domain, op-
tions=None)

Full model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations
and where capacitance is present. (Full refers to unreduced by asymptotic methods)

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrolyte_conductivity.surface_potential_form.
full_surface_form_conductivity.BaseModel

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

class pybamm.electrolyte_conductivity.surface_potential_form.FullAlgebraic(param, domain,
options=None)

Full model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations.
(Full refers to unreduced by asymptotic methods)

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrolyte_conductivity.surface_potential_form.
full_surface_form_conductivity.BaseModel

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

112 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Leading Order Model

class pybamm.electrolyte_conductivity.surface_potential_form.LeadingOrderDifferential(param,
do-
main,
op-
tions=None)

Leading-order model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive
equations employing the surface potential difference formulation and where capacitance is present.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrolyte_conductivity.surface_potential_form.
leading_surface_form_conductivity.BaseLeadingOrderSurfaceForm

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

class pybamm.electrolyte_conductivity.surface_potential_form.LeadingOrderAlgebraic(param,
domain,
op-
tions=None)

Leading-order model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive
equations employing the surface potential difference formulation.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrolyte_conductivity.surface_potential_form.
leading_surface_form_conductivity.BaseLeadingOrderSurfaceForm

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

3.2. Models 113

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Explicit Model

class pybamm.electrolyte_conductivity.surface_potential_form.Explicit(param, domain, options)
Class for deriving surface potential difference variables from the electrode and electrolyte potentials

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain in which the model holds

• options (dict) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrolyte_conductivity.base_electrolyte_conductivity.
BaseElectrolyteConductivity

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Electrolyte Diffusion

Base Electrolyte Diffusion Submodel

class pybamm.electrolyte_diffusion.BaseElectrolyteDiffusion(param, options=None)
Base class for conservation of mass in the electrolyte.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

114 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Constant Concentration

class pybamm.electrolyte_diffusion.ConstantConcentration(param, options=None)
Class for constant concentration of electrolyte

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrolyte_diffusion.base_electrolyte_diffusion.
BaseElectrolyteDiffusion

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_boundary_conditions(variables)
We provide boundary conditions even though the concentration is constant so that the gradient of the
concentration has the correct shape after discretisation.

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as implemented in
pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

3.2. Models 115

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Leading Order Model

class pybamm.electrolyte_diffusion.LeadingOrder(param)
Class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations. (Leading
refers to leading order of asymptotic reduction)

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.electrolyte_diffusion.base_electrolyte_diffusion.
BaseElectrolyteDiffusion

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

116 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Full Model

class pybamm.electrolyte_diffusion.Full(param, options=None)
Class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations. (Full
refers to unreduced by asymptotic methods)

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.electrolyte_diffusion.base_electrolyte_diffusion.
BaseElectrolyteDiffusion

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

3.2. Models 117

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

External circuit

Models to enforce different boundary conditions (as imposed by an imaginary external circuit) such as constant current,
constant voltage, constant power, or any other relationship between the current and voltage. “Current control” enforces
these directly through boundary conditions, while “Function control” submodels add an algebraic equation (for the
current) and hence can be used to set any variable to be constant.

Explicit control external circuit

Current is explicitly specified, either by a function or in terms of other variables.

class pybamm.external_circuit.ExplicitCurrentControl(param, options)
External circuit with current control.

Extends: pybamm.models.submodels.external_circuit.base_external_circuit.BaseModel

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

class pybamm.external_circuit.ExplicitPowerControl(param, options)
External circuit with current set explicitly to hit target power.

Extends: pybamm.models.submodels.external_circuit.base_external_circuit.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

118 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

class pybamm.external_circuit.ExplicitResistanceControl(param, options)
External circuit with current set explicitly to hit target resistance.

Extends: pybamm.models.submodels.external_circuit.base_external_circuit.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

Function control external circuit

class pybamm.external_circuit.FunctionControl(param, external_circuit_function, options,
control='algebraic')

External circuit with an arbitrary function, implemented as a control on the current either via an algebraic equa-
tion, or a differential equation.

Parameters

• param (parameter class) – The parameters to use for this submodel

• external_circuit_function (callable) – The function that controls the current

• options (dict) – Dictionary of options to use for the submodel

• control (str, optional) – The type of control to use. Must be one of ‘algebraic’
(default) or ‘differential’.

Extends: pybamm.models.submodels.external_circuit.base_external_circuit.BaseModel

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

3.2. Models 119

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

class pybamm.external_circuit.VoltageFunctionControl(param, options)
External circuit with voltage control, implemented as an extra algebraic equation.

Extends: pybamm.models.submodels.external_circuit.function_control_external_circuit.
FunctionControl

class pybamm.external_circuit.PowerFunctionControl(param, options, control='algebraic')
External circuit with power control.

Extends: pybamm.models.submodels.external_circuit.function_control_external_circuit.
FunctionControl

class pybamm.external_circuit.ResistanceFunctionControl(param, options, control)
External circuit with resistance control.

Extends: pybamm.models.submodels.external_circuit.function_control_external_circuit.
FunctionControl

class pybamm.external_circuit.CCCVFunctionControl(param, options)
External circuit with constant-current constant-voltage control, as implemented in Mohtat et al.1.

References

Extends: pybamm.models.submodels.external_circuit.function_control_external_circuit.
FunctionControl

Interface

Interface Base Model

class pybamm.interface.BaseInterface(param, domain, reaction, options, phase='primary')
Base class for interfacial currents

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.
1 Peyman Mohtat, Sravan Pannala, Valentin Sulzer, Jason B Siegel, and Anna G Stefanopoulou. An algorithmic safety vest for li-ion batteries

during fast charging. arXiv preprint arXiv:2108.07833, 2021.

120 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

• reaction (str) – The name of the reaction being implemented

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

Total Interfacial Current Model

class pybamm.interface.TotalInterfacialCurrent(param, chemistry, options)
Total interfacial current, summing up contributions from all reactions

Parameters

• param – model parameters

• chemistry (str) – The name of the battery chemistry whose reactions need to be
summed up

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

get_coupled_variables(variables)
Get variables associated with interfacial current over the whole cell domain This function also creates the
“total source term” variables by summing all the reactions.

Interface Utilisation

Utilisation Base Model

class pybamm.interface.interface_utilisation.BaseModel(param, domain, options)
Base class for interface utilisation

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘negative’ or ‘positive’

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

Constant Utilisation

class pybamm.interface.interface_utilisation.Constant(param, domain, options)
Submodel for constant interface utilisation

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘negative’ or ‘positive’

• options (dict, optional) – A dictionary of options to be passed to the model.

3.2. Models 121

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Extends: pybamm.models.submodels.interface.interface_utilisation.base_utilisation.
BaseModel

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

CurrentDriven Utilisation

class pybamm.interface.interface_utilisation.CurrentDriven(param, domain, options, reaction_loc)
Current-driven ODE for interface utilisation

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘negative’ or ‘positive’

• options (dict, optional) – A dictionary of options to be passed to the model.

• reaction_loc (str) – Where the reaction happens: “x-average” (SPM, SPMe, etc), “full
electrode” (full DFN), or “interface” (half-cell model)

Extends: pybamm.models.submodels.interface.interface_utilisation.base_utilisation.
BaseModel

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as implemented in
pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

122 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Full Utilisation

class pybamm.interface.interface_utilisation.Full(param, domain, options)
Submodel for constant interface utilisation

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘negative’ or ‘positive’

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.interface.interface_utilisation.base_utilisation.
BaseModel

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

Kinetics

Base Kinetics

class pybamm.kinetics.BaseKinetics(param, domain, reaction, options, phase='primary')
Base submodel for kinetics

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

• reaction (str) – The name of the reaction being implemented

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

3.2. Models 123

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

Extends: pybamm.models.submodels.interface.base_interface.BaseInterface

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Butler Volmer

class pybamm.kinetics.SymmetricButlerVolmer(param, domain, reaction, options, phase='primary')
Submodel which implements the symmetric forward Butler-Volmer equation:

𝑗 = 2 * 𝑗0(𝑐) * sinh(𝑛𝑒 * 𝐹 * 𝜂𝑟(𝑐)/𝑅𝑇)

Parameters

• param (parameter class) – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

124 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

• reaction (str) – The name of the reaction being implemented

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.interface.kinetics.base_kinetics.BaseKinetics

class pybamm.kinetics.AsymmetricButlerVolmer(param, domain, reaction, options, phase='primary')
Submodel which implements the asymmetric forward Butler-Volmer equation

Parameters

• param (parameter class) – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

• reaction (str) – The name of the reaction being implemented

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.interface.kinetics.base_kinetics.BaseKinetics

Diffusion-limited

class pybamm.kinetics.DiffusionLimited(param, domain, reaction, options, order)
Submodel for diffusion-limited kinetics

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

• reaction (str) – The name of the reaction being implemented

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• order (str) – The order of the model (“leading” or “full”)

Extends: pybamm.models.submodels.interface.base_interface.BaseInterface

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

3.2. Models 125

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Linear

class pybamm.kinetics.Linear(param, domain, reaction, options, phase='primary')
Submodel which implements linear kinetics. Valid for small overpotentials/currents.

Parameters

• param (parameter class) – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

• reaction (str) – The name of the reaction being implemented

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.interface.kinetics.base_kinetics.BaseKinetics

Marcus

class pybamm.kinetics.Marcus(param, domain, reaction, options, phase='primary')
Submodel which implements Marcus kinetics.

Parameters

• param (parameter class) – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

• reaction (str) – The name of the reaction being implemented

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.interface.kinetics.base_kinetics.BaseKinetics

NoReaction

class pybamm.kinetics.NoReaction(param, domain, reaction, options, phase='primary')
Base submodel for when no reaction occurs

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

• reaction (str) – The name of the reaction being implemented

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.interface.base_interface.BaseInterface

126 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

Tafel

class pybamm.kinetics.ForwardTafel(param, domain, reaction, options, phase='primary')
Base submodel which implements the forward Tafel equation:

𝑗 = 𝑢 * 𝑗0(𝑐) * exp((𝑛𝑒 * 𝑎𝑙𝑝ℎ𝑎 * 𝐹 * 𝜂𝑟(𝑐)/𝑅𝑇)

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

• reaction (str) – The name of the reaction being implemented

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.interface.kinetics.base_kinetics.BaseKinetics

3.2. Models 127

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

MSMR Butler Volmer

class pybamm.kinetics.MSMRButlerVolmer(param, domain, reaction, options, phase='primary')
Submodel which implements the forward Butler-Volmer equation in the MSMR formulation in which the inter-
facial current density is summed over all reactions.

Parameters

• param (parameter class) – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

• reaction (str) – The name of the reaction being implemented

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.interface.kinetics.base_kinetics.BaseKinetics

Total Main Kinetics

class pybamm.kinetics.TotalMainKinetics(param, domain, reaction, options)
Class summing up contributions to the main (e.g. intercalation) reaction for cases with primary, secondary, . . .
reactions e.g. silicon-graphite

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

• reaction (str) – The name of the reaction being implemented

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

128 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Inverse Kinetics

Inverse Butler-Volmer

class pybamm.kinetics.InverseButlerVolmer(param, domain, reaction, options=None)
A submodel that implements the inverted form of the Butler-Volmer relation to solve for the reaction overpoten-
tial.

Parameters

• param – Model parameters

• domain (iter of str, optional) – The domain(s) in which to compute the interfa-
cial current.

• reaction (str) – The name of the reaction being implemented

• options (dict) – A dictionary of options to be passed to the model. In this case “SEI
film resistance” is the important option. See pybamm.BaseBatteryModel

Extends: pybamm.models.submodels.interface.base_interface.BaseInterface

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

Lithium Plating

Base Plating

class pybamm.lithium_plating.BasePlating(param, domain, options=None)
Base class for lithium plating models, from O’Kane et al.1 and O’Kane et al.2.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.interface.base_interface.BaseInterface

1 Simon E. J. O’Kane, Ian D. Campbell, Mohamed W. J. Marzook, Gregory J. Offer, and Monica Marinescu. Physical origin of the differential
voltage minimum associated with lithium plating in li-ion batteries. Journal of The Electrochemical Society, 167(9):090540, may 2020. URL:
https://doi.org/10.1149/1945-7111/ab90ac, doi:10.1149/1945-7111/ab90ac.

2 Simon E. J. O’Kane, Weilong Ai, Ganesh Madabattula, Diego Alonso-Alvarez, Robert Timms, Valentin Sulzer, Jacqueline Sophie Edge, Billy
Wu, Gregory J. Offer, and Monica Marinescu. Lithium-ion battery degradation: how to model it. Phys. Chem. Chem. Phys., 24:7909–7922, 2022.
URL: http://dx.doi.org/10.1039/D2CP00417H, doi:10.1039/D2CP00417H.

3.2. Models 129

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1149/1945-7111/ab90ac
https://doi.org/10.1149/1945-7111/ab90ac
http://dx.doi.org/10.1039/D2CP00417H
https://doi.org/10.1039/D2CP00417H

PyBaMM Documentation, Release 24.1

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

References

No Plating

class pybamm.lithium_plating.NoPlating(param, domain, options=None)
Base class for no lithium plating/stripping.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.interface.lithium_plating.base_plating.BasePlating

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

130 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Plating

class pybamm.lithium_plating.Plating(param, domain, x_average, options)
Class for lithium plating, from O’Kane et al.1 and O’Kane et al.2.

Parameters

• param (parameter class) – The parameters to use for this submodel

• x_average (bool) – Whether to use x-averaged variables (SPM, SPMe, etc) or full vari-
ables (DFN)

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.interface.lithium_plating.base_plating.BasePlating

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

1 Simon E. J. O’Kane, Ian D. Campbell, Mohamed W. J. Marzook, Gregory J. Offer, and Monica Marinescu. Physical origin of the differential
voltage minimum associated with lithium plating in li-ion batteries. Journal of The Electrochemical Society, 167(9):090540, may 2020. URL:
https://doi.org/10.1149/1945-7111/ab90ac, doi:10.1149/1945-7111/ab90ac.

2 Simon E. J. O’Kane, Weilong Ai, Ganesh Madabattula, Diego Alonso-Alvarez, Robert Timms, Valentin Sulzer, Jacqueline Sophie Edge, Billy
Wu, Gregory J. Offer, and Monica Marinescu. Lithium-ion battery degradation: how to model it. Phys. Chem. Chem. Phys., 24:7909–7922, 2022.
URL: http://dx.doi.org/10.1039/D2CP00417H, doi:10.1039/D2CP00417H.

3.2. Models 131

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1149/1945-7111/ab90ac
https://doi.org/10.1149/1945-7111/ab90ac
http://dx.doi.org/10.1039/D2CP00417H
https://doi.org/10.1039/D2CP00417H

PyBaMM Documentation, Release 24.1

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

References

Open-circuit potential models

Base Open Circuit Potential

class pybamm.open_circuit_potential.BaseOpenCircuitPotential(param, domain, reaction, options,
phase='primary')

Base class for open-circuit potentials

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

• reaction (str) – The name of the reaction being implemented

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.interface.base_interface.BaseInterface

Current Sigmoid Open Circuit Potential

class pybamm.open_circuit_potential.CurrentSigmoidOpenCircuitPotential(param, domain,
reaction, options,
phase='primary')

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

132 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Single Open Circuit Potential

class pybamm.open_circuit_potential.SingleOpenCircuitPotential(param, domain, reaction, options,
phase='primary')

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

MSMR Open Circuit Potential

class pybamm.open_circuit_potential.MSMROpenCircuitPotential(param, domain, reaction, options,
phase='primary')

Class for open-circuit potential within the Multi-Species Multi-Reaction framework Baker and Verbrugge1. The
thermodynamic model is presented in Verbrugge et al.2, along with parameter values for a number of substitu-
tional materials.

Extends: pybamm.models.submodels.interface.open_circuit_potential.base_ocp.
BaseOpenCircuitPotential

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

1 Daniel R Baker and Mark W Verbrugge. Multi-species, multi-reaction model for porous intercalation electrodes: part i. model formulation and
a perturbation solution for low-scan-rate, linear-sweep voltammetry of a spinel lithium manganese oxide electrode. Journal of The Electrochemical
Society, 165(16):A3952, 2018.

2 Mark Verbrugge, Daniel Baker, Brian Koch, Xingcheng Xiao, and Wentian Gu. Thermodynamic model for substitutional materials: application
to lithiated graphite, spinel manganese oxide, iron phosphate, and layered nickel-manganese-cobalt oxide. Journal of The Electrochemical Society,
164(11):E3243, 2017.

3.2. Models 133

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

References

SEI models

SEI Base Model

class pybamm.sei.BaseModel(param, domain, options, phase='primary', cracks=False)
Base class for SEI models.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict) – A dictionary of options to be passed to the model.

• phase (str, optional) – Phase of the particle (default is “primary”)

• cracks (bool, optional) – Whether this is a submodel for standard SEI or SEI on
cracks

Extends: pybamm.models.submodels.interface.base_interface.BaseInterface

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

Constant SEI

class pybamm.sei.ConstantSEI(param, domain, options, phase='primary')
Class for SEI with constant thickness.

Note that there is no SEI current, so we don’t need to update the “sum of interfacial current densities” variables
from pybamm.interface.BaseInterface

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict) – A dictionary of options to be passed to the model.

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.interface.sei.base_sei.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

134 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

No SEI

class pybamm.sei.NoSEI(param, domain, options, phase='primary', cracks=False)
Class for no SEI.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict) – A dictionary of options to be passed to the model.

• phase (str, optional) – Phase of the particle (default is “primary”)

• cracks (bool, optional) – Whether this is a submodel for standard SEI or SEI on
cracks

Extends: pybamm.models.submodels.interface.sei.base_sei.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

3.2. Models 135

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

SEI Growth

class pybamm.sei.SEIGrowth(param, domain, reaction_loc, options, phase='primary', cracks=False)
Class for SEI growth.

Most of the models are from Section 5.6.4 of Marquis1 and references therein.

The ec reaction limited model is from Yang et al.2.

Parameters

• param (parameter class) – The parameters to use for this submodel

• reaction_loc (str) – Where the reaction happens: “x-average” (SPM, SPMe, etc), “full
electrode” (full DFN), or “interface” (half-cell model)

• options (dict) – A dictionary of options to be passed to the model.

• phase (str, optional) – Phase of the particle (default is “primary”)

• cracks (bool, optional) – Whether this is a submodel for standard SEI or SEI on
cracks

Extends: pybamm.models.submodels.interface.sei.base_sei.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

1 Scott G. Marquis. Long-term degradation of lithium-ion batteries. PhD thesis, University of Oxford, 2020.
2 Xiao Guang Yang, Yongjun Leng, Guangsheng Zhang, Shanhai Ge, and Chao Yang Wang. Modeling of lithium plating induced aging of

lithium-ion batteries: transition from linear to nonlinear aging. Journal of Power Sources, 360:28–40, 2017. doi:10.1016/j.jpowsour.2017.05.110.

136 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1016/j.jpowsour.2017.05.110

PyBaMM Documentation, Release 24.1

Return type
dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

References

Total SEI

class pybamm.sei.TotalSEI(param, domain, options, cracks=False)
Class summing up contributions to the SEI reaction for cases with primary, secondary, . . . reactions e.g. silicon-
graphite

Parameters

• param – model parameters

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

3.2. Models 137

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Oxygen Diffusion

Base Model

class pybamm.oxygen_diffusion.BaseModel(param)
Base class for conservation of mass of oxygen.

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

Full Model

class pybamm.oxygen_diffusion.Full(param)
Class for conservation of mass of oxygen. (Full refers to unreduced by asymptotic methods) In this model, ex-
tremely fast oxygen kinetics in the negative electrode imposes zero oxygen concentration there, and so the oxygen
variable only lives in the separator and positive electrode. The boundary condition at the negative electrode/ sep-
arator interface is homogeneous Dirichlet.

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.oxygen_diffusion.base_oxygen_diffusion.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

138 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Leading Order Model

class pybamm.oxygen_diffusion.LeadingOrder(param)
Class for conservation of mass of oxygen. (Leading refers to leading order of asymptotic reduction)

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.oxygen_diffusion.base_oxygen_diffusion.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

3.2. Models 139

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

No Oxygen

class pybamm.oxygen_diffusion.NoOxygen(param)
Class for when there is no oxygen

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.oxygen_diffusion.base_oxygen_diffusion.BaseModel

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

Particle

Particle Base Model

class pybamm.particle.BaseParticle(param, domain, options, phase='primary')
Base class for molar conservation in particles.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

140 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

class pybamm.particle.TotalConcentration(param, domain, options, phase='primary')
Class to calculate total particle concentrations

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.particle.base_particle.BaseParticle

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

Fickian Diffusion

class pybamm.particle.FickianDiffusion(param, domain, options, phase='primary', x_average=False)
Class for molar conservation in particles, employing Fick’s law

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

• x_average (bool) – Whether the particle concentration is averaged over the x-direction

Extends: pybamm.models.submodels.particle.base_particle.BaseParticle

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

3.2. Models 141

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Polynomial Profile

class pybamm.particle.PolynomialProfile(param, domain, options, phase='primary')
Class for molar conservation in particles employing Fick’s law, assuming a polynomial concentration profile in
r, and allowing variation in the electrode domain. Model equations from Subramanian et al.1.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)
1 Venkat R. Subramanian, Vinten D. Diwakar, and Deepak Tapriyal. Efficient macro-micro scale coupled modeling of batteries. Journal of The

Electrochemical Society, 152(10):A2002, 2005. doi:10.1149/1.2032427.

142 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://doi.org/10.1149/1.2032427

PyBaMM Documentation, Release 24.1

Extends: pybamm.models.submodels.particle.base_particle.BaseParticle

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

3.2. Models 143

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

References

X-averaged Polynomial Profile

class pybamm.particle.XAveragedPolynomialProfile(param, domain, options, phase='primary')
Class for molar conservation in a single x-averaged particle employing Fick’s law, with an assumed polynomial
concentration profile in r. Model equations from Subramanian et al.1.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.particle.polynomial_profile.PolynomialProfile

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

1 Venkat R. Subramanian, Vinten D. Diwakar, and Deepak Tapriyal. Efficient macro-micro scale coupled modeling of batteries. Journal of The
Electrochemical Society, 152(10):A2002, 2005. doi:10.1149/1.2032427.

144 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1149/1.2032427

PyBaMM Documentation, Release 24.1

set_initial_conditions(variables)
For single or x-averaged particle models, initial conditions can’t depend on x or r so we take the r- and
x-average of the initial conditions.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

References

MSMR Diffusion

class pybamm.particle.MSMRDiffusion(param, domain, options, phase='primary', x_average=False)
Class for molar conservation in particles within the Multi-Species Multi-Reaction framework Baker and Ver-
brugge1. The thermodynamic model is presented in Verbrugge et al.2, along with parameter values for a number
of substitutional materials.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

• x_average (bool) – Whether the particle concentration is averaged over the x-direction

Extends: pybamm.models.submodels.particle.base_particle.BaseParticle

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

1 Daniel R Baker and Mark W Verbrugge. Multi-species, multi-reaction model for porous intercalation electrodes: part i. model formulation and
a perturbation solution for low-scan-rate, linear-sweep voltammetry of a spinel lithium manganese oxide electrode. Journal of The Electrochemical
Society, 165(16):A3952, 2018.

2 Mark Verbrugge, Daniel Baker, Brian Koch, Xingcheng Xiao, and Wentian Gu. Thermodynamic model for substitutional materials: application
to lithiated graphite, spinel manganese oxide, iron phosphate, and layered nickel-manganese-cobalt oxide. Journal of The Electrochemical Society,
164(11):E3243, 2017.

3.2. Models 145

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

References

Particle Cracking

Base Particle Mechanics Model

class pybamm.particle_mechanics.BaseMechanics(param, domain, options, phase='primary')
Base class for particle mechanics models, referenced from Ai et al.1 and Deshpande et al.2.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (dict, optional) – Dictionary of either the electrode for “positive” or “Neg-
ative”

1 Weilong Ai, Ludwig Kraft, Johannes Sturm, Andreas Jossen, and Billy Wu. Electrochemical thermal-mechanical modelling of stress inhomo-
geneity in lithium-ion pouch cells. Journal of The Electrochemical Society, 167(1):013512, 2019. doi:10.1149/2.0122001JES.

2 Rutooj Deshpande, Mark Verbrugge, Yang-Tse Cheng, John Wang, and Ping Liu. Battery cycle life prediction with coupled chemical degrada-
tion and fatigue mechanics. Journal of the Electrochemical Society, 159(10):A1730, 2012. doi:10.1149/2.049210jes.

146 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1149/2.0122001JES
https://doi.org/10.1149/2.049210jes

PyBaMM Documentation, Release 24.1

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

References

Crack Propagation Model

class pybamm.particle_mechanics.CrackPropagation(param, domain, x_average, options,
phase='primary')

Cracking behaviour in electrode particles. See Ai et al.1 for mechanical model (thickness change) and Deshpande
et al.2 for cracking model.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

• x_average (bool) – Whether to use x-averaged variables (SPM, SPMe, etc) or full vari-
ables (DFN)

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.particle_mechanics.base_mechanics.BaseMechanics

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

1 Weilong Ai, Ludwig Kraft, Johannes Sturm, Andreas Jossen, and Billy Wu. Electrochemical thermal-mechanical modelling of stress inhomo-
geneity in lithium-ion pouch cells. Journal of The Electrochemical Society, 167(1):013512, 2019. doi:10.1149/2.0122001JES.

2 Rutooj Deshpande, Mark Verbrugge, Yang-Tse Cheng, John Wang, and Ping Liu. Battery cycle life prediction with coupled chemical degrada-
tion and fatigue mechanics. Journal of the Electrochemical Society, 159(10):A1730, 2012. doi:10.1149/2.049210jes.

3.2. Models 147

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1149/2.0122001JES
https://doi.org/10.1149/2.049210jes

PyBaMM Documentation, Release 24.1

Return type
dict

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as implemented in
pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

References

Swelling Only Model

class pybamm.particle_mechanics.SwellingOnly(param, domain, options, phase='primary')
Class for swelling only (no cracking), from Ai et al.1.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

• options (dict) – A dictionary of options to be passed to the model. See pybamm.
BaseBatteryModel

• phase (str, optional) – Phase of the particle (default is “primary”)

Extends: pybamm.models.submodels.particle_mechanics.base_mechanics.BaseMechanics

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

1 Weilong Ai, Ludwig Kraft, Johannes Sturm, Andreas Jossen, and Billy Wu. Electrochemical thermal-mechanical modelling of stress inhomo-
geneity in lithium-ion pouch cells. Journal of The Electrochemical Society, 167(1):013512, 2019. doi:10.1149/2.0122001JES.

148 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1149/2.0122001JES

PyBaMM Documentation, Release 24.1

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

References

Porosity

Base Model

class pybamm.porosity.BaseModel(param, options)
Base class for porosity

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

Constant Porosity

class pybamm.porosity.Constant(param, options)
Submodel for constant porosity

Parameters
param (parameter class) – The parameters to use for this submodel

Extends: pybamm.models.submodels.porosity.base_porosity.BaseModel

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

3.2. Models 149

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as implemented in
pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Reaction-driven Model

class pybamm.porosity.ReactionDriven(param, options, x_average)
Reaction-driven porosity changes as a multiple of SEI/plating thicknesses

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict) – Options dictionary passed from the full model

• x_average (bool) – Whether to use x-averaged variables (SPM, SPMe, etc) or full vari-
ables (DFN)

Extends: pybamm.models.submodels.porosity.base_porosity.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as implemented in
pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Reaction-driven Model as an ODE

class pybamm.porosity.ReactionDrivenODE(param, options, x_average)
Reaction-driven porosity changes as an ODE

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict) – Options dictionary passed from the full model

150 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

• x_average (bool) – Whether to use x-averaged variables (SPM, SPMe, etc) or full vari-
ables (DFN)

Extends: pybamm.models.submodels.porosity.base_porosity.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as implemented in
pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

3.2. Models 151

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Thermal

Base Thermal

class pybamm.thermal.BaseThermal(param, options=None)
Base class for thermal effects

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

Isothermal Model

class pybamm.thermal.isothermal.Isothermal(param, options=None)
Class for isothermal submodel.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.thermal.base_thermal.BaseThermal

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

152 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Lumped Model

class pybamm.thermal.lumped.Lumped(param, options=None)
Class for lumped thermal submodel. For more information see Timms et al.1 and Marquis2.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.thermal.base_thermal.BaseThermal

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

1 Robert Timms, Scott G Marquis, Valentin Sulzer, Colin P. Please, and S Jonathan Chapman. Asymptotic Reduction of a Lithium-ion Pouch
Cell Model. SIAM Journal on Applied Mathematics, 81(3):765–788, 2021. doi:10.1137/20M1336898.

2 Scott G. Marquis. Long-term degradation of lithium-ion batteries. PhD thesis, University of Oxford, 2020.

3.2. Models 153

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1137/20M1336898

PyBaMM Documentation, Release 24.1

References

Pouch Cell

One Dimensional Model

class pybamm.thermal.pouch_cell.x_full.OneDimensionalX(param, options=None)
Class for one-dimensional (x-direction) thermal submodel. Note: this model assumes infinitely large electrical
and thermal conductivity in the current collectors, so that the contribution to the Ohmic heating from the current
collectors is zero and the boundary conditions are applied at the edges of the electrodes (at x=0 and x=1, in
non-dimensional coordinates). For more information see Timms et al.1 and Marquis2.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.thermal.base_thermal.BaseThermal

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

1 Robert Timms, Scott G Marquis, Valentin Sulzer, Colin P. Please, and S Jonathan Chapman. Asymptotic Reduction of a Lithium-ion Pouch
Cell Model. SIAM Journal on Applied Mathematics, 81(3):765–788, 2021. doi:10.1137/20M1336898.

2 Scott G. Marquis. Long-term degradation of lithium-ion batteries. PhD thesis, University of Oxford, 2020.

154 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1137/20M1336898

PyBaMM Documentation, Release 24.1

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

References

Thermal Model for “1+1D” Pouch Cell

class pybamm.thermal.pouch_cell.CurrentCollector1D(param, options=None)
Class for one-dimensional thermal submodel for use in the “1+1D” pouch cell model. The thermal model is
averaged in the x-direction and is therefore referred to as ‘x-lumped’. For more information see Timms et al.1
and Marquis2.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.thermal.base_thermal.BaseThermal

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

1 Robert Timms, Scott G Marquis, Valentin Sulzer, Colin P. Please, and S Jonathan Chapman. Asymptotic Reduction of a Lithium-ion Pouch
Cell Model. SIAM Journal on Applied Mathematics, 81(3):765–788, 2021. doi:10.1137/20M1336898.

2 Scott G. Marquis. Long-term degradation of lithium-ion batteries. PhD thesis, University of Oxford, 2020.

3.2. Models 155

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1137/20M1336898

PyBaMM Documentation, Release 24.1

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

References

Thermal Model for “2+1D” Pouch Cell

class pybamm.thermal.pouch_cell.CurrentCollector2D(param, options=None)
Class for two-dimensional thermal submodel for use in the “2+1D” pouch cell model. The thermal model is
averaged in the x-direction and is therefore referred to as ‘x-lumped’. For more information see Timms et al.1
and Marquis2.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.thermal.base_thermal.BaseThermal

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

1 Robert Timms, Scott G Marquis, Valentin Sulzer, Colin P. Please, and S Jonathan Chapman. Asymptotic Reduction of a Lithium-ion Pouch
Cell Model. SIAM Journal on Applied Mathematics, 81(3):765–788, 2021. doi:10.1137/20M1336898.

2 Scott G. Marquis. Long-term degradation of lithium-ion batteries. PhD thesis, University of Oxford, 2020.

156 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1137/20M1336898

PyBaMM Documentation, Release 24.1

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as
implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

References

transport_efficiency

Base Model

class pybamm.transport_efficiency.BaseModel(param, component, options=None)
Base class for transport_efficiency

Parameters

• param (parameter class) – The parameters to use for this submodel

3.2. Models 157

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

• component (str) – The material for the model (‘electrolyte’ or ‘electrode’).

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

Bruggeman Model

class pybamm.transport_efficiency.Bruggeman(param, component, options=None)
Submodel for Bruggeman transport_efficiency

Parameters

• param (parameter class) – The parameters to use for this submodel

• component (str) – The material for the model (‘electrolyte’ or ‘electrode’).

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.transport_efficiency.base_transport_efficiency.
BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

Equivalent Circuit Elements

OCV Element

class pybamm.equivalent_circuit_elements.OCVElement(param, options=None)
Open-circuit Voltage (OCV) element for equivalent circuits.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

158 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as implemented in
pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Resistor Element

class pybamm.equivalent_circuit_elements.ResistorElement(param, options=None)
Resistor element for equivalent circuits.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

3.2. Models 159

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

RC Element

class pybamm.equivalent_circuit_elements.RCElement(param, element_number, options=None)
Parallel Resistor-Capacitor (RC) element for equivalent circuits.

Parameters

• param (parameter class) – The parameters to use for this submodel

• element_number (int) – The number of the element (i.e. whether it is the first, second,
third, etc. element)

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

160 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Thermal SubModel

class pybamm.equivalent_circuit_elements.ThermalSubModel(param, options=None)
Thermal SubModel for use with equivalent circuits.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

get_fundamental_variables()

A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns
The variables created by the submodel which are independent of variables in other sub-
models.

Return type
dict

3.2. Models 161

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as im-
plemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

Voltage Model

class pybamm.equivalent_circuit_elements.VoltageModel(param, options=None)
Voltage model for use with equivalent circuits. This model is used to calculate the voltage and total overpotentials
from the other elements in the circuit.

Parameters

• param (parameter class) – The parameters to use for this submodel

• options (dict, optional) – A dictionary of options to be passed to the model.

Extends: pybamm.models.submodels.base_submodel.BaseSubModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters
variables (dict) – The variables in the whole model.

Returns
The variables created in this submodel which depend on variables in other submodels.

Return type
dict

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used as implemented in
pybamm.BaseSubModel.

Parameters
variables (dict) – The variables in the whole model.

162 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

3.3 Parameters

3.3.1 Parameter Values

class pybamm.ParameterValues(values, chemistry=None)
The parameter values for a simulation.

Note that this class does not inherit directly from the python dictionary class as this causes issues with saving
and loading simulations.

Parameters
values (dict or string) – Explicit set of parameters, or reference to an inbuilt parameter
set If string and matches one of the inbuilt parameter sets, returns that parameter set.

Examples

>>> values = {"some parameter": 1, "another parameter": 2}
>>> param = pybamm.ParameterValues(values)
>>> param["some parameter"]
1
>>> param = pybamm.ParameterValues("Marquis2019")
>>> param["Reference temperature [K]"]
298.15

copy()

Returns a copy of the parameter values. Makes sure to copy the internal dictionary.

static create_from_bpx(filename, target_soc=1)

Parameters

• filename (str) – The filename of the bpx file

• target_soc (float, optional) – Target state of charge. Must be between 0 and
1. Default is 1.

Returns
A parameter values object with the parameters in the bpx file

Return type
ParameterValues

evaluate(symbol)
Process and evaluate a symbol.

Parameters
symbol (pybamm.Symbol) – Symbol or Expression tree to evaluate

Returns
The evaluated symbol

Return type
number or array

get(key, default=None)
Return item corresponding to key if it exists, otherwise return default

3.3. Parameters 163

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

PyBaMM Documentation, Release 24.1

items()

Get the items of the dictionary

keys()

Get the keys of the dictionary

print_evaluated_parameters(evaluated_parameters, output_file)
Print a dictionary of evaluated parameters to an output file

Parameters

• evaluated_parameters (defaultdict) – The evaluated parameters, for further
processing if needed

• output_file (string, optional) – The file to print parameters to. If None, the
parameters are not printed, and this function simply acts as a test that all the parameters
can be evaluated

print_parameters(parameters, output_file=None)
Return dictionary of evaluated parameters, and optionally print these evaluated parameters to an output
file.

Parameters

• parameters (class or dict containing pybamm.Parameter objects) – Class or dictio-
nary containing all the parameters to be evaluated

• output_file (string, optional) – The file to print parameters to. If None, the
parameters are not printed, and this function simply acts as a test that all the parameters
can be evaluated, and returns the dictionary of evaluated parameters.

Returns
evaluated_parameters – The evaluated parameters, for further processing if needed

Return type
defaultdict

Notes

A C-rate of 1 C is the current required to fully discharge the battery in 1 hour, 2 C is current to discharge
the battery in 0.5 hours, etc

process_boundary_conditions(model)
Process boundary conditions for a model Boundary conditions are dictionaries {“left”: left bc, “right”:
right bc} in general, but may be imposed on the tabs (or not on the tab) for a small number of variables,
e.g. {“negative tab”: neg. tab bc, “positive tab”: pos. tab bc “no tab”: no tab bc}.

process_geometry(geometry)
Assign parameter values to a geometry (inplace).

Parameters
geometry (dict) – Geometry specs to assign parameter values to

process_model(unprocessed_model, inplace=True)
Assign parameter values to a model. Currently inplace, could be changed to return a new model.

Parameters

• unprocessed_model (pybamm.BaseModel) – Model to assign parameter values for

164 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

• inplace (bool, optional) – If True, replace the parameters in the model in place.
Otherwise, return a new model with parameter values set. Default is True.

Raises
pybamm.ModelError – If an empty model is passed (model.rhs = {} and model.algebraic
= {} and model.variables = {})

process_symbol(symbol)
Walk through the symbol and replace any Parameter with a Value. If a symbol has already been processed,
the stored value is returned.

Parameters
symbol (pybamm.Symbol) – Symbol or Expression tree to set parameters for

Returns
symbol – Symbol with Parameter instances replaced by Value

Return type
pybamm.Symbol

search(key, print_values=True)
Search dictionary for keys containing ‘key’.

See pybamm.FuzzyDict.search().

set_initial_ocps(initial_value, param=None, known_value='cyclable lithium capacity', inplace=True,
options=None)

Set the initial OCP of each electrode, based on the initial SOC or voltage

set_initial_stoichiometries(initial_value, param=None, known_value='cyclable lithium capacity',
inplace=True, options=None)

Set the initial stoichiometry of each electrode, based on the initial SOC or voltage

set_initial_stoichiometry_half_cell(initial_value, param=None, known_value='cyclable lithium
capacity', inplace=True, options=None)

Set the initial stoichiometry of the working electrode, based on the initial SOC or voltage

update(values, check_conflict=False, check_already_exists=True, path='')
Update parameter dictionary, while also performing some basic checks.

Parameters

• values (dict) – Dictionary of parameter values to update parameter dictionary with

• check_conflict (bool, optional) – Whether to check that a parameter in values
has not already been defined in the parameter class when updating it, and if so that its
value does not change. This is set to True during initialisation, when parameters are
combined from different sources, and is False by default otherwise

• check_already_exists (bool, optional) – Whether to check that a parameter in
values already exists when trying to update it. This is to avoid cases where an intended
change in the parameters is ignored due a typo in the parameter name, and is True by
default but can be manually overridden.

• path (string, optional) – Path from which to load functions

values()

Get the values of the dictionary

3.3. Parameters 165

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

3.3.2 Geometric Parameters

class pybamm.GeometricParameters(options=None)
Standard geometric parameters

Extends: pybamm.parameters.base_parameters.BaseParameters

3.3.3 Electrical Parameters

class pybamm.ElectricalParameters

Standard electrical parameters

Extends: pybamm.parameters.base_parameters.BaseParameters

3.3.4 Thermal Parameters

class pybamm.ThermalParameters

Standard thermal parameters

Extends: pybamm.parameters.base_parameters.BaseParameters

3.3.5 Lithium-ion Parameters

class pybamm.LithiumIonParameters(options=None)
Standard parameters for lithium-ion battery models

Parameters
options (dict, optional) – A dictionary of options to be passed to the parameters, see
pybamm.BatteryModelOptions.

Extends: pybamm.parameters.base_parameters.BaseParameters

3.3.6 Lead-Acid Parameters

class pybamm.LeadAcidParameters

Standard Parameters for lead-acid battery models

Extends: pybamm.parameters.base_parameters.BaseParameters

3.3.7 Parameters Sets

PyBaMM provides pre-defined parameters for common chemistries, as well as, a growing set of third-party parameter
sets.

class pybamm.parameters.parameter_sets.ParameterSets

Dict-like interface for accessing registered pybamm parameter sets. Access via pybamm.parameter_sets

166 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Examples

Listing available parameter sets:

>>> list(pybamm.parameter_sets)
['Ai2020', 'Chen2020', ...]

Get the docstring for a parameter set:

>>> print(pybamm.parameter_sets.get_docstring("Ai2020"))

Parameters for the Enertech cell (Ai2020), from the papers :footcite:t:`Ai2019`,
:footcite:t:`rieger2016new` and references therein.
...

See also: Adding Parameter Sets

Extends: collections.abc.Mapping

get_docstring(key)
Return the docstring for the key parameter set

Adding Parameter Sets

Parameter sets can be added to PyBaMM by creating a python package, and registering a entry point to
pybamm_parameter_sets. At a minimum, the package (cell_parameters) should consist of the following:

cell_parameters
pyproject.toml # and/or setup.cfg, setup.py
src

cell_parameters
cell_alpha.py

The actual parameter set is defined within cell_alpha.py, as shown below. For an example, see the Marquis2019
parameter sets.

1 import pybamm
2

3

4 def get_parameter_values():
5 """Doc string for cell-alpha"""
6 return {
7 "chemistry": "lithium_ion",
8 "citation": "@book{van1995python, title={Python reference manual}}",
9 # ...

10 }

Then register get_parameter_values to pybamm_parameter_sets in pyproject.toml:

[project.entry-points.pybamm_parameter_sets]
cell_alpha = "cell_parameters.cell_alpha:get_parameter_values"

If you are using setup.py or setup.cfg to setup your package, please see SetupTools’ documentation for registering
entry points.

3.3. Parameters 167

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://setuptools.pypa.io/en/latest/userguide/entry_point.html
https://github.com/pybamm-team/PyBaMM/blob/develop/pybamm/input/parameters/lithium_ion/Marquis2019.py
https://setuptools.pypa.io/en/latest/userguide/entry_point.html#entry-points-for-plugins

PyBaMM Documentation, Release 24.1

If you’re willing to open-source your parameter set, let us know, and we can add an entry to Third-Party Parameter
Sets.

Third-Party Parameter Sets

Registered a new parameter set to pybamm_parameter_sets? Let us know, and we’ll update our list.

Bundled Parameter Sets

PyBaMM provides pre-defined parameter sets for several common chemistries, listed below. See Adding Parameter
Sets for information on registering new parameter sets with PyBaMM.

Lead-acid Parameter Sets

{% for k,v in parameter_sets.items() if v.chemistry == “lead_acid” %} {{k}} —————————- {{ parame-
ter_sets.get_docstring(k) }} {% endfor %}

Lithium-ion Parameter Sets

{% for k,v in parameter_sets.items() if v.chemistry == “lithium_ion” %} {{k}} ——————————– {{ param-
eter_sets.get_docstring(k) }} {% endfor %}

3.3.8 Process Parameter Data

pybamm.parameters.process_1D_data(name, path=None)
Process 1D data from a csv file

pybamm.parameters.process_2D_data(name, path=None)
Process 2D data from a JSON file

pybamm.parameters.process_2D_data_csv(name, path=None)
Process 2D data from a csv file. Assumes data is in the form of a three columns and that all data points lie on
a regular grid. The first column is assumed to be the ‘slowest’ changing variable and the second column the
‘fastest’ changing variable, which is the C convention for indexing multidimensional arrays (as opposed to the
Fortran convention where the ‘fastest’ changing variable comes first).

Parameters

• name (str) – The name to be given to the function

• path (str) – The path to the file where the three dimensional data is stored.

Returns
formatted_data – A tuple containing the name of the function and the data formatted correctly
for use within three-dimensional interpolants.

Return type
tuple

168 Chapter 3. API documentation

https://github.com/pybamm-team/PyBaMM/issues/new/choose
https://github.com/pybamm-team/PyBaMM/issues/new/choose
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

PyBaMM Documentation, Release 24.1

pybamm.parameters.process_3D_data_csv(name, path=None)
Process 3D data from a csv file. Assumes data is in the form of four columns and that all data points lie on a
regular grid. The first column is assumed to be the ‘slowest’ changing variable and the third column the ‘fastest’
changing variable, which is the C convention for indexing multidimensional arrays (as opposed to the Fortran
convention where the ‘fastest’ changing variable comes first).

Parameters

• name (str) – The name to be given to the function

• path (str) – The path to the file where the three dimensional data is stored.

Returns
formatted_data – A tuple containing the name of the function and the data formatted correctly
for use within three-dimensional interpolants.

Return type
tuple

3.4 Geometry

3.4.1 Geometry

class pybamm.Geometry(geometry)
A geometry class to store the details features of the cell geometry.

The values assigned to each domain are dictionaries containing the spatial variables in that domain, along with
expression trees giving their min and maximum extents. For example, the following dictionary structure would
represent a Geometry with a single domain “negative electrode”, defined using the variable x_n which has a
range from 0 to the pre-defined parameter l_n.

{"negative electrode": {x_n: {"min": pybamm.Scalar(0), "max": l_n}}}

Parameters
geometries (dict) – The dictionary to create the geometry with

Extends: builtins.dict

property parameters

Returns all the parameters in the geometry

print_parameter_info()

Prints all the parameters’ information

3.4.2 Battery Geometry

pybamm.battery_geometry(include_particles=True, options=None, form_factor='pouch')
A convenience function to create battery geometries.

Parameters

• include_particles (bool, optional) – Whether to include particle domains. Can
be True (default) or False.

3.4. Geometry 169

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

• options (dict, optional) – Dictionary of model options. Necessary for “particle-size
geometry”, relevant for lithium-ion chemistries.

• form_factor (str, optional) – The form factor of the cell. Can be “pouch” (default)
or “cylindrical”.

Returns
A geometry class for the battery

Return type
pybamm.Geometry

3.5 Meshes

3.5.1 Meshes

class pybamm.Mesh(geometry, submesh_types, var_pts)
Mesh contains a list of submeshes on each subdomain.

Parameters

• geometry – contains the geometry of the problem.

• submesh_types (dict) – contains the types of submeshes to use (e.g. Uni-
form1DSubMesh)

• submesh_pts (dict) – contains the number of points on each subdomain

Extends: builtins.dict

add_ghost_meshes()

Create meshes for potential ghost nodes on either side of each submesh, using self.submeshclass This will
be useful for calculating the gradient with Dirichlet BCs.

combine_submeshes(*submeshnames)
Combine submeshes into a new submesh, using self.submeshclass Raises pybamm.DomainError if sub-
meshes to be combined do not match up (edges are not aligned).

Parameters
submeshnames (list of str) – The names of the submeshes to be combined

Returns
submesh – A new submesh with the class defined by self.submeshclass

Return type
self.submeshclass

class pybamm.SubMesh

Base submesh class. Contains the position of the nodes, the number of mesh points, and (optionally) information
about the tab locations.

class pybamm.MeshGenerator(submesh_type, submesh_params=None)
Base class for mesh generator objects that are used to generate submeshes.

Parameters

• submesh_type (pybamm.SubMesh) – The type of submesh to use (e.g. Uni-
form1DSubMesh).

170 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

• submesh_params (dict, optional) – Contains any parameters required by the sub-
mesh.

3.5.2 0D Sub Mesh

class pybamm.SubMesh0D(position, npts=None)
0D submesh class. Contains the position of the node.

Parameters

• position (dict) – A dictionary that contains the position of the 0D submesh (a signle
point) in space

• npts (dict, optional) – Number of points to be used. Included for compatibility with
other meshes, but ignored by this mesh class

Extends: pybamm.meshes.meshes.SubMesh

3.5.3 1D Sub Meshes

class pybamm.SubMesh1D(edges, coord_sys, tabs=None)
1D submesh class. Contains the position of the nodes, the number of mesh points, and (optionally) information
about the tab locations.

Parameters

• edges (array_like) – An array containing the points corresponding to the edges of the
submesh

• coord_sys (string) – The coordinate system of the submesh

• tabs (dict, optional) – A dictionary that contains information about the size and
location of the tabs

Extends: pybamm.meshes.meshes.SubMesh

class pybamm.Uniform1DSubMesh(lims, npts)
A class to generate a uniform submesh on a 1D domain

Parameters

• lims (dict) – A dictionary that contains the limits of the spatial variables

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable. Note: the number of nodes (located at the cell centres) is npts, and the number
of edges is npts+1.

Extends: pybamm.meshes.one_dimensional_submeshes.SubMesh1D

class pybamm.Exponential1DSubMesh(lims, npts, side='symmetric', stretch=None)
A class to generate a submesh on a 1D domain in which the points are clustered close to one or both of boundaries
using an exponential formula on the interval [a,b].

If side is “left”, the gridpoints are given by

𝑥𝑘 = (𝑏− 𝑎) +
e𝛼𝑘/𝑁 − 1

e𝛼 − 1
+ 𝑎,

for k = 1, . . . , N, where N is the number of nodes.

3.5. Meshes 171

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Is side is “right”, the gridpoints are given by

𝑥𝑘 = (𝑏− 𝑎) +
e−𝛼𝑘/𝑁 − 1

e−𝛼 − 1
+ 𝑎,

for k = 1, . . . , N.

If side is “symmetric”, the first half of the interval is meshed using the gridpoints

𝑥𝑘 = (𝑏/2− 𝑎) +
e𝛼𝑘/𝑁 − 1

e𝛼 − 1
+ 𝑎,

for k = 1, . . . , N. The grid spacing is then reflected to contruct the grid on the full interval [a,b].

In the above, alpha is a stretching factor. As the number of gridpoints tends to infinity, the ratio of the largest and
smallest grid cells tends to exp(alpha).

Parameters

• lims (dict) – A dictionary that contains the limits of the spatial variables

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable. Note: the number of nodes (located at the cell centres) is npts, and the number
of edges is npts+1.

• side (str, optional) – Whether the points are clustered near to the left or right bound-
ary, or both boundaries. Can be “left”, “right” or “symmetric”. Default is “symmetric”

• stretch (float, optional) – The factor (alpha) which appears in the exponential. If
side is “symmetric” then the default stretch is 1.15. If side is “left” or “right” then the
default stretch is 2.3.

Extends: pybamm.meshes.one_dimensional_submeshes.SubMesh1D

class pybamm.Chebyshev1DSubMesh(lims, npts, tabs=None)
A class to generate a submesh on a 1D domain using Chebyshev nodes on the interval (a, b), given by

𝑥𝑘 =
1

2
(𝑎+ 𝑏) +

1

2
(𝑏− 𝑎) cos(

2𝑘 − 1

2𝑁
𝜋),

for k = 1, . . . , N, where N is the number of nodes. Note: this mesh then appends the boundary edges, so that the
mesh edges are given by

𝑎 < 𝑥1 < ... < 𝑥𝑁 < 𝑏.

Parameters

• lims (dict) – A dictionary that contains the limits of the spatial variables

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable. Note: the number of nodes (located at the cell centres) is npts, and the number
of edges is npts+1.

• tabs (dict, optional) – A dictionary that contains information about the size and
location of the tabs

Extends: pybamm.meshes.one_dimensional_submeshes.SubMesh1D

class pybamm.UserSupplied1DSubMesh(lims, npts, edges=None)
A class to generate a submesh on a 1D domain from a user supplied array of edges.

Parameters

• lims (dict) – A dictionary that contains the limits of the spatial variables

172 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable. Note: the number of nodes (located at the cell centres) is npts, and the number
of edges is npts+1.

• edges (array_like) – The array of points which correspond to the edges of the mesh.

Extends: pybamm.meshes.one_dimensional_submeshes.SubMesh1D

3.5.4 2D Sub Meshes

class pybamm.ScikitSubMesh2D(edges, coord_sys, tabs)
2D submesh class. Contains information about the 2D finite element mesh. Note: This class only allows for the
use of piecewise-linear triangular finite elements.

Parameters

• edges (array_like) – An array containing the points corresponding to the edges of the
submesh

• coord_sys (string) – The coordinate system of the submesh

• tabs (dict, optional) – A dictionary that contains information about the size and
location of the tabs

Extends: pybamm.meshes.meshes.SubMesh

on_boundary(y, z, tab)
A method to get the degrees of freedom corresponding to the subdomains for the tabs.

class pybamm.ScikitUniform2DSubMesh(lims, npts)
Contains information about the 2D finite element mesh with uniform grid spacing (can be different spacing in y
and z). Note: This class only allows for the use of piecewise-linear triangular finite elements.

Parameters

• lims (dict) – A dictionary that contains the limits of each spatial variable

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable

Extends: pybamm.meshes.scikit_fem_submeshes.ScikitSubMesh2D

class pybamm.ScikitExponential2DSubMesh(lims, npts, side='top', stretch=2.3)
Contains information about the 2D finite element mesh generated by taking the tensor product of a uniformly
spaced grid in the y direction, and a unequally spaced grid in the z direction in which the points are clustered
close to the top boundary using an exponential formula on the interval [a,b]. The gridpoints in the z direction
are given by

𝑧𝑘 = (𝑏− 𝑎) +
exp−𝛼𝑘/𝑁 − 1

exp−𝛼− 1
+ 𝑎,

for k = 1, . . . , N, where N is the number of nodes. Here alpha is a stretching factor. As the number of gridpoints
tends to infinity, the ratio of the largest and smallest grid cells tends to exp(alpha).

Note: in the future this will be extended to allow points to be clustered near any of the boundaries.

Parameters

• lims (dict) – A dictionary that contains the limits of each spatial variable

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable

3.5. Meshes 173

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

• side (str, optional) – Whether the points are clustered near to a particular boundary.
At present, can only be “top”. Default is “top”.

• stretch (float, optional) – The factor (alpha) which appears in the exponential.
Default is 2.3.

Extends: pybamm.meshes.scikit_fem_submeshes.ScikitSubMesh2D

class pybamm.ScikitChebyshev2DSubMesh(lims, npts)
Contains information about the 2D finite element mesh generated by taking the tensor product of two 1D meshes
which use Chebyshev nodes on the interval (a, b), given by

𝑥𝑘 =
1

2
(𝑎+ 𝑏) +

1

2
(𝑏− 𝑎) cos(

2𝑘 − 1

2𝑁
𝜋),

for k = 1, . . . , N, where N is the number of nodes. Note: this mesh then appends the boundary edgess, so that the
1D mesh edges are given by

𝑎 < 𝑥1 < ... < 𝑥𝑁 < 𝑏.

Note: This class only allows for the use of piecewise-linear triangular finite elements.

Parameters

• lims (dict) – A dictionary that contains the limits of each spatial variable

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable

Extends: pybamm.meshes.scikit_fem_submeshes.ScikitSubMesh2D

class pybamm.UserSupplied2DSubMesh(lims, npts, y_edges=None, z_edges=None)
A class to generate a tensor product submesh on a 2D domain by using two user supplied vectors of
edges: one for the y-direction and one for the z-direction. Note: this mesh should be created using
UserSupplied2DSubMeshGenerator.

Parameters

• lims (dict) – A dictionary that contains the limits of the spatial variables

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable. Note: the number of nodes (located at the cell centres) is npts, and the number
of edges is npts+1.

• y_edges (array_like) – The array of points which correspond to the edges in the y
direction of the mesh.

• z_edges (array_like) – The array of points which correspond to the edges in the z
direction of the mesh.

Extends: pybamm.meshes.scikit_fem_submeshes.ScikitSubMesh2D

3.6 Discretisation and spatial methods

3.6.1 Discretisation

class pybamm.Discretisation(mesh=None, spatial_methods=None)
The discretisation class, with methods to process a model and replace Spatial Operators with Matrices and Vari-
ables with StateVectors

174 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Parameters

• mesh (pybamm.Mesh) – contains all submeshes to be used on each domain

• spatial_methods (dict) – a dictionary of the spatial methods to be used on each do-
main. The keys correspond to the model domains and the values to the spatial method.

check_model(model)
Perform some basic checks to make sure the discretised model makes sense.

check_tab_conditions(symbol, bcs)
Check any boundary conditions applied on “negative tab”, “positive tab” and “no tab”. For 1D current
collector meshes, these conditions are converted into boundary conditions on “left” (tab at z=0) or “right”
(tab at z=l_z) depending on the tab location stored in the mesh. For 2D current collector meshes, the
boundary conditions can be applied on the tabs directly.

Parameters

• symbol (pybamm.expression_tree.symbol.Symbol) – The symbol on which the
boundary conditions are applied.

• bcs (dict) – The dictionary of boundary conditions (a dict of {side: equation}).

Returns
The dictionary of boundary conditions, with the keys changed to “left” and “right” where
necessary.

Return type
dict

check_variables(model)
Check variables in variable list against rhs. Be lenient with size check if the variable in model.variables is
broadcasted, or a concatenation (if broadcasted, variable is a multiplication with a vector of ones)

create_mass_matrix(model)
Creates mass matrix of the discretised model. Note that the model is assumed to be of the form M*y_dot
= f(t,y), where M is the (possibly singular) mass matrix.

Parameters
model (pybamm.BaseModel) – Discretised model. Must have attributes rhs, ini-
tial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns

• pybamm.Matrix – The mass matrix

• pybamm.Matrix – The inverse of the ode part of the mass matrix (required by solvers
which only accept the ODEs in explicit form)

process_boundary_conditions(model)
Discretise model boundary_conditions, also converting keys to ids

Parameters
model (pybamm.BaseModel) – Model to dicretise. Must have attributes rhs, ini-
tial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns
Dictionary of processed boundary conditions

Return type
dict

3.6. Discretisation and spatial methods 175

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

process_dict(var_eqn_dict, ics=False)
Discretise a dictionary of {variable: equation}, broadcasting if necessary (can be model.rhs,
model.algebraic, model.initial_conditions or model.variables).

Parameters

• var_eqn_dict (dict) – Equations ({variable: equation} dict) to dicretise (can be
model.rhs, model.algebraic, model.initial_conditions or model.variables)

• ics (bool, optional) – Whether the equations are initial conditions. If True, the
equations are scaled by the reference value of the variable, if given

Returns
new_var_eqn_dict – Discretised equations

Return type
dict

process_initial_conditions(model)
Discretise model initial_conditions.

Parameters
model (pybamm.BaseModel) – Model to dicretise. Must have attributes rhs, ini-
tial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns
Tuple of processed_initial_conditions (dict of initial conditions) and concate-
nated_initial_conditions (numpy array of concatenated initial conditions)

Return type
tuple

process_model(model, inplace=True, check_model=True, remove_independent_variables_from_rhs=True)
Discretise a model. Currently inplace, could be changed to return a new model.

Parameters

• model (pybamm.BaseModel) – Model to dicretise. Must have attributes rhs, ini-
tial_conditions and boundary_conditions (all dicts of {variable: equation})

• inplace (bool, optional) – If True, discretise the model in place. Otherwise,
return a new discretised model. Default is True.

• check_model (bool, optional) – If True, model checks are performed after dis-
cretisation. For large systems these checks can be slow, so can be skipped by setting
this option to False. When developing, testing or debugging it is recommended to
leave this option as True as it may help to identify any errors. Default is True.

• remove_independent_variables_from_rhs (bool, optional) – If True,
model checks to see whether any variables from the RHS are used in any other
equation. If a variable meets all of the following criteria (not used anywhere in the
model, len(rhs)>1), then the variable is moved to be explicitly integrated when called
by the solution object. Default is True.

Returns
model_disc – The discretised model. Note that if inplace is True, model will have
also been discretised in place so model == model_disc. If inplace is False, model !=
model_disc

Return type
pybamm.BaseModel

176 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

Raises
pybamm.ModelError – If an empty model is passed (model.rhs = {} and model.algebraic
= {} and model.variables = {})

process_rhs_and_algebraic(model)
Discretise model equations - differential (‘rhs’) and algebraic.

Parameters
model (pybamm.BaseModel) – Model to dicretise. Must have attributes rhs, ini-
tial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns
Tuple of processed_rhs (dict of processed differential equations), pro-
cessed_concatenated_rhs, processed_algebraic (dict of processed algebraic equations)
and processed_concatenated_algebraic

Return type
tuple

process_symbol(symbol)
Discretise operators in model equations. If a symbol has already been discretised, the stored value is
returned.

Parameters
symbol (pybamm.expression_tree.symbol.Symbol) – Symbol to discretise

Returns
Discretised symbol

Return type
pybamm.expression_tree.symbol.Symbol

set_internal_boundary_conditions(model)
A method to set the internal boundary conditions for the submodel. These are required to properly calculate
the gradient. Note: this method modifies the state of self.boundary_conditions.

set_variable_slices(variables)
Sets the slicing for variables.

Parameters
variables (iterable of pybamm.Variables) – The variables for which to set slices

3.6.2 Spatial Method

class pybamm.SpatialMethod(options=None)
A general spatial methods class, with default (trivial) behaviour for some spatial operations. All spatial methods
will follow the general form of SpatialMethod in that they contain a method for broadcasting variables onto a
mesh, a gradient operator, and a divergence operator.

Parameters
mesh – Contains all the submeshes for discretisation

boundary_integral(child, discretised_child, region)
Implements the boundary integral for a spatial method.

Parameters

• child (pybamm.Symbol) – The symbol to which is being integrated

• discretised_child (pybamm.Symbol) – The discretised symbol of the correct size

3.6. Discretisation and spatial methods 177

https://docs.python.org/3/library/stdtypes.html#tuple

PyBaMM Documentation, Release 24.1

• region (str) – The region of the boundary over which to integrate. If region is None
(default) the integration is carried out over the entire boundary. If region is negative
tab or positive tab then the integration is only carried out over the appropriate part of
the boundary corresponding to the tab.

Returns
Contains the result of acting the discretised boundary integral on the child discre-
tised_symbol

Return type
class: pybamm.Array

boundary_value_or_flux(symbol, discretised_child, bcs=None)
Returns the boundary value or flux using the appropriate expression for the spatial method. To do this,
we create a sparse vector ‘bv_vector’ that extracts either the first (for side=”left”) or last (for side=”right”)
point from ‘discretised_child’.

Parameters

• symbol (pybamm.Symbol) – The boundary value or flux symbol

• discretised_child (pybamm.StateVector) – The discretised variable from
which to calculate the boundary value

• bcs (dict (optional)) – The boundary conditions. If these are supplied and “use
bcs” is True in the options, then these will be used to improve the accuracy of the
extrapolation.

Returns
The variable representing the surface value.

Return type
pybamm.MatrixMultiplication

broadcast(symbol, domains, broadcast_type)
Broadcast symbol to a specified domain.

Parameters

• symbol (pybamm.Symbol) – The symbol to be broadcasted

• domains (dict of strings) – The domains for broadcasting

• broadcast_type (str) – The type of broadcast: ‘primary to node’, ‘primary to
edges’, ‘secondary to nodes’, ‘secondary to edges’, ‘tertiary to nodes’, ‘tertiary to
edges’, ‘full to nodes’ or ‘full to edges’

Returns
broadcasted_symbol – The discretised symbol of the correct size for the spatial method

Return type
class: pybamm.Symbol

concatenation(disc_children)
Discrete concatenation object.

Parameters
disc_children (list) – List of discretised children

Returns
Concatenation of the discretised children

178 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 24.1

Return type
pybamm.DomainConcatenation

delta_function(symbol, discretised_symbol)
Implements the delta function on the approriate side for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol to which is being integrated

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

divergence(symbol, discretised_symbol, boundary_conditions)
Implements the divergence for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the gradient of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol:
{“left”: left bc, “right”: right bc}})

Returns
Contains the result of acting the discretised divergence on the child discretised_symbol

Return type
class: pybamm.Array

evaluate_at(symbol, discretised_child, position)
Returns the symbol evaluated at a given position in space.

Parameters

• symbol (pybamm.Symbol) – The boundary value or flux symbol

• discretised_child (pybamm.StateVector) – The discretised variable from
which to calculate the boundary value

• position (pybamm.Scalar) – The point in one-dimensional space at which to eval-
uate the symbol.

Returns
The variable representing the value at the given point.

Return type
pybamm.MatrixMultiplication

gradient(symbol, discretised_symbol, boundary_conditions)
Implements the gradient for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the gradient of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol:
{“left”: left bc, “right”: right bc}})

3.6. Discretisation and spatial methods 179

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Returns
Contains the result of acting the discretised gradient on the child discretised_symbol

Return type
class: pybamm.Array

gradient_squared(symbol, discretised_symbol, boundary_conditions)
Implements the inner product of the gradient with itself for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the gradient of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol:
{“left”: left bc, “right”: right bc}})

Returns
Contains the result of taking the inner product of the result of acting the discretised gradient
on the child discretised_symbol with itself

Return type
class: pybamm.Array

indefinite_integral(child, discretised_child, direction)
Implements the indefinite integral for a spatial method.

Parameters

• child (pybamm.Symbol) – The symbol to which is being integrated

• discretised_child (pybamm.Symbol) – The discretised symbol of the correct size

• direction (str) – The direction of integration

Returns
Contains the result of acting the discretised indefinite integral on the child discre-
tised_symbol

Return type
class: pybamm.Array

integral(child, discretised_child, integration_dimension)
Implements the integral for a spatial method.

Parameters

• child (pybamm.Symbol) – The symbol to which is being integrated

• discretised_child (pybamm.Symbol) – The discretised symbol of the correct size

• integration_dimension (str, optional) – The dimension in which to integrate
(default is “primary”)

Returns
Contains the result of acting the discretised integral on the child discretised_symbol

Return type
class: pybamm.Array

180 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

internal_neumann_condition(left_symbol_disc, right_symbol_disc, left_mesh, right_mesh)
A method to find the internal Neumann conditions between two symbols on adjacent subdomains.

Parameters

• left_symbol_disc (pybamm.Symbol) – The discretised symbol on the left subdo-
main

• right_symbol_disc (pybamm.Symbol) – The discretised symbol on the right sub-
domain

• left_mesh (list) – The mesh on the left subdomain

• right_mesh (list) – The mesh on the right subdomain

laplacian(symbol, discretised_symbol, boundary_conditions)
Implements the Laplacian for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the gradient of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol:
{“left”: left bc, “right”: right bc}})

Returns
Contains the result of acting the discretised Laplacian on the child discretised_symbol

Return type
class: pybamm.Array

mass_matrix(symbol, boundary_conditions)
Calculates the mass matrix for a spatial method.

Parameters

• symbol (pybamm.Variable) – The variable corresponding to the equation for which
we are calculating the mass matrix.

• boundary_conditions (dict) – The boundary conditions of the model ({symbol:
{“left”: left bc, “right”: right bc}})

Returns
The (sparse) mass matrix for the spatial method.

Return type
pybamm.Matrix

process_binary_operators(bin_op, left, right, disc_left, disc_right)
Discretise binary operators in model equations. Default behaviour is to return a new binary operator with
the discretised children.

Parameters

• bin_op (pybamm.BinaryOperator) – Binary operator to discretise

• left (pybamm.Symbol) – The left child of bin_op

• right (pybamm.Symbol) – The right child of bin_op

• disc_left (pybamm.Symbol) – The discretised left child of bin_op

3.6. Discretisation and spatial methods 181

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

• disc_right (pybamm.Symbol) – The discretised right child of bin_op

Returns
Discretised binary operator

Return type
pybamm.BinaryOperator

spatial_variable(symbol)
Convert a pybamm.SpatialVariable node to a linear algebra object that can be evaluated (here, a
pybamm.Vector on either the nodes or the edges).

Parameters
symbol (pybamm.SpatialVariable) – The spatial variable to be discretised.

Returns
Contains the discretised spatial variable

Return type
pybamm.Vector

3.6.3 Finite Volume

class pybamm.FiniteVolume(options=None)
A class which implements the steps specific to the finite volume method during discretisation.

For broadcast and mass_matrix, we follow the default behaviour from SpatialMethod.

Parameters
mesh (pybamm.Mesh) – Contains all the submeshes for discretisation

Extends: pybamm.spatial_methods.spatial_method.SpatialMethod

add_ghost_nodes(symbol, discretised_symbol, bcs)
Add ghost nodes to a symbol.

For Dirichlet bcs, for a boundary condition “y = a at the left-hand boundary”, we concatenate a ghost node
to the start of the vector y with value “2*a - y1” where y1 is the value of the first node. Similarly for the
right-hand boundary condition.

For Neumann bcs no ghost nodes are added. Instead, the exact value provided by the bound-
ary condition is used at the cell edge when calculating the gradient (see pybamm.FiniteVolume.
add_neumann_values()).

Parameters

• symbol (pybamm.SpatialVariable) – The variable to be discretised

• discretised_symbol (pybamm.Vector) – Contains the discretised variable

• bcs (dict of tuples (pybamm.Scalar, str)) – Dictionary (with keys “left” and “right”)
of boundary conditions. Each boundary condition consists of a value and a flag indi-
cating its type (e.g. “Dirichlet”)

Returns
Matrix @ discretised_symbol + bcs_vector. When evaluated, this gives the discre-
tised_symbol, with appropriate ghost nodes concatenated at each end.

Return type
pybamm.Symbol

182 Chapter 3. API documentation

PyBaMM Documentation, Release 24.1

add_neumann_values(symbol, discretised_gradient, bcs, domain)
Add the known values of the gradient from Neumann boundary conditions to the discretised gradient.

Dirichlet bcs are implemented using ghost nodes, see pybamm.FiniteVolume.add_ghost_nodes().

Parameters

• symbol (pybamm.SpatialVariable) – The variable to be discretised

• discretised_gradient (pybamm.Vector) – Contains the discretised gradient of
symbol

• bcs (dict of tuples (pybamm.Scalar, str)) – Dictionary (with keys “left” and “right”)
of boundary conditions. Each boundary condition consists of a value and a flag indi-
cating its type (e.g. “Dirichlet”)

• domain (list of strings) – The domain of the gradient of the symbol (may in-
clude ghost nodes)

Returns
Matrix @ discretised_gradient + bcs_vector. When evaluated, this gives the discre-
tised_gradient, with the values of the Neumann boundary conditions concatenated at each
end (if given).

Return type
pybamm.Symbol

boundary_value_or_flux(symbol, discretised_child, bcs=None)
Uses extrapolation to get the boundary value or flux of a variable in the Finite Volume Method.

See pybamm.SpatialMethod.boundary_value()

concatenation(disc_children)
Discrete concatenation, taking edge_to_node for children that evaluate on edges. See pybamm.
SpatialMethod.concatenation()

definite_integral_matrix(child, vector_type='row', integration_dimension='primary')
Matrix for finite-volume implementation of the definite integral in the primary dimension

𝐼 =

∫︁ 𝑏

𝑎

𝑓(𝑠) 𝑑𝑠

for where 𝑎 and 𝑏 are the left-hand and right-hand boundaries of the domain respectively

Parameters

• child (pybamm.Symbol) – The symbol being integrated

• vector_type (str, optional) – Whether to return a row or column vector in the
primary dimension (default is row)

• integration_dimension (str, optional) – The dimension in which to integrate
(default is “primary”)

Returns
The finite volume integral matrix for the domain

Return type
pybamm.Matrix

3.6. Discretisation and spatial methods 183

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

delta_function(symbol, discretised_symbol)
Delta function. Implemented as a vector whose only non-zero element is the first (if symbol.side = “left”)
or last (if symbol.side = “right”), with appropriate value so that the integral of the delta function across
the whole domain is the same as the integral of the discretised symbol across the whole domain.

See pybamm.SpatialMethod.delta_function()

divergence(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the divergence operator. See pybamm.SpatialMethod.
divergence()

divergence_matrix(domains)
Divergence matrix for finite volumes in the appropriate domain. Equivalent to div(N) = (N[1:] - N[:-1])/dx

Parameters
domains (dict) – The domain(s) and auxiliary domain in which to compute the diver-
gence matrix

Returns
The (sparse) finite volume divergence matrix for the domain

Return type
pybamm.Matrix

edge_to_node(discretised_symbol, method='arithmetic')
Convert a discretised symbol evaluated on the cell edges to a discretised symbol evaluated on the cell
nodes. See pybamm.FiniteVolume.shift()

evaluate_at(symbol, discretised_child, position)
Returns the symbol evaluated at a given position in space.

Parameters

• symbol (pybamm.Symbol) – The boundary value or flux symbol

• discretised_child (pybamm.StateVector) – The discretised variable from
which to calculate the boundary value

• position (pybamm.Scalar) – The point in one-dimensional space at which to eval-
uate the symbol.

Returns
The variable representing the value at the given point.

Return type
pybamm.MatrixMultiplication

gradient(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the gradient operator. See pybamm.SpatialMethod.
gradient()

gradient_matrix(domain, domains)
Gradient matrix for finite volumes in the appropriate domain. Equivalent to grad(y) = (y[1:] - y[:-1])/dx

Parameters
domains (list) – The domain in which to compute the gradient matrix, including ghost
nodes

Returns
The (sparse) finite volume gradient matrix for the domain

184 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 24.1

Return type
pybamm.Matrix

indefinite_integral(child, discretised_child, direction)
Implementation of the indefinite integral operator.

indefinite_integral_matrix_edges(domains, direction)
Matrix for finite-volume implementation of the indefinite integral where the integrand is evaluated on mesh
edges (shape (n+1, 1)). The integral will then be evaluated on mesh nodes (shape (n, 1)).

Parameters

• domains (dict) – The domain(s) and auxiliary domains of integration

• direction (str) – The direction of integration (forward or backward). See notes.

Returns
The finite volume integral matrix for the domain

Return type
pybamm.Matrix

Notes

Forward integral

𝐹 (𝑥) =

∫︁ 𝑥

0

𝑓(𝑢) 𝑑𝑢

The indefinite integral must satisfy the following conditions:

• 𝐹 (0) = 0

• 𝑓(𝑥) = 𝑑𝐹
𝑑𝑥

or, in discrete form,

• BoundaryValue(F, “left”) = 0, i.e. 3 * 𝐹0 − 𝐹1 = 0

• 𝑓𝑖+1/2 = (𝐹𝑖+1 − 𝐹𝑖)/𝑑𝑥𝑖+1/2

Hence we must have

• 𝐹0 = 𝑑𝑢1/2 * 𝑓1/2/2

• 𝐹𝑖+1 = 𝐹𝑖 + 𝑑𝑢𝑖+1/2 * 𝑓𝑖+1/2

Note that 𝑓−1/2 and 𝑓𝑒𝑛𝑑+1/2 are included in the discrete integrand vector f, so we add a column of zeros
at each end of the indefinite integral matrix to ignore these.

Backward integral

𝐹 (𝑥) =

∫︁ 𝑒𝑛𝑑

𝑥

𝑓(𝑢) 𝑑𝑢

The indefinite integral must satisfy the following conditions:

• 𝐹 (𝑒𝑛𝑑) = 0

• 𝑓(𝑥) = −𝑑𝐹
𝑑𝑥

or, in discrete form,

• BoundaryValue(F, “right”) = 0, i.e. 3 * 𝐹𝑒𝑛𝑑 − 𝐹𝑒𝑛𝑑−1 = 0

3.6. Discretisation and spatial methods 185

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

• 𝑓𝑖+1/2 = −(𝐹𝑖+1 − 𝐹𝑖)/𝑑𝑥𝑖+1/2

Hence we must have

• 𝐹𝑒𝑛𝑑 = 𝑑𝑢𝑒𝑛𝑑+1/2 * 𝑓𝑒𝑛𝑑−1/2/2

• 𝐹𝑖−1 = 𝐹𝑖 + 𝑑𝑢𝑖−1/2 * 𝑓𝑖−1/2

Note that 𝑓−1/2 and 𝑓𝑒𝑛𝑑+1/2 are included in the discrete integrand vector f, so we add a column of zeros
at each end of the indefinite integral matrix to ignore these.

indefinite_integral_matrix_nodes(domains, direction)
Matrix for finite-volume implementation of the (backward) indefinite integral where the integrand is eval-
uated on mesh nodes (shape (n, 1)). The integral will then be evaluated on mesh edges (shape (n+1, 1)).
This is just a straightforward (backward) cumulative sum of the integrand

Parameters

• domains (dict) – The domain(s) and auxiliary domains of integration

• direction (str) – The direction of integration (forward or backward)

Returns
The finite volume integral matrix for the domain

Return type
pybamm.Matrix

integral(child, discretised_child, integration_dimension)
Vector-vector dot product to implement the integral operator.

internal_neumann_condition(left_symbol_disc, right_symbol_disc, left_mesh, right_mesh)
A method to find the internal Neumann conditions between two symbols on adjacent subdomains.

Parameters

• left_symbol_disc (pybamm.Symbol) – The discretised symbol on the left subdo-
main

• right_symbol_disc (pybamm.Symbol) – The discretised symbol on the right sub-
domain

• left_mesh (list) – The mesh on the left subdomain

• right_mesh (list) – The mesh on the right subdomain

laplacian(symbol, discretised_symbol, boundary_conditions)
Laplacian operator, implemented as div(grad(.)) See pybamm.SpatialMethod.laplacian()

node_to_edge(discretised_symbol, method='arithmetic')
Convert a discretised symbol evaluated on the cell nodes to a discretised symbol evaluated on the cell
edges. See pybamm.FiniteVolume.shift()

process_binary_operators(bin_op, left, right, disc_left, disc_right)
Discretise binary operators in model equations. Performs appropriate averaging of diffusivities if one of the
children is a gradient operator, so that discretised sizes match up. For this averaging we use the harmonic
mean [1].

[1] Recktenwald, Gerald. “The control-volume finite-difference approximation to the diffusion equation.”
(2012).

Parameters

• bin_op (pybamm.BinaryOperator) – Binary operator to discretise

186 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 24.1

• left (pybamm.Symbol) – The left child of bin_op

• right (pybamm.Symbol) – The right child of bin_op

• disc_left (pybamm.Symbol) – The discretised left child of bin_op

• disc_right (pybamm.Symbol) – The discretised right child of bin_op

Returns
Discretised binary operator

Return type
pybamm.BinaryOperator

shift(discretised_symbol, shift_key, method)
Convert a discretised symbol evaluated at edges/nodes, to a discretised symbol evaluated at nodes/edges.
Can be the arithmetic mean or the harmonic mean.

Note: when computing fluxes at cell edges it is better to take the harmonic mean based on [1].

[1] Recktenwald, Gerald. “The control-volume finite-difference approximation to the diffusion equation.”
(2012).

Parameters

• discretised_symbol (pybamm.Symbol) – Symbol to be averaged. When eval-
uated, this symbol returns either a scalar or an array of shape (n,) or (n+1,),
where n is the number of points in the mesh for the symbol’s domain (n =
self.mesh[symbol.domain].npts)

• shift_key (str) – Whether to shift from nodes to edges (“node to edge”), or from
edges to nodes (“edge to node”)

• method (str) – Whether to use the “arithmetic” or “harmonic” mean

Returns
Averaged symbol. When evaluated, this returns either a scalar or an array of shape (n+1,)
(if shift_key = “node to edge”) or (n,) (if shift_key = “edge to node”)

Return type
pybamm.Symbol

spatial_variable(symbol)
Creates a discretised spatial variable compatible with the FiniteVolume method.

Parameters
symbol (pybamm.SpatialVariable) – The spatial variable to be discretised.

Returns
Contains the discretised spatial variable

Return type
pybamm.Vector

upwind_or_downwind(symbol, discretised_symbol, bcs, direction)
Implement an upwinding operator. Currently, this requires the symbol to have a Dirichlet boundary con-
dition on the left side (for upwinding) or right side (for downwinding).

Parameters

• symbol (pybamm.SpatialVariable) – The variable to be discretised

• discretised_gradient (pybamm.Vector) – Contains the discretised gradient of
symbol

3.6. Discretisation and spatial methods 187

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

• bcs (dict of tuples (pybamm.Scalar, str)) – Dictionary (with keys “left” and “right”)
of boundary conditions. Each boundary condition consists of a value and a flag indi-
cating its type (e.g. “Dirichlet”)

• direction (str) – Direction in which to apply the operator (upwind or downwind)

3.6.4 Spectral Volume

class pybamm.SpectralVolume(options=None, order=2)
A class which implements the steps specific to the Spectral Volume discretisation. It is implemented in such a
way that it is very similar to FiniteVolume; that comes at the cost that it is only compatible with the SpectralVol-
ume1DSubMesh (which is a certain subdivision of any 1D mesh, so it shouldn’t be a problem).

For broadcast and mass_matrix, we follow the default behaviour from SpatialMethod. For spatial_variable,
divergence, divergence_matrix, laplacian, integral, definite_integral_matrix, indefinite_integral, indefi-
nite_integral_matrix, indefinite_integral_matrix_nodes, indefinite_integral_matrix_edges, delta_function we
follow the behaviour from FiniteVolume. This is possible since the node values are integral averages with Spec-
tral Volume, just as with Finite Volume. delta_function assigns the integral value to a CV instead of a SV this
way, but that doesn’t matter too much. Additional methods that are inherited by FiniteVolume which techni-
cally are not suitable for Spectral Volume are boundary_value_or_flux, process_binary_operators, concatena-
tion, node_to_edge, edge_to_node and shift. While node_to_edge (as well as boundary_value_or_flux and pro-
cess_binary_operators) could utilize the reconstruction approach of Spectral Volume, the inverse edge_to_node
would still have to fall back to the Finite Volume behaviour. So these are simply inherited for consistency.
boundary_value_or_flux might not benefit from the reconstruction approach at all, as it seems to only preprocess
symbols.

Parameters
mesh (pybamm.Mesh) – Contains all the submeshes for discretisation

Extends: pybamm.spatial_methods.finite_volume.FiniteVolume

chebyshev_collocation_points(noe, a=-1.0, b=1.0)
Calculates Chebyshev collocation points in descending order.

Parameters

• noe (integer) – The number of the collocation points. “number of edges”

• a (float) – Left end of the interval on which the Chebyshev collocation points are
constructed. Default is -1.

• b (float) – Right end of the interval on which the Chebyshev collocation points are
constructed. Default is 1.

Returns

• numpy.array

• Chebyshev collocation points on [a,b].

chebyshev_differentiation_matrices(noe, dod)
Chebyshev differentiation matrices, from Baltensperger and Trummer1.

Parameters

• noe (integer) – The number of the collocation points. “number of edges”
1 Richard Baltensperger and Manfred R Trummer. Spectral differencing with a twist. SIAM journal on scientific computing, 24(5):1465–1487,

2003.

188 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PyBaMM Documentation, Release 24.1

• dod (integer) – The maximum order of differentiation for which a differentiation
matrix shall be calculated. Note that it has to be smaller than ‘noe’. “degrees of dif-
ferentiation”

Returns
The differentiation matrices in ascending order of differentiation order. With exact arith-
metic, the diff. matrix of order p would just be the pth matrix power of the diff. matrix of
order 1. This method computes the higher orders in a more numerically stable way.

Return type
list(numpy.array)

cv_boundary_reconstruction_matrix(domains)
“Broadcasts” the basic edge value reconstruction matrix to the actual shape of the discretised symbols.
Note that the product of this and a discretised symbol is a vector which represents duplicate values for all
inner SV edges. These are the reconstructed values from both sides.

Parameters
domains (dict) – The domains in which to compute the gradient matrix

Returns
The (sparse) CV reconstruction matrix for the domain

Return type
pybamm.Matrix

cv_boundary_reconstruction_sub_matrix()

Coefficients for reconstruction of a function through averages. The resulting matrix is scale-invariant
Wang2.

gradient(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the gradient operator. See pybamm.SpatialMethod.
gradient()

gradient_matrix(domain, domains)
Gradient matrix for Spectral Volume in the appropriate domain. Note that it contains the averaging of the
duplicate SV edge gradient values, such that the product of it and a reconstructed discretised symbol simply
represents CV edge values. On its own, it only works on non-concatenated domains, since only then the
boundary conditions ensure correct behaviour. More generally, it only works if gradients are a result of
boundary conditions rather than continuity conditions. For example, two adjacent SVs with gradient zero
in each of them but with different variable values will have zero gradient between them. This is fixed with
“penalty_matrix”.

Parameters
domains (dict) – The domains in which to compute the gradient matrix

Returns
The (sparse) Spectral Volume gradient matrix for the domain

Return type
pybamm.Matrix

penalty_matrix(domains)
Penalty matrix for Spectral Volume in the appropriate domain. This works the same as the “gradi-
ent_matrix” of FiniteVolume does, just between SVs and not between CVs. Think of it as a continuity
penalty.

2 Z. J. Wang. Spectral (finite) volume method for conservation laws on unstructured grids. Journal of Computational Physics, 178(1):210–251,
2002. doi:10.1006/jcph.2002.7041.

3.6. Discretisation and spatial methods 189

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://doi.org/10.1006/jcph.2002.7041

PyBaMM Documentation, Release 24.1

Parameters
domains (dict) – The domains in which to compute the gradient matrix

Returns
The (sparse) Spectral Volume penalty matrix for the domain

Return type
pybamm.Matrix

replace_dirichlet_values(symbol, discretised_symbol, bcs)
Replace the reconstructed value at Dirichlet boundaries with the boundary condition.

Parameters

• symbol (pybamm.SpatialVariable) – The variable to be discretised

• discretised_symbol (pybamm.Vector) – Contains the discretised variable

• bcs (dict of tuples (pybamm.Scalar, str)) – Dictionary (with keys “left” and “right”)
of boundary conditions. Each boundary condition consists of a value and a flag indi-
cating its type (e.g. “Dirichlet”)

Returns
Matrix @ discretised_symbol + bcs_vector. When evaluated, this gives the discre-
tised_symbol, with its boundary values replaced by the Dirichlet boundary conditions.

Return type
pybamm.Symbol

replace_neumann_values(symbol, discretised_gradient, bcs)
Replace the known values of the gradient from Neumann boundary conditions into the discretised gradient.

Parameters

• symbol (pybamm.SpatialVariable) – The variable to be discretised

• discretised_gradient (pybamm.Vector) – Contains the discretised gradient of
symbol

• bcs (dict of tuples (pybamm.Scalar, str)) – Dictionary (with keys “left” and “right”)
of boundary conditions. Each boundary condition consists of a value and a flag indi-
cating its type (e.g. “Dirichlet”)

Returns
Matrix @ discretised_gradient + bcs_vector. When evaluated, this gives the discre-
tised_gradient, with its boundary values replaced by the Neumann boundary conditions.

Return type
pybamm.Symbol

References

3.6.5 Scikit Finite Elements

class pybamm.ScikitFiniteElement(options=None)
A class which implements the steps specific to the finite element method during discretisation. The class uses
scikit-fem to discretise the problem to obtain the mass and stiffness matrices. At present, this class is only used
for solving the Poisson problem -grad^2 u = f in the y-z plane (i.e. not the through-cell direction).

For broadcast we follow the default behaviour from SpatialMethod.

190 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Parameters
mesh (pybamm.Mesh) – Contains all the submeshes for discretisation

Extends: pybamm.spatial_methods.spatial_method.SpatialMethod

assemble_mass_form(symbol, boundary_conditions, region='interior')
Assembles the form of the finite element mass matrix over the domain interior or boundary.

Parameters

• symbol (pybamm.Variable) – The variable corresponding to the equation for which
we are calculating the mass matrix.

• boundary_conditions (dict) – The boundary conditions of the model ({symbol:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

• region (str, optional) – The domain over which to assemble the mass matrix
form. Can be “interior” (default) or “boundary”.

Returns
The (sparse) mass matrix for the spatial method.

Return type
pybamm.Matrix

bc_apply(M, boundary, zero=False)
Adjusts the assemled finite element matrices to account for boundary conditons.

Parameters

• M (scipy.sparse.coo_matrix) – The assemled finite element matrix to adjust.

• boundary (numpy.array) – Array of the indicies which correspond to the boundary.

• zero (bool, optional) – If True, the rows of M given by the indicies in boundary
are set to zero. If False, the diagonal element is set to one. default is False.

boundary_integral(child, discretised_child, region)
Implementation of the boundary integral operator. See pybamm.SpatialMethod.
boundary_integral()

boundary_integral_vector(domain, region)
A node in the expression tree representing an integral operator over the boundary of a domain

𝐼 =

∫︁
𝜕𝑎

𝑓(𝑢) 𝑑𝑢,

where 𝜕𝑎 is the boundary of the domain, and 𝑢 ∈ domain boundary.

Parameters

• domain (list) – The domain(s) of the variable in the integrand

• region (str) – The region of the boundary over which to integrate. If region is entire
the integration is carried out over the entire boundary. If region is negative tab or
positive tab then the integration is only carried out over the appropriate part of the
boundary corresponding to the tab.

Returns
The finite element integral vector for the domain

Return type
pybamm.Matrix

3.6. Discretisation and spatial methods 191

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

boundary_mass_matrix(symbol, boundary_conditions)
Calculates the mass matrix for the finite element method assembled over the boundary.

Parameters

• symbol (pybamm.Variable) – The variable corresponding to the equation for which
we are calculating the mass matrix.

• boundary_conditions (dict) – The boundary conditions of the model ({symbol:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns
The (sparse) mass matrix for the spatial method.

Return type
pybamm.Matrix

boundary_value_or_flux(symbol, discretised_child, bcs=None)
Returns the average value of the symbol over the negative tab (“negative tab”) or the positive tab (“positive
tab”) in the Finite Element Method.

Overwrites the default pybamm.SpatialMethod.boundary_value()

definite_integral_matrix(child, vector_type='row')
Matrix for finite-element implementation of the definite integral over the entire domain

𝐼 =

∫︁
Ω

𝑓(𝑠) 𝑑𝑥

for where Ω is the domain.

Parameters

• child (pybamm.Symbol) – The symbol being integrated

• vector_type (str, optional) – Whether to return a row or column vector (default
is row)

Returns
The finite element integral vector for the domain

Return type
pybamm.Matrix

divergence(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the divergence operator. See pybamm.SpatialMethod.
divergence()

gradient(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the gradient operator. The gradient w of the function u is ap-
proximated by the finite element method using the same function space as u, i.e. we solve w = grad(u),
which corresponds to the weak form w*v*dx = grad(u)*v*dx, where v is a suitable test function.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the Laplacian of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

192 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

Returns
A concatenation that contains the result of acting the discretised gradient on the child dis-
cretised_symbol. The first column corresponds to the y-component of the gradient and the
second column corresponds to the z component of the gradient.

Return type
class: pybamm.Concatenation

gradient_matrix(symbol, boundary_conditions)
Gradient matrix for finite elements in the appropriate domain.

Parameters

• symbol (pybamm.Symbol) – The symbol for which we want to calculate the gradient
matrix

• boundary_conditions (dict) – The boundary conditions of the model ({symbol:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns
The (sparse) finite element gradient matrix for the domain

Return type
pybamm.Matrix

gradient_squared(symbol, discretised_symbol, boundary_conditions)
Multiplication to implement the inner product of the gradient operator with itself. See pybamm.
SpatialMethod.gradient_squared()

indefinite_integral(child, discretised_child, direction)
Implementation of the indefinite integral operator. The input discretised child must be defined on the
internal mesh edges. See pybamm.SpatialMethod.indefinite_integral()

integral(child, discretised_child, integration_dimension)
Vector-vector dot product to implement the integral operator. See pybamm.SpatialMethod.integral()

laplacian(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the Laplacian operator.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the Laplacian of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns
Contains the result of acting the discretised gradient on the child discretised_symbol

Return type
class: pybamm.Array

mass_matrix(symbol, boundary_conditions)
Calculates the mass matrix for the finite element method.

Parameters

• symbol (pybamm.Variable) – The variable corresponding to the equation for which
we are calculating the mass matrix.

3.6. Discretisation and spatial methods 193

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

• boundary_conditions (dict) – The boundary conditions of the model ({symbol:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns
The (sparse) mass matrix for the spatial method.

Return type
pybamm.Matrix

spatial_variable(symbol)
Creates a discretised spatial variable compatible with the FiniteElement method.

Parameters
symbol (pybamm.SpatialVariable) – The spatial variable to be discretised.

Returns
Contains the discretised spatial variable

Return type
pybamm.Vector

stiffness_matrix(symbol, boundary_conditions)
Laplacian (stiffness) matrix for finite elements in the appropriate domain.

Parameters

• symbol (pybamm.Symbol) – The symbol for which we want to calculate the Laplacian
matrix

• boundary_conditions (dict) – The boundary conditions of the model ({symbol:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns
The (sparse) finite element stiffness matrix for the domain

Return type
pybamm.Matrix

3.6.6 Zero Dimensional Spatial Method

class pybamm.ZeroDimensionalSpatialMethod(options=None)
A discretisation class for the zero dimensional mesh

Parameters
mesh – Contains all the submeshes for discretisation

Extends: pybamm.spatial_methods.spatial_method.SpatialMethod

boundary_value_or_flux(symbol, discretised_child, bcs=None)
In 0D, the boundary value is the identity operator. See SpatialMethod.boundary_value_or_flux()

indefinite_integral(child, discretised_child, direction)
Calculates the zero-dimensional indefinite integral. If ‘direction’ is forward, this is the identity operator.
If ‘direction’ is backward, this is the negation operator.

integral(child, discretised_child, integration_dimension)
Calculates the zero-dimensional integral, i.e. the identity operator

mass_matrix(symbol, boundary_conditions)
Calculates the mass matrix for a spatial method. Since the spatial method is zero dimensional, this is
simply the number 1.

194 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

3.7 Solvers

3.7.1 Base Solver

class pybamm.BaseSolver(method=None, rtol=1e-06, atol=1e-06, root_method=None, root_tol=1e-06,
extrap_tol=None, output_variables=[])

Solve a discretised model.

Parameters

• method (str, optional) – The method to use for integration, specific to each solver

• rtol (float, optional) – The relative tolerance for the solver (default is 1e-6).

• atol (float, optional) – The absolute tolerance for the solver (default is 1e-6).

• root_method (str or pybamm algebraic solver class, optional) – The
method to use to find initial conditions (for DAE solvers). If a solver class, must be an
algebraic solver class. If “casadi”, the solver uses casadi’s Newton rootfinding algorithm
to find initial conditions. Otherwise, the solver uses ‘scipy.optimize.root’ with method
specified by ‘root_method’ (e.g. “lm”, “hybr”, . . .)

• root_tol (float, optional) – The tolerance for the initial-condition solver (default
is 1e-6).

• extrap_tol (float, optional) – The tolerance to assert whether extrapolation occurs
or not. Default is 0.

• output_variables (list[str], optional) – List of variables to calculate and re-
turn. If none are specified then the complete state vector is returned (can be very large)
(default is [])

calculate_consistent_state(model, time=0, inputs=None)
Calculate consistent state for the algebraic equations through root-finding. model.y0 is used as the initial
guess for rootfinding

Parameters

• model (pybamm.BaseModel) – The model for which to calculate initial conditions.

• time (float) – The time at which to calculate the states

• inputs (dict, optional) – Any input parameters to pass to the model when solving

Returns
y0_consistent – Initial conditions that are consistent with the algebraic equations (roots of
the algebraic equations). If self.root_method == None then returns model.y0.

Return type
array-like, same shape as y0_guess

check_extrapolation(solution, events)
Check if extrapolation occurred for any of the interpolants. Note that with the current approach (evaluating
all the events at the solution times) some extrapolations might not be found if they only occurred for a small
period of time.

Parameters

• solution (pybamm.Solution) – The solution object

• events (dict) – Dictionary of events

3.7. Solvers 195

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

copy()

Returns a copy of the solver

get_termination_reason(solution, events)
Identify the cause for termination. In particular, if the solver terminated due to an event, (try to) pinpoint
which event was responsible. If an event occurs the event time and state are added to the solution object.
Note that the current approach (evaluating all the events and then finding which one is smallest at the final
timestep) is pretty crude, but is the easiest one that works for all the different solvers.

Parameters

• solution (pybamm.Solution) – The solution object

• events (dict) – Dictionary of events

set_up(model, inputs=None, t_eval=None, ics_only=False)
Unpack model, perform checks, and calculate jacobian.

Parameters

• model (pybamm.BaseModel) – The model whose solution to calculate. Must have
attributes rhs and initial_conditions

• inputs (dict, optional) – Any input parameters to pass to the model when solving

• t_eval (numeric type, optional) – The times (in seconds) at which to compute
the solution

solve(model, t_eval=None, inputs=None, nproc=None, calculate_sensitivities=False)
Execute the solver setup and calculate the solution of the model at specified times.

Parameters

• model (pybamm.BaseModel) – The model whose solution to calculate. Must have
attributes rhs and initial_conditions. All calls to solve must pass in the same model or
an error is raised

• t_eval (numeric type) – The times (in seconds) at which to compute the solution

• inputs (dict or list, optional) – A dictionary or list of dictionaries describ-
ing any input parameters to pass to the model when solving

• nproc (int, optional) – Number of processes to use when solving for more than
one set of input parameters. Defaults to value returned by “os.cpu_count()”.

• calculate_sensitivities (list of str or bool) – If true, solver calculates
sensitivities of all input parameters. If only a subset of sensitivities are required, can
also pass a list of input parameter names

Returns
If type of inputs is list, return a list of corresponding pybamm.Solution objects.

Return type
pybamm.Solution or list of pybamm.Solution objects.

Raises

• pybamm.ModelError – If an empty model is passed (model.rhs = {} and
model.algebraic={} and model.variables = {})

• RuntimeError – If multiple calls to solve pass in different models

196 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError

PyBaMM Documentation, Release 24.1

step(old_solution, model, dt, npts=2, inputs=None, save=True)
Step the solution of the model forward by a given time increment. The first time this method is called it
executes the necessary setup by calling self.set_up(model).

Parameters

• old_solution (pybamm.Solution or None) – The previous solution to be added to.
If None, a new solution is created.

• model (pybamm.BaseModel) – The model whose solution to calculate. Must have
attributes rhs and initial_conditions

• dt (numeric type) – The timestep (in seconds) over which to step the solution

• npts (int, optional) – The number of points at which the solution will be returned
during the step dt. default is 2 (returns the solution at t0 and t0 + dt).

• inputs (dict, optional) – Any input parameters to pass to the model when solving

• save (bool) – Turn on to store the solution of all previous timesteps

Raises
pybamm.ModelError – If an empty model is passed (model.rhs = {} and model.algebraic
= {} and model.variables = {})

3.7.2 Dummy Solver

class pybamm.DummySolver

Dummy solver class for empty models.

Extends: pybamm.solvers.base_solver.BaseSolver

3.7.3 Scipy Solver

class pybamm.ScipySolver(method='BDF', rtol=1e-06, atol=1e-06, extrap_tol=None, extra_options=None)
Solve a discretised model, using scipy.integrate.solve_ivp.

Parameters

• method (str, optional) – The method to use in solve_ivp (default is “BDF”)

• rtol (float, optional) – The relative tolerance for the solver (default is 1e-6).

• atol (float, optional) – The absolute tolerance for the solver (default is 1e-6).

• extrap_tol (float, optional) – The tolerance to assert whether extrapolation occurs
or not (default is 0).

• extra_options (dict, optional) – Any options to pass to the solver. Please consult
SciPy documentation for details.

Extends: pybamm.solvers.base_solver.BaseSolver

3.7. Solvers 197

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://tinyurl.com/yafgqg9y

PyBaMM Documentation, Release 24.1

3.7.4 JAX Solver

class pybamm.JaxSolver(method='RK45', root_method=None, rtol=1e-06, atol=1e-06, extrap_tol=None,
extra_options=None)

Solve a discretised model using a JAX compiled solver.

Note: this solver will not work with models that have
termination events or are not converted to jax format

Raises

• RuntimeError – if model has any termination events

• RuntimeError – if model.convert_to_format != ‘jax’

Parameters

• method (str) – ‘RK45’ (default) uses jax.experimental.odeint ‘BDF’ uses custom
jax_bdf_integrate (see jax_bdf_integrate.py for details)

• root_method (str, optional) – Method to use to calculate consistent initial condi-
tions. By default this uses the newton chord method internal to the jax bdf solver, other-
wise choose from the set of default options defined in docs for pybamm.BaseSolver

• rtol (float, optional) – The relative tolerance for the solver (default is 1e-6).

• atol (float, optional) – The absolute tolerance for the solver (default is 1e-6).

• extrap_tol (float, optional) – The tolerance to assert whether extrapolation occurs
or not (default is 0).

• extra_options (dict, optional) – Any options to pass to the solver. Please consult
JAX documentation for details.

Extends: pybamm.solvers.base_solver.BaseSolver

create_solve(model, t_eval)
Return a compiled JAX function that solves an ode model with input arguments.

Parameters

• model (pybamm.BaseModel) – The model whose solution to calculate.

• t_eval (numpy.array, size (k,)) – The times at which to compute the solution

Returns
A function with signature f(inputs), where inputs are a dict containing any input parameters
to pass to the model when solving

Return type
function

get_solve(model, t_eval)
Return a compiled JAX function that solves an ode model with input arguments.

Parameters

• model (pybamm.BaseModel) – The model whose solution to calculate.

• t_eval (numpy.array, size (k,)) – The times at which to compute the solution

Returns
A function with signature f(inputs), where inputs are a dict containing any input parameters
to pass to the model when solving

198 Chapter 3. API documentation

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/google/jax/blob/master/jax/experimental/ode.py

PyBaMM Documentation, Release 24.1

Return type
function

pybamm.jax_bdf_integrate(func, y0, t_eval, *args, rtol=1e-06, atol=1e-06, mass=None)
Backward Difference formula (BDF) implicit multistep integrator. The basic algorithm is derived in Byrne and
Hindmarsh1. This particular implementation follows that implemented in the Matlab routine ode15s described
in Shampine and Reichelt2 and the SciPy implementation Virtanen et al.3 which features the NDF formulas for
improved stability, with associated differences in the error constants, and calculates the jacobian at J(t_{n+1},
y^0_{n+1}). This implementation was based on that implemented in the SciPy library Virtanen et al.Page 199, 3,
which also mainly follows Shampine and Reichelt2 but uses the more standard jacobian update.

Parameters

• func (callable) – function to evaluate the time derivative of the solution y at time t as
func(y, t, *args), producing the same shape/structure as y0.

• y0 (ndarray) – initial state vector

• t_eval (ndarray) – time points to evaluate the solution, has shape (m,)

• args ((optional)) – tuple of additional arguments for fun, which must be arrays scalars,
or (nested) standard Python containers (tuples, lists, dicts, namedtuples, i.e. pytrees) of
those types.

• rtol ((optional) float) – relative tolerance for the solver

• atol ((optional) float) – absolute tolerance for the solver

• mass ((optional) ndarray) – diagonal of the mass matrix with shape (n,)

Returns
y – calculated state vector at each of the m time points

Return type
ndarray with shape (n, m)

References

3.7.5 IDAKLU Solver

class pybamm.IDAKLUSolver(rtol=1e-06, atol=1e-06, root_method='casadi', root_tol=1e-06, extrap_tol=None,
output_variables=[], options=None)

Solve a discretised model, using sundials with the KLU sparse linear solver.

Parameters

• rtol (float, optional) – The relative tolerance for the solver (default is 1e-6).

• atol (float, optional) – The absolute tolerance for the solver (default is 1e-6).

• root_method (str or pybamm algebraic solver class, optional) – The
method to use to find initial conditions (for DAE solvers). If a solver class, must be an
algebraic solver class. If “casadi”, the solver uses casadi’s Newton rootfinding algorithm
to find initial conditions. Otherwise, the solver uses ‘scipy.optimize.root’ with method
specified by ‘root_method’ (e.g. “lm”, “hybr”, . . .)

1 George D. Byrne and Alan C. Hindmarsh. A polyalgorithm for the numerical solution of ordinary differential equations. ACM Transactions on
Mathematical Software (TOMS), 1(1):71–96, 1975.

2 Lawrence F Shampine and Mark W Reichelt. The matlab ode suite. SIAM journal on scientific computing, 18(1):1–22, 1997.
3 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren

Weckesser, Jonathan Bright, and others. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3):261–272,
2020. doi:10.1038/s41592-019-0686-2.

3.7. Solvers 199

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://doi.org/10.1038/s41592-019-0686-2

PyBaMM Documentation, Release 24.1

• root_tol (float, optional) – The tolerance for the initial-condition solver (default
is 1e-6).

• extrap_tol (float, optional) – The tolerance to assert whether extrapolation occurs
or not (default is 0).

• output_variables (list[str], optional) – List of variables to calculate and re-
turn. If none are specified then the complete state vector is returned (can be very large)
(default is [])

• options (dict, optional) – Addititional options to pass to the solver, by default:

options = {
print statistics of the solver after every solve
"print_stats": False,
jacobian form, can be "none", "dense",
"banded", "sparse", "matrix-free"
"jacobian": "sparse",
name of sundials linear solver to use options are:

→˓"SUNLinSol_KLU",
"SUNLinSol_Dense", "SUNLinSol_Band", "SUNLinSol_SPBCGS",
"SUNLinSol_SPFGMR", "SUNLinSol_SPGMR", "SUNLinSol_SPTFQMR",
"linear_solver": "SUNLinSol_KLU",
preconditioner for iterative solvers, can be "none", "BBDP"
"preconditioner": "BBDP",
for iterative linear solvers, max number of iterations
"linsol_max_iterations": 5,
for iterative linear solver preconditioner, bandwidth of
approximate jacobian
"precon_half_bandwidth": 5,
for iterative linear solver preconditioner, bandwidth of
approximate jacobian that is kept
"precon_half_bandwidth_keep": 5,
Number of threads available for OpenMP
"num_threads": 1,

}

Note: These options only have an effect if model.convert_to_format == ‘casadi’

Extends: pybamm.solvers.base_solver.BaseSolver

set_up(model, inputs=None, t_eval=None, ics_only=False)
Unpack model, perform checks, and calculate jacobian.

Parameters

• model (pybamm.BaseModel) – The model whose solution to calculate. Must have
attributes rhs and initial_conditions

• inputs (dict, optional) – Any input parameters to pass to the model when solving

• t_eval (numeric type, optional) – The times (in seconds) at which to compute
the solution

200 Chapter 3. API documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

3.7.6 Scikits.odes Solvers

class pybamm.ScikitsOdeSolver(method='cvode', rtol=1e-06, atol=1e-06, extrap_tol=None,
extra_options=None)

Solve a discretised model, using scikits.odes.

Parameters

• method (str, optional) – The method to use in solve_ivp (default is “BDF”)

• rtol (float, optional) – The relative tolerance for the solver (default is 1e-6).

• atol (float, optional) – The absolute tolerance for the solver (default is 1e-6).

• extrap_tol (float, optional) – The tolerance to assert whether extrapolation occurs
or not (default is 0).

• extra_options (dict, optional) – Any options to pass to the solver. Please consult
scikits.odes documentation for details. Some common keys:

– ’linsolver’: can be ‘dense’ (= default), ‘lapackdense’, ‘spgmr’, ‘spbcgs’, ‘sptfqmr’

Extends: pybamm.solvers.base_solver.BaseSolver

class pybamm.ScikitsDaeSolver(method='ida', rtol=1e-06, atol=1e-06, root_method='casadi',
root_tol=1e-06, extrap_tol=None, extra_options=None)

Solve a discretised model, using scikits.odes.

Parameters

• method (str, optional) – The method to use in solve_ivp (default is “BDF”)

• rtol (float, optional) – The relative tolerance for the solver (default is 1e-6).

• atol (float, optional) – The absolute tolerance for the solver (default is 1e-6).

• root_method (str or pybamm algebraic solver class, optional) – The
method to use to find initial conditions (for DAE solvers). If a solver class, must be an
algebraic solver class. If “casadi”, the solver uses casadi’s Newton rootfinding algorithm
to find initial conditions. Otherwise, the solver uses ‘scipy.optimize.root’ with method
specified by ‘root_method’ (e.g. “lm”, “hybr”, . . .)

• root_tol (float, optional) – The tolerance for the initial-condition solver (default
is 1e-6).

• extrap_tol (float, optional) – The tolerance to assert whether extrapolation occurs
or not (default is 0).

• extra_options (dict, optional) – Any options to pass to the solver. Please consult
scikits.odes documentation for details. Some common keys:

– ’max_steps’: maximum (int) number of steps the solver can take

Extends: pybamm.solvers.base_solver.BaseSolver

3.7. Solvers 201

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://bmcage.github.io/odes/dev/index.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://bmcage.github.io/odes/dev/index.html

PyBaMM Documentation, Release 24.1

3.7.7 Casadi Solver

class pybamm.CasadiSolver(mode='safe', rtol=1e-06, atol=1e-06, root_method='casadi', root_tol=1e-06,
max_step_decrease_count=5, dt_max=None, extrap_tol=None,
extra_options_setup=None, extra_options_call=None,
return_solution_if_failed_early=False,
perturb_algebraic_initial_conditions=None, integrators_maxcount=100)

Solve a discretised model, using CasADi.

Parameters

• mode (str) – How to solve the model (default is “safe”):

– ”fast”: perform direct integration, without accounting for events. Recommended
when simulating a drive cycle or other simulation where no events should be trig-
gered.

– ”fast with events”: perform direct integration of the whole timespan, then go back
and check where events were crossed. Experimental only.

– ”safe”: perform step-and-check integration in global steps of size dt_max, checking
whether events have been triggered. Recommended for simulations of a full charge
or discharge.

– ”safe without grid”: perform step-and-check integration step-by-step. Takes more
steps than “safe” mode, but doesn’t require creating the grid each time, so may be
faster. Experimental only.

• rtol (float, optional) – The relative tolerance for the solver (default is 1e-6).

• atol (float, optional) – The absolute tolerance for the solver (default is 1e-6).

• root_method (str or pybamm algebraic solver class, optional) – The
method to use to find initial conditions (for DAE solvers). If a solver class, must be an
algebraic solver class. If “casadi”, the solver uses casadi’s Newton rootfinding algorithm
to find initial conditions. Otherwise, the solver uses ‘scipy.optimize.root’ with method
specified by ‘root_method’ (e.g. “lm”, “hybr”, . . .)

• root_tol (float, optional) – The tolerance for root-finding. Default is 1e-6.

• max_step_decrease_count (float, optional) – The maximum number of times
step size can be decreased before an error is raised. Default is 5.

• dt_max (float, optional) – The maximum global step size (in seconds) used in “safe”
mode. If None the default value is 600 seconds.

• extrap_tol (float, optional) – The tolerance to assert whether extrapolation occurs
or not. Default is 0.

• extra_options_setup (dict, optional) – Any options to pass to the CasADi in-
tegrator when creating the integrator. Please consult CasADi documentation for details.
Some useful options:

– ”max_num_steps”: Maximum number of integrator steps

– ”print_stats”: Print out statistics after integration

• extra_options_call (dict, optional) – Any options to pass to the CasADi inte-
grator when calling the integrator. Please consult CasADi documentation for details.

202 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://tinyurl.com/y5rk76os
https://docs.python.org/3/library/stdtypes.html#dict
https://tinyurl.com/y5rk76os

PyBaMM Documentation, Release 24.1

• return_solution_if_failed_early (bool, optional) – Whether to return a So-
lution object if the solver fails to reach the end of the simulation, but managed to take
some successful steps. Default is False.

• perturb_algebraic_initial_conditions (bool, optional) – Whether to per-
turb algebraic initial conditions to avoid a singularity. This can sometimes slow down
the solver, but is kept True as default for “safe” mode as it seems to be more robust (False
by default for other modes).

• integrators_maxcount (int, optional) – The maximum number of integrators that
the solver will retain before ejecting past integrators using an LRU methodology. A value
of 0 or None leaves the number of integrators unbound. Default is 100.

Extends: pybamm.solvers.base_solver.BaseSolver

create_integrator(model, inputs, t_eval=None, use_event_switch=False)
Method to create a casadi integrator object. If t_eval is provided, the integrator uses t_eval to make the
grid. Otherwise, the integrator has grid [0,1].

3.7.8 Algebraic Solvers

class pybamm.AlgebraicSolver(method='lm', tol=1e-06, extra_options=None)
Solve a discretised model which contains only (time independent) algebraic equations using a root finding algo-
rithm. Uses scipy.optimize.root. Note: this solver could be extended for quasi-static models, or models in which
the time derivative is manually discretised and results in a (possibly nonlinear) algebaric system at each time
level.

Parameters

• method (str, optional) – The method to use to solve the system (default is “lm”). If
it starts with “lsq”, least-squares minimization is used. The method for least-squares can
be specified in the form “lsq_methodname”

• tol (float, optional) – The tolerance for the solver (default is 1e-6).

• extra_options (dict, optional) – Any options to pass to the rootfinder. Vary de-
pending on which method is chosen. Please consult SciPy documentation for details.

Extends: pybamm.solvers.base_solver.BaseSolver

class pybamm.CasadiAlgebraicSolver(tol=1e-06, extra_options=None)
Solve a discretised model which contains only (time independent) algebraic equations using CasADi’s root find-
ing algorithm. Note: this solver could be extended for quasi-static models, or models in which the time derivative
is manually discretised and results in a (possibly nonlinear) algebaric system at each time level.

Parameters

• tol (float, optional) – The tolerance for the solver (default is 1e-6).

• extra_options (dict, optional) – Any options to pass to the CasADi rootfinder.
Please consult CasADi documentation for details.

Extends: pybamm.solvers.base_solver.BaseSolver

3.7. Solvers 203

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://tinyurl.com/ybr6cfqs
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://tinyurl.com/y7hrxm7d

PyBaMM Documentation, Release 24.1

3.7.9 Solutions

class pybamm.Solution(all_ts, all_ys, all_models, all_inputs, t_event=None, y_event=None, termination='final
time', sensitivities=False, check_solution=True)

Class containing the solution of, and various attributes associated with, a PyBaMM model.

Parameters

• all_ts (numpy.array, size (n,) (or list of these)) – A one-dimensional array containing
the times at which the solution is evaluated. A list of times can be provided instead to
initialize a solution with sub-solutions.

• all_ys (numpy.array, size (m, n) (or list of these)) – A two-dimensional array contain-
ing the values of the solution. y[i, :] is the vector of solutions at time t[i]. A list of ys can
be provided instead to initialize a solution with sub-solutions.

• all_models (pybamm.BaseModel) – The model that was used to calculate the solution.
A list of models can be provided instead to initialize a solution with sub-solutions that
have been calculated using those models.

• all_inputs (dict (or list of these)) – The inputs that were used to calculate the
solution A list of inputs can be provided instead to initialize a solution with sub-solutions.

• t_event (numpy.array, size (1,)) – A zero-dimensional array containing the time at
which the event happens.

• y_event (numpy.array, size (m,)) – A one-dimensional array containing the value of
the solution at the time when the event happens.

• termination (str) – String to indicate why the solution terminated

• sensitivities (bool or dict) – True if sensitivities included as the solution of the
explicit forwards equations. False if no sensitivities included/wanted. Dict if sensitivities
are provided as a dict of {parameter: sensitivities} pairs.

property all_models

Model(s) used for solution

property first_state

A Solution object that only contains the first state. This is faster to evaluate than the full solution when
only the first state is needed (e.g. to initialize a model with the solution)

get_data_dict(variables=None, short_names=None, cycles_and_steps=True)
Construct a (standard python) dictionary of the solution data containing the variables in variables. If
variables is None then all variables are returned. Any variable names in short_names are replaced with
the corresponding short name.

If the solution has cycles, then the cycle numbers and step numbers are also returned in the dictionary.

Parameters

• variables (list, optional) – List of variables to return. If None, returns all
variables in solution.data

• short_names (dict, optional) – Dictionary of shortened names to use when sav-
ing.

• cycles_and_steps (bool, optional) – Whether to include the cycle numbers and
step numbers in the dictionary

Returns
A dictionary of the solution data

204 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

Return type
dict

property last_state

A Solution object that only contains the final state. This is faster to evaluate than the full solution when
only the final state is needed (e.g. to initialize a model with the solution)

plot(output_variables=None, **kwargs)
A method to quickly plot the outputs of the solution. Creates a pybamm.QuickPlot object (with keyword
arguments ‘kwargs’) and then calls pybamm.QuickPlot.dynamic_plot().

Parameters

• output_variables (list, optional) – A list of the variables to plot.

• **kwargs – Additional keyword arguments passed to pybamm.QuickPlot.
dynamic_plot(). For a list of all possible keyword arguments see pybamm.
QuickPlot.

save(filename)
Save the whole solution using pickle

save_data(filename=None, variables=None, to_format='pickle', short_names=None)
Save solution data only (raw arrays)

Parameters

• filename (str, optional) – The name of the file to save data to. If None, then a
str is returned

• variables (list, optional) – List of variables to save. If None, saves all of the
variables that have been created so far

• to_format (str, optional) – The format to save to. Options are:

– ’pickle’ (default): creates a pickle file with the data dictionary

– ’matlab’: creates a .mat file, for loading in matlab

– ’csv’: creates a csv file (0D variables only)

– ’json’: creates a json file

• short_names (dict, optional) – Dictionary of shortened names to use when sav-
ing. This may be necessary when saving to MATLAB, since no spaces or special
characters are allowed in MATLAB variable names. Note that not all the variables
need to be given a short name.

Returns
data – str if ‘csv’ or ‘json’ is chosen and filename is None, otherwise None

Return type
str, optional

property sensitivities

np_array

Type
Values of the sensitivities. Returns a dict of param_name

property sub_solutions

List of sub solutions that have been concatenated to form the full solution

3.7. Solvers 205

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

property t

Times at which the solution is evaluated

property t_event

Time at which the event happens

property termination

Reason for termination

update(variables)
Add ProcessedVariables to the dictionary of variables in the solution

property y

Values of the solution

property y_event

Value of the solution at the time of the event

3.7.10 Post-Process Variables

class pybamm.ProcessedVariable(base_variables, base_variables_casadi, solution, warn=True,
cumtrapz_ic=None)

An object that can be evaluated at arbitrary (scalars or vectors) t and x, and returns the (interpolated) value of
the base variable at that t and x.

Parameters

• base_variables (list of pybamm.Symbol) – A list of base variables with a method
evaluate(t,y), each entry of which returns the value of that variable for that particular
sub-solution. A Solution can be comprised of sub-solutions which are the solutions of
different models. Note that this can be any kind of node in the expression tree, not just a
pybamm.Variable. When evaluated, returns an array of size (m,n)

• base_variable_casadis (list of casadi.Function) – A list of casadi functions.
When evaluated, returns the same thing as base_Variable.evaluate (but more efficiently).

• solution (pybamm.Solution) – The solution object to be used to create the processed
variables

• warn (bool, optional) – Whether to raise warnings when trying to evaluate time and
length scales. Default is True.

property data

Same as entries, but different name

initialise_2D()

Initialise a 2D object that depends on x and r, x and z, x and R, or R and r.

initialise_sensitivity_explicit_forward()

Set up the sensitivity dictionary

property sensitivities

Returns a dictionary of sensitivities for each input parameter. The keys are the input parameters, and the
value is a matrix of size (n_x * n_t, n_p), where n_x is the number of states, n_t is the number of time
points, and n_p is the size of the input parameter

206 Chapter 3. API documentation

https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

3.8 Experiments

Classes to help set operating conditions for some standard battery modelling experiments

3.8.1 Base Experiment Class

class pybamm.Experiment(operating_conditions: list[str], period: str = '1 minute', temperature: float | None =
None, termination: list[str] | None = None, drive_cycles=None,
cccv_handling=None)

Base class for experimental conditions under which to run the model. In general, a list of operating condi-
tions should be passed in. Each operating condition should be either a pybamm.step._Step class, created using
one of the methods pybamm.step.current, pybamm.step.c_rate, pybamm.step.voltage , pybamm.step.power, py-
bamm.step.resistance, or pybamm.step.string, or a string, in which case the string is passed to pybamm.step.string.

Parameters

• operating_conditions (list[str]) – List of strings representing the operating con-
ditions.

• period (string, optional) – Period (1/frequency) at which to record outputs. Default
is 1 minute. Can be overwritten by individual operating conditions.

• temperature (float, optional) – The ambient air temperature in degrees Celsius at
which to run the experiment. Default is None whereby the ambient temperature is taken
from the parameter set. This value is overwritten if the temperature is specified in a step.

• termination (list[str], optional) – List of strings representing the conditions to
terminate the experiment. Default is None. This is different from the termination for in-
dividual steps. Termination for individual steps is specified in the step itself, and the sim-
ulation moves to the next step when the termination condition is met (e.g. 2.5V discharge
cut-off). Termination for the experiment as a whole is specified here, and the simulation
stops when the termination condition is met (e.g. 80% capacity).

read_termination(termination)
Read the termination reason. If this condition is hit, the experiment will stop.

search_tag(tag)
Search for a tag in the experiment and return the cycles in which it appears.

Parameters
tag (str) – The tag to search for

Returns
A list of cycles in which the tag appears

Return type
list

3.8. Experiments 207

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 24.1

3.8.2 Experiment step functions

The following functions can be used to define steps in an experiment.

pybamm.step.string(string, **kwargs)
Create a step from a string.

Parameters

• string (str) – The string to parse. Each operating condition should be of the form “Do
this for this long” or “Do this until this happens”. For example, “Charge at 1 C for 1
hour”, or “Charge at 1 C until 4.2 V”, or “Charge at 1 C for 1 hour or until 4.2 V”. The
instructions can be of the form “(Dis)charge at x A/C/W”, “Rest”, or “Hold at x V until y
A”. The running time should be a time in seconds, minutes or hours, e.g. “10 seconds”,
“3 minutes” or “1 hour”. The stopping conditions should be a circuit state, e.g. “1 A”,
“C/50” or “3 V”.

• **kwargs – Any other keyword arguments are passed to the pybamm.step._Step class.

Returns
A step parsed from the string.

Return type
pybamm.step._Step

pybamm.step.current(value, **kwargs)
Create a current-controlled step. Current is positive for discharge and negative for charge.

Parameters

• value (float) – The current value in A. It can be a number or a 2-column array (for drive
cycles).

• **kwargs – Any other keyword arguments are passed to the pybamm.step._Step class.

Returns
A current-controlled step.

Return type
pybamm.step._Step

pybamm.step.voltage(value, **kwargs)
Create a voltage-controlled step. Voltage should always be positive.

Parameters

• value (float) – The voltage value in V. It can be a number or a 2-column array (for drive
cycles).

• **kwargs – Any other keyword arguments are passed to the pybamm.step._Step class.

Returns
A voltage-controlled step.

Return type
pybamm.step._Step

pybamm.step.power(value, **kwargs)
Create a power-controlled step. Power is positive for discharge and negative for charge.

Parameters

• value (float) – The power value in W. It can be a number or a 2-column array (for drive
cycles).

208 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PyBaMM Documentation, Release 24.1

• **kwargs – Any other keyword arguments are passed to the pybamm.step._Step class.

Returns
A power-controlled step.

Return type
pybamm.step._Step

pybamm.step.resistance(value, **kwargs)
Create a resistance-controlled step. Resistance is positive for discharge and negative for charge.

Parameters

• value (float) – The resistance value in Ohm. It can be a number or a 2-column array
(for drive cycles).

• **kwargs – Any other keyword arguments are passed to the pybamm.step._Step class.

Returns
A resistance-controlled step.

Return type
pybamm.step._Step

These functions return the following step class, which is not intended to be used directly:

class pybamm.step._Step(typ, value, duration=None, termination=None, period=None, temperature=None,
tags=None, start_time=None, description=None)

Class representing one step in an experiment. All experiment steps are functions that return an instance of this
class. This class is not intended to be used directly.

Parameters

• typ (str) – The type of step, can be “current”, “voltage”, “c_rate”, “power”, or “resis-
tance”.

• value (float) – The value of the step, corresponding to the type of step. Can be a
number, a 2-tuple (for cccv_ode), or a 2-column array (for drive cycles)

• duration (float, optional) – The duration of the step in seconds.

• termination (str or list, optional) – A string or list of strings indicating the
condition(s) that will terminate the step. If a list, the step will terminate when any of the
conditions are met.

• period (float or string, optional) – The period of the step. If a float, the value
is in seconds. If a string, the value should be a valid time string, e.g. “1 hour”.

• temperature (float or string, optional) – The temperature of the step. If a float,
the value is in Kelvin. If a string, the value should be a valid temperature string, e.g. “25
oC”.

• tags (str or list, optional) – A string or list of strings indicating the tags associ-
ated with the step.

• datetime (str or datetime, optional) – A string or list of strings indicating the
tags associated with the step.

• description (str, optional) – A description of the step.

basic_repr()

Return a basic representation of the step, only with type, value, termination and temperature, which are
the variables involved in processing the model. Also used for hashing.

3.8. Experiments 209

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

to_dict()

Convert the step to a dictionary.

Returns
A dictionary containing the step information.

Return type
dict

Step terminations

Standard step termination events are implemented by the following classes, which are called when the termination is
specified by a specific string. These classes can be either be called directly or via the string format specified in the class
docstring

class pybamm.step.CrateTermination(value)
Termination based on C-rate, created when a string termination of the C-rate type (e.g. “C/10”) is provided

Extends: pybamm.experiment.step.step_termination.BaseTermination

get_event(variables, step_value)
See BaseTermination.get_event()

class pybamm.step.CurrentTermination(value)
Termination based on current, created when a string termination of the current type (e.g. “1A”) is provided

Extends: pybamm.experiment.step.step_termination.BaseTermination

get_event(variables, step_value)
See BaseTermination.get_event()

class pybamm.step.VoltageTermination(value)
Termination based on voltage, created when a string termination of the voltage type (e.g. “4.2V”) is provided

Extends: pybamm.experiment.step.step_termination.BaseTermination

get_event(variables, step_value)
See BaseTermination.get_event()

The following classes can be used to define custom terminations for an experiment step:

class pybamm.step.BaseTermination(value)
Base class for a termination event for an experiment step. To create a custom termination, a class must implement
get_event to return a pybamm.Event corresponding to the desired termination. In most cases the class pybamm.
step.CustomTermination can be used to assist with this.

Parameters
value (float) – The value at which the event is triggered

get_event(variables, step_value)
Return a pybamm.Event object corresponding to the termination event

Parameters

• variables (dict) – Dictionary of model variables, to be used for selecting the vari-
able(s) that determine the event

• step_value (float or pybamm.Symbol) – Value of the step for which this is a termi-
nation event, to be used in some cases to determine the sign of the event.

210 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

class pybamm.step.CustomTermination(name, event_function)
Define a custom termination event using a function. This can be used to create an event based on any variable in
the model.

Parameters

• name (str) – Name of the event

• event_function (callable) – A function that takes in a dictionary of variables and
evaluates the event value. Must be positive before the event is triggered and zero when
the event is triggered.

Example

Add a cut-off based on negative electrode stoichiometry. The event will trigger when the negative electrode
stoichiometry reaches 10%.

>>> def neg_stoich_cutoff(variables):
... return variables["Negative electrode stoichiometry"] - 0.1

>>> neg_stoich_termination = pybamm.step.CustomTermination(
... name="Negative stoichiometry cut-off", event_function=neg_stoich_cutoff
...)

Extends: pybamm.experiment.step.step_termination.BaseTermination

get_event(variables, step_value)
See BaseTermination.get_event()

3.9 Simulation

class pybamm.Simulation(model, experiment=None, geometry=None, parameter_values=None,
submesh_types=None, var_pts=None, spatial_methods=None, solver=None,
output_variables=None, C_rate=None)

A Simulation class for easy building and running of PyBaMM simulations.

Parameters

• model (pybamm.BaseModel) – The model to be simulated

• experiment (pybamm.Experiment or string or list (optional)) – The experimental con-
ditions under which to solve the model. If a string is passed, the experiment is constructed
as pybamm.Experiment([experiment]). If a list is passed, the experiment is constructed as
pybamm.Experiment(experiment).

• geometry (pybamm.Geometry (optional)) – The geometry upon which to solve the model

• parameter_values (pybamm.ParameterValues (optional)) – Parameters and their
corresponding numerical values.

• submesh_types (dict (optional)) – A dictionary of the types of submesh to use on
each subdomain

• var_pts (dict (optional)) – A dictionary of the number of points used by each spa-
tial variable

3.9. Simulation 211

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

• spatial_methods (dict (optional)) – A dictionary of the types of spatial method
to use on each domain (e.g. pybamm.FiniteVolume)

• solver (pybamm.BaseSolver (optional)) – The solver to use to solve the model.

• output_variables (list (optional)) – A list of variables to plot automatically

• C_rate (float (optional)) – The C-rate at which you would like to run a constant
current (dis)charge.

build(check_model=True, initial_soc=None)
A method to build the model into a system of matrices and vectors suitable for performing numerical
computations. If the model has already been built or solved then this function will have no effect. This
method will automatically set the parameters if they have not already been set.

Parameters

• check_model (bool, optional) – If True, model checks are performed after dis-
cretisation (see pybamm.Discretisation.process_model()). Default is True.

• initial_soc (float, optional) – Initial State of Charge (SOC) for the simula-
tion. Must be between 0 and 1. If given, overwrites the initial concentrations provided
in the parameter set.

build_for_experiment(check_model=True, initial_soc=None)
Similar to Simulation.build(), but for the case of simulating an experiment, where there may be several
models and solvers to build.

create_gif(number_of_images=80, duration=0.1, output_filename='plot.gif')
Generates x plots over a time span of t_eval and compiles them to create a GIF. For more information see
pybamm.QuickPlot.create_gif()

Parameters

• number_of_images (int (optional)) – Number of images/plots to be compiled
for a GIF.

• duration (float (optional)) – Duration of visibility of a single image/plot in the
created GIF.

• output_filename (str (optional)) – Name of the generated GIF file.

plot(output_variables=None, **kwargs)
A method to quickly plot the outputs of the simulation. Creates a pybamm.QuickPlot object (with key-
word arguments ‘kwargs’) and then calls pybamm.QuickPlot.dynamic_plot().

Parameters

• output_variables (list, optional) – A list of the variables to plot.

• **kwargs – Additional keyword arguments passed to pybamm.QuickPlot.
dynamic_plot(). For a list of all possible keyword arguments see pybamm.
QuickPlot.

save(filename)
Save simulation using pickle module.

Parameters
filename (str) – The file extension can be arbitrary, but it is common to use “.pkl” or
“.pickle”

212 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

save_model(filename: str | None = None, mesh: bool = False, variables: bool = False)
Write out a discretised model to a JSON file

Parameters

• mesh (bool) – The mesh used to discretise the model. If false, plotting tools will not
be available when the model is read back in and solved.

• variables (bool) – The discretised variables. Not required to solve a model, but if
false tools will not be availble. Will automatically save meshes as well, required for
plotting tools.

• filename (str, optional) – The desired name of the JSON file. If no name is
provided, one will be created based on the model name, and the current datetime.

set_parameters()

A method to set the parameters in the model and the associated geometry.

set_up_and_parameterise_experiment()

Set up a simulation to run with an experiment. This creates a dictionary of inputs (current/voltage/power,
running time, stopping condition) for each operating condition in the experiment. The model will then be
solved by integrating the model successively with each group of inputs, one group at a time. This needs
to be done here and not in the Experiment class because the nominal cell capacity (from the parameters)
is used to convert C-rate to current.

set_up_and_parameterise_model_for_experiment()

Set up self._model to be able to run the experiment (new version). In this version, a new model is created
for each step.

This increases set-up time since several models to be processed, but reduces simulation time since the
model formulation is efficient.

solve(t_eval=None, solver=None, check_model=True, save_at_cycles=None, calc_esoh=True,
starting_solution=None, initial_soc=None, callbacks=None, showprogress=False, **kwargs)

A method to solve the model. This method will automatically build and set the model parameters if not
already done so.

Parameters

• t_eval (numeric type, optional) – The times (in seconds) at which to compute
the solution. Can be provided as an array of times at which to return the solution, or
as a list [t0, tf] where t0 is the initial time and tf is the final time. If provided as a list
the solution is returned at 100 points within the interval [t0, tf].

If not using an experiment or running a drive cycle simulation (current provided as
data) t_eval must be provided.

If running an experiment the values in t_eval are ignored, and the solution times are
specified by the experiment.

If None and the parameter “Current function [A]” is read from data (i.e. drive cycle
simulation) the model will be solved at the times provided in the data.

• solver (pybamm.BaseSolver, optional) – The solver to use to solve the model. If
None, Simulation.solver is used

• check_model (bool, optional) – If True, model checks are performed after dis-
cretisation (see pybamm.Discretisation.process_model()). Default is True.

• save_at_cycles (int or list of ints, optional) – Which cycles to save
the full sub-solutions for. If None, all cycles are saved. If int, every multiple of

3.9. Simulation 213

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 24.1

save_at_cycles is saved. If list, every cycle in the list is saved. The first cycle (cy-
cle 1) is always saved.

• calc_esoh (bool, optional) – Whether to include eSOH variables in the sum-
mary variables. If False then only summary variables that do not require the eSOH
calculation are calculated. Default is True.

• starting_solution (pybamm.Solution) – The solution to start stepping from. If
None (default), then self._solution is used. Must be None if not using an experiment.

• initial_soc (float, optional) – Initial State of Charge (SOC) for the simula-
tion. Must be between 0 and 1. If given, overwrites the initial concentrations provided
in the parameter set.

• callbacks (list of callbacks, optional) – A list of callbacks to be called at
each time step. Each callback must implement all the methods defined in pybamm.
callbacks.BaseCallback.

• showprogress (bool, optional) – Whether to show a progress bar for cycling. If
true, shows a progress bar for cycles. Has no effect when not used with an experiment.
Default is False.

• **kwargs – Additional key-word arguments passed to solver.solve. See pybamm.
BaseSolver.solve().

step(dt, solver=None, npts=2, save=True, starting_solution=None, **kwargs)
A method to step the model forward one timestep. This method will automatically build and set the model
parameters if not already done so.

Parameters

• dt (numeric type) – The timestep over which to step the solution

• solver (pybamm.BaseSolver) – The solver to use to solve the model.

• npts (int, optional) – The number of points at which the solution will be returned
during the step dt. Default is 2 (returns the solution at t0 and t0 + dt).

• save (bool) – Turn on to store the solution of all previous timesteps

• starting_solution (pybamm.Solution) – The solution to start stepping from. If
None (default), then self._solution is used

• **kwargs – Additional key-word arguments passed to solver.solve. See pybamm.
BaseSolver.step().

3.10 Plotting

3.10.1 Quick Plot

class pybamm.QuickPlot(solutions, output_variables=None, labels=None, colors=None, linestyles=None,
shading='auto', figsize=None, n_rows=None, time_unit=None, spatial_unit='um',
variable_limits='fixed')

Generates a quick plot of a subset of key outputs of the model so that the model outputs can be easily assessed.

Parameters

• solutions ((iter of) pybamm.Solution or pybamm.Simulation) – The numerical so-
lution(s) for the model(s), or the simulation object(s) containing the solution(s).

214 Chapter 3. API documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

• output_variables (list of str, optional) – List of variables to plot

• labels (list of str, optional) – Labels for the different models. Defaults to
model names

• colors (list of str, optional) – The colors to loop over when plotting. Defaults
to None, in which case the default color loop defined by matplotlib style sheet or rcParams
is used.

• linestyles (list of str, optional) – The linestyles to loop over when plotting.
Defaults to [“-”, “:”, “–”, “-.”]

• shading (str, optional) – The shading to use for 2D plots. Defaults to “auto”.

• figsize (tuple of floats, optional) – The size of the figure to make

• n_rows (int, optional) – The number of rows to use. If None (default), floor(n //
sqrt(n)) is used where n = len(output_variables) so that the plot is as square as possible

• time_unit (str, optional) – Format for the time output (“hours”, “minutes”, or “sec-
onds”)

• spatial_unit (str, optional) – Format for the spatial axes (“m”, “mm”, or “um”)

• variable_limits (str or dict of str, optional) – How to set the axis limits
(for 0D or 1D variables) or colorbar limits (for 2D variables). Options are:

– ”fixed” (default): keep all axes fixes so that all data is visible

– ”tight”: make axes tight to plot at each time

– dictionary: fine-grain control for each variable, can be either “fixed” or “tight” or a
specific tuple (lower, upper).

create_gif(number_of_images=80, duration=0.1, output_filename='plot.gif')
Generates x plots over a time span of max_t - min_t and compiles them to create a GIF.

Parameters

• number_of_images (int (optional)) – Number of images/plots to be compiled
for a GIF.

• duration (float (optional)) – Duration of visibility of a single image/plot in the
created GIF.

• output_filename (str (optional)) – Name of the generated GIF file.

dynamic_plot(testing=False, step=None)
Generate a dynamic plot with a slider to control the time.

Parameters

• step (float) – For notebook mode, size of steps to allow in the slider. Defaults to
1/100th of the total time.

• testing (bool) – Whether to actually make the plot (turned off for unit tests)

get_spatial_var(key, variable, dimension)
Return the appropriate spatial variable(s)

plot(t, dynamic=False)
Produces a quick plot with the internal states at time t.

Parameters
t (float) – Dimensional time (in ‘time_units’) at which to plot.

3.10. Plotting 215

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

PyBaMM Documentation, Release 24.1

reset_axis()

Reset the axis limits to the default values. These are calculated to fit around the minimum and maximum
values of all the variables in each subplot

slider_update(t)
Update the plot in self.plot() with values at new time

pybamm.dynamic_plot(*args, **kwargs)
Creates a pybamm.QuickPlot object (with arguments ‘args’ and keyword arguments ‘kwargs’) and then calls
pybamm.QuickPlot.dynamic_plot(). The key-word argument ‘testing’ is passed to the ‘dynamic_plot’
method, not the QuickPlot class.

Returns
plot – The ‘QuickPlot’ object that was created

Return type
pybamm.QuickPlot

class pybamm.QuickPlotAxes

Class to store axes for the QuickPlot

add(keys, axis)
Add axis

Parameters

• keys (iter) – Iterable of keys of variables being plotted on the axis

• axis (matplotlib Axis object) – The axis object

by_variable(key)
Get axis by variable name

3.10.2 Plot

pybamm.plot(x, y, ax=None, testing=False, **kwargs)
Generate a simple 1D plot. Calls matplotlib.pyplot.plot with keyword arguments ‘kwargs’. For a list of ‘kwargs’
see the matplotlib plot documentation

Parameters

• x (pybamm.Array) – The array to plot on the x axis

• y (pybamm.Array) – The array to plot on the y axis

• ax (matplotlib Axis, optional) – The axis on which to put the plot. If None, a new
figure and axis is created.

• testing (bool, optional) – Whether to actually make the plot (turned off for unit
tests)

• kwargs – Keyword arguments, passed to plt.plot

216 Chapter 3. API documentation

https://tinyurl.com/ycblw9bx
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

3.10.3 Plot 2D

pybamm.plot2D(x, y, z, ax=None, testing=False, **kwargs)
Generate a simple 2D plot. Calls matplotlib.pyplot.contourf with keyword arguments ‘kwargs’. For a list of
‘kwargs’ see the matplotlib contourf documentation

Parameters

• x (pybamm.Array) – The array to plot on the x axis. Can be of shape (M, N) or (N, 1)

• y (pybamm.Array) – The array to plot on the y axis. Can be of shape (M, N) or (M, 1)

• z (pybamm.Array) – The array to plot on the z axis. Is of shape (M, N)

• ax (matplotlib Axis, optional) – The axis on which to put the plot. If None, a new
figure and axis is created.

• testing (bool, optional) – Whether to actually make the plot (turned off for unit
tests)

3.10.4 Plot Voltage Components

pybamm.plot_voltage_components(solution, ax=None, show_legend=True, split_by_electrode=False,
testing=False, **kwargs_fill)

Generate a plot showing the component overpotentials that make up the voltage

Parameters

• solution (pybamm.Solution) – Solution object from which to extract voltage compo-
nents

• ax (matplotlib Axis, optional) – The axis on which to put the plot. If None, a new
figure and axis is created.

• show_legend (bool, optional) – Whether to display the legend. Default is True

• split_by_electrode (bool, optional) – Whether to show the overpotentials for the
negative and positive electrodes separately. Default is False.

• testing (bool, optional) – Whether to actually make the plot (turned off for unit
tests)

• kwargs_fill – Keyword arguments, passed to ax.fill_between

3.10.5 Plot Summary Variables

pybamm.plot_summary_variables(solutions, output_variables=None, labels=None, testing=False,
**kwargs_fig)

Generate a plot showing/comparing the summary variables.

Parameters

• solutions ((iter of) pybamm.Solution) – The solution(s) for the model(s) from which
to extract summary variables.

• output_variables (list (optional)) – A list of variables to plot automatically. If
None, the default ones are used.

3.10. Plotting 217

https://tinyurl.com/y8mnadtn
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 24.1

• labels (list (optional)) – A list of labels to be added to the legend. No labels are
added by default.

• testing (bool (optional)) – Whether to actually make the plot (turned off for unit
tests).

• kwargs_fig – Keyword arguments, passed to plt.subplots.

3.11 Utility functions

pybamm.get_git_commit_info()

Get the git commit info for the current PyBaMM version, e.g. v22.8-39-gb25ce8c41 (version 22.8, commit
b25ce8c41)

pybamm.rmse(x, y)
Calculate the root-mean-square-error between two vectors x and y, ignoring NaNs

pybamm.root_dir()

return the root directory of the PyBaMM install directory

class pybamm.Timer

Provides accurate timing.

Example

timer = pybamm.Timer() print(timer.time())

reset()

Resets this timer’s start time.

time()

Returns the time (float, in seconds) since this timer was created, or since meth:reset() was last called.

class pybamm.TimerTime(value)

class pybamm.FuzzyDict

copy()→ a shallow copy of D

get_best_matches(key)
Get best matches from keys

search(key, print_values=False)
Search dictionary for keys containing ‘key’. If print_values is True, then both the keys and values will be
printed. Otherwise just the values will be printed. If no results are found, the best matches are printed.

pybamm.load(filename)
Load a saved object

pybamm.install_jax(arguments=None)
Install compatible versions of jax, jaxlib.

Command Line Interface:

$ pybamm_install_jax

218 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

optional arguments:
-h, –help show help message
-f, –force force install compatible versions of jax and jaxlib

pybamm.have_jax()

Check if jax and jaxlib are installed with the correct versions

pybamm.is_jax_compatible()

Check if the available version of jax and jaxlib are compatible with PyBaMM

3.12 Callbacks

class pybamm.callbacks.Callback

Base class for callbacks, for documenting callback methods.

Callbacks are used to perform actions (e.g. logging, saving) at certain points in the simulation. Each callback
method is named on_<event>, where <event> describes the point at which the callback is called. For example,
the callback on_experiment_start is called at the start of an experiment simulation. In general, callbacks take a
single argument, logs, which is a dictionary of information about the simulation. Each callback method should
return None (the output of the method is ignored).

EXPERIMENTAL - this class is experimental and the callback interface may change in future releases.

on_cycle_end(logs)
Called at the end of each cycle in an experiment simulation.

on_cycle_start(logs)
Called at the start of each cycle in an experiment simulation.

on_experiment_end(logs)
Called at the end of an experiment simulation.

on_experiment_error(logs)
Called when a SolverError occurs during an experiment simulation.

For example, this could be used to send an error alert with a bug report when running batch simulations
in the cloud.

on_experiment_infeasible(logs)
Called when an experiment simulation is infeasible.

on_experiment_start(logs)
Called at the start of an experiment simulation.

on_step_end(logs)
Called at the end of each step in an experiment simulation.

on_step_start(logs)
Called at the start of each step in an experiment simulation.

class pybamm.callbacks.CallbackList(callbacks)
Container abstracting a list of callbacks, so that they can be called in a single step e.g. call-
backs.on_simulation_end(. . .).

3.12. Callbacks 219

PyBaMM Documentation, Release 24.1

This is done without having to redefine the method each time by using the callback_loop_decorator decorator,
which is applied to every method that starts with on_, using the inspect module. See https://stackoverflow.com/
questions/1367514/how-to-decorate-a-method-inside-a-class.

If better control over how the callbacks are called is required, it might be better to be more explicit with the for
loop.

Extends: pybamm.callbacks.Callback

on_cycle_end(*args, **kwargs)
Called at the end of each cycle in an experiment simulation.

on_cycle_start(*args, **kwargs)
Called at the start of each cycle in an experiment simulation.

on_experiment_end(*args, **kwargs)
Called at the end of an experiment simulation.

on_experiment_error(*args, **kwargs)
Called when a SolverError occurs during an experiment simulation.

For example, this could be used to send an error alert with a bug report when running batch simulations
in the cloud.

on_experiment_infeasible(*args, **kwargs)
Called when an experiment simulation is infeasible.

on_experiment_start(*args, **kwargs)
Called at the start of an experiment simulation.

on_step_end(*args, **kwargs)
Called at the end of each step in an experiment simulation.

on_step_start(*args, **kwargs)
Called at the start of each step in an experiment simulation.

class pybamm.callbacks.LoggingCallback(logfile=None)
Logging callback, implements methods to log progress of the simulation.

Parameters
logfile (str, optional) – Where to send the log output. If None, uses pybamm’s logger.

Extends: pybamm.callbacks.Callback

on_cycle_end(logs)
Called at the end of each cycle in an experiment simulation.

on_cycle_start(logs)
Called at the start of each cycle in an experiment simulation.

on_experiment_end(logs)
Called at the end of an experiment simulation.

on_experiment_error(logs)
Called when a SolverError occurs during an experiment simulation.

For example, this could be used to send an error alert with a bug report when running batch simulations
in the cloud.

220 Chapter 3. API documentation

https://stackoverflow.com/questions/1367514/how-to-decorate-a-method-inside-a-class
https://stackoverflow.com/questions/1367514/how-to-decorate-a-method-inside-a-class
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 24.1

on_experiment_infeasible(logs)
Called when an experiment simulation is infeasible.

on_experiment_start(logs)
Called at the start of an experiment simulation.

on_step_end(logs)
Called at the end of each step in an experiment simulation.

on_step_start(logs)
Called at the start of each step in an experiment simulation.

pybamm.callbacks.setup_callbacks(callbacks)

3.13 Citations

class pybamm.Citations

Entry point to citations management. This object may be used to record BibTeX citation information and then
register that a particular citation is relevant for a particular simulation.

Citations listed in pybamm/CITATIONS.bib can be registered with their citation key. For all other works provide
a BibTeX Citation to register().

Examples

>>> pybamm.citations.register("Sulzer2021")
>>> pybamm.citations.register("@misc{Newton1687, title={Mathematical...}}")
>>> pybamm.print_citations("citations.txt")

print(filename=None, output_format='text', verbose=False)
Print all citations that were used for running simulations. The verbose option is provided to print tags for
citations in the output such that it can can be seen where the citations were registered due to the use of
PyBaMM models and solvers in the code.

Note: If a citation is registered manually, it will not be tagged.

Warning: This function will notify the user if a citation that has been previously registered is invalid
or cannot be parsed.

Parameters

• filename (str, optional) – Filename to which to print citations. If None, citations
are printed to the terminal.

• verbose (bool, optional) – If True, prints the citation tags for the citations that
have been registered. An example of the output is shown below.

3.13. Citations 221

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 24.1

Examples

pybamm.lithium_ion.SPM()
pybamm.Citations.print(verbose=True) or pybamm.print_citations(verbose=True)

will append the following at the end of the list of citations:

Citations registered:

Marquis2019 was cited due to the use of SPM

read_citations()

Reads the citations in pybamm.CITATIONS.bib. Other works can be cited by passing a BibTeX citation to
register().

register(key)
Register a paper to be cited, one at a time. The intended use is that register() should be called only
when the referenced functionality is actually being used.

Warning: Registering a BibTeX citation, with the same key as an existing citation, will overwrite the
current citation.

Parameters
key (str) –

• The citation key for an entry in pybamm/CITATIONS.bib or

• A BibTeX formatted citation

pybamm.print_citations(filename=None, output_format='text', verbose=False)
See Citations.print()

3.14 Batch Study

class pybamm.BatchStudy(models, experiments=None, geometries=None, parameter_values=None,
submesh_types=None, var_pts=None, spatial_methods=None, solvers=None,
output_variables=None, C_rates=None, repeats=1, permutations=False)

A BatchStudy class for comparison of different PyBaMM simulations.

Parameters

• models (dict) – A dictionary of models to be simulated

• experiments (dict (optional)) – A dictionary of experimental conditions under
which to solve the model. Default is None

• geometries (dict (optional)) – A dictionary of geometries upon which to solve the
model

• parameter_values (dict (optional)) – A dictionary of parameters and their corre-
sponding numerical values. Default is None

• submesh_types (dict (optional)) – A dictionary of the types of submesh to use on
each subdomain. Default is None

222 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 24.1

• var_pts (dict (optional)) – A dictionary of the number of points used by each spa-
tial variable. Default is None

• spatial_methods (dict (optional)) – A dictionary of the types of spatial method
to use on each domain. Default is None

• solvers (dict (optional)) – A dictionary of solvers to use to solve the model. De-
fault is None

• output_variables (dict (optional)) – A dictionary of variables to plot automati-
cally. Default is None

• C_rates (dict (optional)) – A dictionary of C-rates at which you would like to run
a constant current (dis)charge. Default is None

• repeats (int (optional)) – The number of times solve should be called. Default is 1

• permutations (bool (optional)) – If False runs first model with first solver, first
experiment and second model with second solver, second experiment etc. If True runs a
cartesian product of models, solvers and experiments. Default is False

create_gif(number_of_images=80, duration=0.1, output_filename='plot.gif')
Generates x plots over a time span of t_eval and compiles them to create a GIF. For more information see
pybamm.QuickPlot.create_gif()

Parameters

• number_of_images (int, optional) – Number of images/plots to be compiled for
a GIF.

• duration (float, optional) – Duration of visibility of a single image/plot in the
created GIF.

• output_filename (str, optional) – Name of the generated GIF file.

plot(output_variables=None, **kwargs)
For more information on the parameters used in the plot, See pybamm.Simulation.plot()

solve(t_eval=None, solver=None, check_model=True, save_at_cycles=None, calc_esoh=True,
starting_solution=None, initial_soc=None, **kwargs)

For more information on the parameters used in the solve, See pybamm.Simulation.solve()

Version: 24.1

Useful links: Project Home Page | Installation | Source Repository | Issue Tracker | Discussions

PyBaMM (Python Battery Mathematical Modelling) is an open-source battery simulation package written in Python.
Our mission is to accelerate battery modelling research by providing open-source tools for multi-institutional, interdis-
ciplinary collaboration. Broadly, PyBaMM consists of

1. a framework for writing and solving systems of differential equations,

2. a library of battery models and parameters, and

3. specialized tools for simulating battery-specific experiments and visualizing the results.

Together, these enable flexible model definitions and fast battery simulations, allowing users to explore the effect of
different battery designs and modeling assumptions under a variety of operating scenarios.

User Guide

The user guide is the best place to start learning PyBaMM. It contains an installation guide, an introduction to the main
concepts and links to additional tutorials.

3.14. Batch Study 223

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://www.pybamm.org
source/user_guide/installation/index.html
https://github.com/pybamm-team/pybamm
https://github.com/pybamm-team/pybamm/issues
https://github.com/pybamm-team/pybamm/discussions

PyBaMM Documentation, Release 24.1

To the user guide

Examples

Examples and tutorials can be viewed on the GitHub examples page, which also provides a link to run them online
through Google Colab.

To the examples

API Documentation

The reference guide contains a detailed description of the functions, modules, and objects included in PyBaMM. The
reference describes how the methods work and which parameters can be used.

To the API documentation

Contributor’s Guide

Contributions to PyBaMM and its development are welcome! If you have ideas for features, bug fixes, models, spatial
methods, or solvers, we would love to hear from you.

To the contributor’s guide

224 Chapter 3. API documentation

source/user_guide/contributing.html

PYTHON MODULE INDEX

p
pybamm, 37

225

PyBaMM Documentation, Release 24.1

226 Python Module Index

INDEX

Symbols
_Heaviside (class in py-

bamm.expression_tree.binary_operators),
50

_Step (class in pybamm.step), 209
__abs__() (pybamm.Symbol method), 37
__add__() (pybamm.Symbol method), 37
__array_ufunc__() (pybamm.Symbol method), 38
__eq__() (pybamm.Symbol method), 38
__ge__() (pybamm.Symbol method), 38
__gt__() (pybamm.Symbol method), 38
__hash__() (pybamm.Symbol method), 38
__init__() (pybamm.Symbol method), 38
__le__() (pybamm.Symbol method), 38
__lt__() (pybamm.Symbol method), 38
__matmul__() (pybamm.Symbol method), 38
__mod__() (pybamm.Symbol method), 38
__mul__() (pybamm.Symbol method), 38
__neg__() (pybamm.Symbol method), 38
__pow__() (pybamm.Symbol method), 38
__radd__() (pybamm.Symbol method), 38
__repr__() (pybamm.Symbol method), 38
__rmatmul__() (pybamm.Symbol method), 38
__rmul__() (pybamm.Symbol method), 38
__rpow__() (pybamm.Symbol method), 38
__rsub__() (pybamm.Symbol method), 38
__rtruediv__() (pybamm.Symbol method), 38
__str__() (pybamm.Symbol method), 39
__sub__() (pybamm.Symbol method), 39
__truediv__() (pybamm.Symbol method), 39
__weakref__ (pybamm.Symbol attribute), 39

A
AbsoluteValue (class in pybamm), 52
add() (pybamm.QuickPlotAxes method), 216
add_ghost_meshes() (pybamm.Mesh method), 170
add_ghost_nodes() (pybamm.FiniteVolume method),

182
add_neumann_values() (pybamm.FiniteVolume

method), 182
Addition (class in pybamm), 49
algebraic (pybamm.BaseModel attribute), 69

algebraic (pybamm.BaseSubModel attribute), 89
AlgebraicSolver (class in pybamm), 203
all_models (pybamm.Solution property), 204
AlternativeEffectiveResistance2D (class in py-

bamm.current_collector), 93
Arcsinh (class in pybamm), 63
arcsinh() (in module pybamm), 63
Arctan (class in pybamm), 63
arctan() (in module pybamm), 63
Array (class in pybamm), 46
assemble_mass_form() (pybamm.ScikitFiniteElement

method), 191
AsymmetricButlerVolmer (class in pybamm.kinetics),

125
auxiliary_domains (pybamm.Symbol property), 39

B
BaseBatteryModel (class in pybamm), 74
BaseElectrode (class in pybamm.electrode), 101
BaseElectrolyteConductivity (class in py-

bamm.electrolyte_conductivity), 105
BaseElectrolyteDiffusion (class in py-

bamm.electrolyte_diffusion), 114
BaseInterface (class in pybamm.interface), 120
BaseKinetics (class in pybamm.kinetics), 123
BaseMechanics (class in pybamm.particle_mechanics),

146
BaseModel (class in pybamm), 69
BaseModel (class in pybamm.active_material), 91
BaseModel (class in pybamm.convection), 96
BaseModel (class in pybamm.current_collector), 93
BaseModel (class in pybamm.electrode.ohm), 101
BaseModel (class in py-

bamm.interface.interface_utilisation), 121
BaseModel (class in pybamm.lead_acid), 86
BaseModel (class in pybamm.lithium_ion), 79
BaseModel (class in pybamm.oxygen_diffusion), 138
BaseModel (class in pybamm.porosity), 149
BaseModel (class in pybamm.sei), 134
BaseModel (class in pybamm.transport_efficiency), 157
BaseOpenCircuitPotential (class in py-

bamm.open_circuit_potential), 132

227

PyBaMM Documentation, Release 24.1

BaseParticle (class in pybamm.particle), 140
BasePlating (class in pybamm.lithium_plating), 129
BasePotentialPair (class in py-

bamm.current_collector), 95
BaseSolver (class in pybamm), 195
BaseSubModel (class in pybamm), 88
BaseTermination (class in pybamm.step), 210
BaseThermal (class in pybamm.thermal), 152
BaseThroughCellModel (class in py-

bamm.convection.through_cell), 96
BaseTransverseModel (class in py-

bamm.convection.transverse), 99
basic_repr() (pybamm.step._Step method), 209
BasicDFN (class in pybamm.lithium_ion), 81
BasicDFNComposite (class in pybamm.lithium_ion), 82
BasicDFNHalfCell (class in pybamm.lithium_ion), 82
BasicFull (class in pybamm.lead_acid), 87
BasicSPM (class in pybamm.lithium_ion), 80
BatchStudy (class in pybamm), 222
battery_geometry() (in module pybamm), 169
BatteryModelOptions (class in pybamm), 74
bc_apply() (pybamm.ScikitFiniteElement method), 191
BinaryOperator (class in pybamm), 49
boundary_conditions (pybamm.BaseModel attribute),

69
boundary_conditions (pybamm.BaseSubModel

attribute), 89
boundary_integral() (pybamm.ScikitFiniteElement

method), 191
boundary_integral() (pybamm.SpatialMethod

method), 177
boundary_integral_vector() (py-

bamm.ScikitFiniteElement method), 191
boundary_mass_matrix() (py-

bamm.ScikitFiniteElement method), 191
boundary_value() (in module pybamm), 58
boundary_value_or_flux() (pybamm.FiniteVolume

method), 183
boundary_value_or_flux() (py-

bamm.ScikitFiniteElement method), 192
boundary_value_or_flux() (pybamm.SpatialMethod

method), 178
boundary_value_or_flux() (py-

bamm.ZeroDimensionalSpatialMethod
method), 194

BoundaryGradient (class in pybamm), 55
BoundaryIntegral (class in pybamm), 54
BoundaryMass (class in pybamm), 53
BoundaryOperator (class in pybamm), 55
BoundaryValue (class in pybamm), 55
Broadcast (class in pybamm), 60
broadcast() (pybamm.SpatialMethod method), 178
Bruggeman (class in pybamm.transport_efficiency), 158
build() (pybamm.Simulation method), 212

build_for_experiment() (pybamm.Simulation
method), 212

by_variable() (pybamm.QuickPlotAxes method), 216

C
calculate_consistent_state() (py-

bamm.BaseSolver method), 195
Callback (class in pybamm.callbacks), 219
CallbackList (class in pybamm.callbacks), 219
CasadiAlgebraicSolver (class in pybamm), 203
CasadiConverter (class in pybamm), 67
CasadiSolver (class in pybamm), 202
CCCVFunctionControl (class in py-

bamm.external_circuit), 120
Chebyshev1DSubMesh (class in pybamm), 172
chebyshev_collocation_points() (py-

bamm.SpectralVolume method), 188
chebyshev_differentiation_matrices() (py-

bamm.SpectralVolume method), 188
check_algebraic_equations() (pybamm.BaseModel

method), 71
check_algebraic_equations() (py-

bamm.electrolyte_conductivity.Full method),
107

check_and_set_domains() (pybamm.FullBroadcast
method), 60

check_and_set_domains() (py-
bamm.PrimaryBroadcast method), 61

check_and_set_domains() (py-
bamm.SecondaryBroadcast method), 61

check_discretised_or_discretise_inplace_if_0D()
(pybamm.BaseModel method), 71

check_discretised_or_discretise_inplace_if_0D()
(pybamm.electrolyte_conductivity.Full
method), 108

check_extrapolation() (pybamm.BaseSolver
method), 195

check_ics_bcs() (pybamm.BaseModel method), 71
check_ics_bcs() (py-

bamm.electrolyte_conductivity.Full method),
108

check_model() (pybamm.Discretisation method), 175
check_no_repeated_keys() (pybamm.BaseModel

method), 71
check_no_repeated_keys() (py-

bamm.electrolyte_conductivity.Full method),
108

check_tab_conditions() (pybamm.Discretisation
method), 175

check_variables() (pybamm.Discretisation method),
175

check_well_determined() (pybamm.BaseModel
method), 71

228 Index

PyBaMM Documentation, Release 24.1

check_well_determined() (py-
bamm.electrolyte_conductivity.Full method),
108

check_well_posedness() (pybamm.BaseModel
method), 71

check_well_posedness() (py-
bamm.electrolyte_conductivity.Full method),
108

children (pybamm.Symbol property), 39
Citations (class in pybamm), 221
clear_domains() (pybamm.Symbol method), 39
combine_submeshes() (pybamm.Mesh method), 170
Composite (class in pybamm.electrode.ohm), 102
Composite (class in pybamm.electrolyte_conductivity),

106
concatenated_algebraic (pybamm.BaseModel

attribute), 70
concatenated_initial_conditions (py-

bamm.BaseModel attribute), 70
concatenated_rhs (pybamm.BaseModel attribute), 70
Concatenation (class in pybamm), 59
concatenation() (pybamm.FiniteVolume method), 183
concatenation() (pybamm.SpatialMethod method),

178
Constant (class in pybamm.active_material), 91
Constant (class in py-

bamm.interface.interface_utilisation), 121
Constant (class in pybamm.porosity), 149
ConstantConcentration (class in py-

bamm.electrolyte_diffusion), 115
ConstantSEI (class in pybamm.sei), 134
convert() (pybamm.CasadiConverter method), 67
convert_to_format (pybamm.BaseModel attribute), 71
copy() (pybamm.BaseSolver method), 195
copy() (pybamm.FuzzyDict method), 218
copy() (pybamm.ParameterValues method), 163
copy_domains() (pybamm.Symbol method), 39
Cos (class in pybamm), 63
cos() (in module pybamm), 63
Cosh (class in pybamm), 63
cosh() (in module pybamm), 63
CrackPropagation (class in py-

bamm.particle_mechanics), 147
CrateTermination (class in pybamm.step), 210
create_copy() (pybamm.Array method), 47
create_copy() (pybamm.BinaryOperator method), 49
create_copy() (pybamm.Concatenation method), 59
create_copy() (pybamm.Function method), 62
create_copy() (pybamm.FunctionParameter method),

43
create_copy() (pybamm.InputParameter method), 65
create_copy() (pybamm.Parameter method), 42
create_copy() (pybamm.Scalar method), 46
create_copy() (pybamm.SpatialVariable method), 46

create_copy() (pybamm.Symbol method), 39
create_copy() (pybamm.Time method), 45
create_copy() (pybamm.UnaryOperator method), 52
create_from_bpx() (pybamm.ParameterValues static

method), 163
create_gif() (pybamm.BatchStudy method), 223
create_gif() (pybamm.QuickPlot method), 215
create_gif() (pybamm.Simulation method), 212
create_integrator() (pybamm.CasadiSolver

method), 203
create_mass_matrix() (pybamm.Discretisation

method), 175
create_solve() (pybamm.JaxSolver method), 198
current() (in module pybamm.step), 208
CurrentCollector1D (class in py-

bamm.thermal.pouch_cell), 155
CurrentCollector2D (class in py-

bamm.thermal.pouch_cell), 156
CurrentDriven (class in py-

bamm.interface.interface_utilisation), 122
CurrentSigmoidOpenCircuitPotential (class in py-

bamm.open_circuit_potential), 132
CurrentTermination (class in pybamm.step), 210
CustomTermination (class in pybamm.step), 210
cv_boundary_reconstruction_matrix() (py-

bamm.SpectralVolume method), 189
cv_boundary_reconstruction_sub_matrix()

(pybamm.SpectralVolume method), 189

D
data (pybamm.ProcessedVariable property), 206
default_solver (pybamm.BaseModel property), 71
default_solver (pybamm.electrolyte_conductivity.Full

property), 108
definite_integral_matrix() (py-

bamm.FiniteVolume method), 183
definite_integral_matrix() (py-

bamm.ScikitFiniteElement method), 192
DefiniteIntegralVector (class in pybamm), 54
delta_function() (pybamm.FiniteVolume method),

183
delta_function() (pybamm.SpatialMethod method),

179
DeltaFunction (class in pybamm), 55
deserialise() (pybamm.BaseBatteryModel class

method), 74
deserialise() (pybamm.BaseModel class method), 71
deserialise() (pybamm.electrolyte_conductivity.Full

class method), 108
DFN (class in pybamm.lithium_ion), 81
diff() (pybamm.AbsoluteValue method), 52
diff() (pybamm.expression_tree.binary_operators._Heaviside

method), 50
diff() (pybamm.Function method), 62

Index 229

PyBaMM Documentation, Release 24.1

diff() (pybamm.FunctionParameter method), 43
diff() (pybamm.MatrixMultiplication method), 49
diff() (pybamm.Sign method), 52
diff() (pybamm.StateVector method), 48
diff() (pybamm.StateVectorDot method), 48
diff() (pybamm.Symbol method), 39
diff() (pybamm.Variable method), 44
diff() (pybamm.VariableDot method), 44
DiffusionLimited (class in pybamm.kinetics), 125
Discretisation (class in pybamm), 174
div() (in module pybamm), 56
Divergence (class in pybamm), 53
divergence() (pybamm.FiniteVolume method), 184
divergence() (pybamm.ScikitFiniteElement method),

192
divergence() (pybamm.SpatialMethod method), 179
divergence_matrix() (pybamm.FiniteVolume

method), 184
Division (class in pybamm), 50
domain (pybamm.Symbol property), 39
domain_concatenation() (in module pybamm), 60
DomainConcatenation (class in pybamm), 59
Downwind (class in pybamm), 56
downwind() (in module pybamm), 58
DummySolver (class in pybamm), 197
dynamic_plot() (in module pybamm), 216
dynamic_plot() (pybamm.QuickPlot method), 215

E
edge_to_node() (pybamm.FiniteVolume method), 184
EffectiveResistance (class in py-

bamm.current_collector), 93
ElectricalParameters (class in pybamm), 166
ElectrodeSOHSolver (class in pybamm.lithium_ion),

83
EqualHeaviside (class in pybamm), 50
Erf (class in pybamm), 63
erf() (in module pybamm), 63
erfc() (in module pybamm), 63
evaluate() (pybamm.BinaryOperator method), 49
evaluate() (pybamm.Concatenation method), 59
evaluate() (pybamm.Event method), 78
evaluate() (pybamm.Function method), 62
evaluate() (pybamm.ParameterValues method), 163
evaluate() (pybamm.Symbol method), 39
evaluate() (pybamm.UnaryOperator method), 52
evaluate_at() (pybamm.FiniteVolume method), 184
evaluate_at() (pybamm.SpatialMethod method), 179
evaluate_for_shape() (pybamm.DeltaFunction

method), 55
evaluate_for_shape() (pybamm.Symbol method), 40
evaluate_ignoring_errors() (pybamm.Symbol

method), 40
EvaluateAt (class in pybamm), 56

evaluates_on_edges() (pybamm.Symbol method), 40
evaluates_to_number() (pybamm.Symbol method),

40
EvaluatorPython (class in pybamm), 66
Event (class in pybamm), 78
event_type (pybamm.Event attribute), 78
events (pybamm.BaseModel attribute), 69
events (pybamm.BaseSubModel attribute), 89
EventType (class in pybamm), 79
Exp (class in pybamm), 63
exp() (in module pybamm), 63
Experiment (class in pybamm), 207
Explicit (class in pybamm.convection.through_cell), 97
Explicit (class in py-

bamm.electrolyte_conductivity.surface_potential_form),
114

ExplicitCurrentControl (class in py-
bamm.external_circuit), 118

ExplicitPowerControl (class in py-
bamm.external_circuit), 118

ExplicitResistanceControl (class in py-
bamm.external_circuit), 118

Exponential1DSubMesh (class in pybamm), 171
export_casadi_objects() (pybamm.BaseModel

method), 71
export_casadi_objects() (py-

bamm.electrolyte_conductivity.Full method),
108

expression (pybamm.Event attribute), 78

F
FickianDiffusion (class in pybamm.particle), 141
FiniteVolume (class in pybamm), 182
first_state (pybamm.Solution property), 204
ForwardTafel (class in pybamm.kinetics), 127
Full (class in pybamm.convection.through_cell), 98
Full (class in pybamm.convection.transverse), 100
Full (class in pybamm.electrode.ohm), 103
Full (class in pybamm.electrolyte_conductivity), 107
Full (class in pybamm.electrolyte_diffusion), 117
Full (class in pybamm.interface.interface_utilisation),

123
Full (class in pybamm.lead_acid), 87
Full (class in pybamm.oxygen_diffusion), 138
full_like() (in module pybamm), 62
FullAlgebraic (class in py-

bamm.electrolyte_conductivity.surface_potential_form),
112

FullBroadcast (class in pybamm), 60
FullBroadcastToEdges (class in pybamm), 61
FullDifferential (class in py-

bamm.electrolyte_conductivity.surface_potential_form),
112

Function (class in pybamm), 62

230 Index

PyBaMM Documentation, Release 24.1

FunctionControl (class in pybamm.external_circuit),
119

FunctionParameter (class in pybamm), 42
FuzzyDict (class in pybamm), 218

G
generate() (pybamm.BaseModel method), 72
generate() (pybamm.electrolyte_conductivity.Full

method), 108
GeometricParameters (class in pybamm), 166
Geometry (class in pybamm), 169
get() (pybamm.ParameterValues method), 163
get_best_matches() (pybamm.FuzzyDict method),

218
get_children_domains() (pybamm.Concatenation

method), 59
get_children_domains() (pybamm.Symbol method),

40
get_coupled_variables() (py-

bamm.active_material.LossActiveMaterial
method), 92

get_coupled_variables() (pybamm.BaseSubModel
method), 89

get_coupled_variables() (py-
bamm.convection.through_cell.Explicit
method), 97

get_coupled_variables() (py-
bamm.convection.through_cell.Full method),
98

get_coupled_variables() (py-
bamm.convection.through_cell.NoConvection
method), 96

get_coupled_variables() (py-
bamm.convection.transverse.Uniform method),
99

get_coupled_variables() (py-
bamm.current_collector.Uniform method),
94

get_coupled_variables() (py-
bamm.electrode.ohm.Composite method),
102

get_coupled_variables() (py-
bamm.electrode.ohm.Full method), 103

get_coupled_variables() (py-
bamm.electrode.ohm.LeadingOrder method),
102

get_coupled_variables() (py-
bamm.electrode.ohm.LithiumMetalExplicit
method), 105

get_coupled_variables() (py-
bamm.electrode.ohm.SurfaceForm method),
104

get_coupled_variables() (py-
bamm.electrolyte_conductivity.Composite

method), 106
get_coupled_variables() (py-

bamm.electrolyte_conductivity.Full method),
109

get_coupled_variables() (py-
bamm.electrolyte_conductivity.Integrated
method), 107

get_coupled_variables() (py-
bamm.electrolyte_conductivity.LeadingOrder
method), 106

get_coupled_variables() (py-
bamm.electrolyte_conductivity.surface_potential_form.Explicit
method), 114

get_coupled_variables() (py-
bamm.electrolyte_diffusion.ConstantConcentration
method), 115

get_coupled_variables() (py-
bamm.electrolyte_diffusion.Full method),
117

get_coupled_variables() (py-
bamm.electrolyte_diffusion.LeadingOrder
method), 116

get_coupled_variables() (py-
bamm.equivalent_circuit_elements.OCVElement
method), 158

get_coupled_variables() (py-
bamm.equivalent_circuit_elements.RCElement
method), 160

get_coupled_variables() (py-
bamm.equivalent_circuit_elements.ResistorElement
method), 159

get_coupled_variables() (py-
bamm.equivalent_circuit_elements.ThermalSubModel
method), 161

get_coupled_variables() (py-
bamm.equivalent_circuit_elements.VoltageModel
method), 162

get_coupled_variables() (py-
bamm.external_circuit.ExplicitPowerControl
method), 118

get_coupled_variables() (py-
bamm.external_circuit.ExplicitResistanceControl
method), 119

get_coupled_variables() (py-
bamm.interface.TotalInterfacialCurrent
method), 121

get_coupled_variables() (py-
bamm.kinetics.BaseKinetics method), 124

get_coupled_variables() (py-
bamm.kinetics.DiffusionLimited method),
125

get_coupled_variables() (py-
bamm.kinetics.InverseButlerVolmer method),
129

Index 231

PyBaMM Documentation, Release 24.1

get_coupled_variables() (py-
bamm.kinetics.NoReaction method), 126

get_coupled_variables() (py-
bamm.kinetics.TotalMainKinetics method),
128

get_coupled_variables() (py-
bamm.lithium_plating.BasePlating method),
129

get_coupled_variables() (py-
bamm.lithium_plating.NoPlating method),
130

get_coupled_variables() (py-
bamm.lithium_plating.Plating method), 131

get_coupled_variables() (py-
bamm.open_circuit_potential.CurrentSigmoidOpenCircuitPotential
method), 132

get_coupled_variables() (py-
bamm.open_circuit_potential.MSMROpenCircuitPotential
method), 133

get_coupled_variables() (py-
bamm.open_circuit_potential.SingleOpenCircuitPotential
method), 133

get_coupled_variables() (py-
bamm.oxygen_diffusion.Full method), 138

get_coupled_variables() (py-
bamm.oxygen_diffusion.LeadingOrder
method), 139

get_coupled_variables() (py-
bamm.particle.FickianDiffusion method),
141

get_coupled_variables() (py-
bamm.particle.MSMRDiffusion method),
145

get_coupled_variables() (py-
bamm.particle.PolynomialProfile method),
143

get_coupled_variables() (py-
bamm.particle.TotalConcentration method),
141

get_coupled_variables() (py-
bamm.particle.XAveragedPolynomialProfile
method), 144

get_coupled_variables() (py-
bamm.particle_mechanics.CrackPropagation
method), 147

get_coupled_variables() (py-
bamm.particle_mechanics.SwellingOnly
method), 148

get_coupled_variables() (py-
bamm.porosity.ReactionDriven method),
150

get_coupled_variables() (py-
bamm.porosity.ReactionDrivenODE method),
151

get_coupled_variables() (pybamm.sei.BaseModel
method), 134

get_coupled_variables() (pybamm.sei.ConstantSEI
method), 134

get_coupled_variables() (pybamm.sei.NoSEI
method), 135

get_coupled_variables() (pybamm.sei.SEIGrowth
method), 136

get_coupled_variables() (pybamm.sei.TotalSEI
method), 137

get_coupled_variables() (py-
bamm.thermal.isothermal.Isothermal method),
152

get_coupled_variables() (py-
bamm.thermal.lumped.Lumped method),
153

get_coupled_variables() (py-
bamm.thermal.pouch_cell.CurrentCollector1D
method), 155

get_coupled_variables() (py-
bamm.thermal.pouch_cell.CurrentCollector2D
method), 156

get_coupled_variables() (py-
bamm.thermal.pouch_cell.x_full.OneDimensionalX
method), 154

get_coupled_variables() (py-
bamm.transport_efficiency.Bruggeman
method), 158

get_data_dict() (pybamm.Solution method), 204
get_docstring() (py-

bamm.parameters.parameter_sets.ParameterSets
method), 167

get_event() (pybamm.step.BaseTermination method),
210

get_event() (pybamm.step.CrateTermination method),
210

get_event() (pybamm.step.CurrentTermination
method), 210

get_event() (pybamm.step.CustomTermination
method), 211

get_event() (pybamm.step.VoltageTermination
method), 210

get_fundamental_variables() (py-
bamm.active_material.Constant method),
91

get_fundamental_variables() (py-
bamm.active_material.LossActiveMaterial
method), 92

get_fundamental_variables() (py-
bamm.BaseSubModel method), 90

get_fundamental_variables() (py-
bamm.convection.through_cell.Full method),
98

get_fundamental_variables() (py-

232 Index

PyBaMM Documentation, Release 24.1

bamm.convection.through_cell.NoConvection
method), 97

get_fundamental_variables() (py-
bamm.convection.transverse.Full method),
100

get_fundamental_variables() (py-
bamm.convection.transverse.NoConvection
method), 99

get_fundamental_variables() (py-
bamm.convection.transverse.Uniform method),
100

get_fundamental_variables() (py-
bamm.current_collector.BasePotentialPair
method), 95

get_fundamental_variables() (py-
bamm.current_collector.Uniform method),
94

get_fundamental_variables() (py-
bamm.electrode.ohm.Full method), 103

get_fundamental_variables() (py-
bamm.electrolyte_conductivity.Full method),
109

get_fundamental_variables() (py-
bamm.electrolyte_diffusion.ConstantConcentration
method), 115

get_fundamental_variables() (py-
bamm.electrolyte_diffusion.Full method),
117

get_fundamental_variables() (py-
bamm.electrolyte_diffusion.LeadingOrder
method), 116

get_fundamental_variables() (py-
bamm.equivalent_circuit_elements.OCVElement
method), 159

get_fundamental_variables() (py-
bamm.equivalent_circuit_elements.RCElement
method), 160

get_fundamental_variables() (py-
bamm.equivalent_circuit_elements.ThermalSubModel
method), 161

get_fundamental_variables() (py-
bamm.external_circuit.ExplicitCurrentControl
method), 118

get_fundamental_variables() (py-
bamm.external_circuit.FunctionControl
method), 119

get_fundamental_variables() (py-
bamm.interface.interface_utilisation.Constant
method), 122

get_fundamental_variables() (py-
bamm.interface.interface_utilisation.CurrentDriven
method), 122

get_fundamental_variables() (py-
bamm.interface.interface_utilisation.Full

method), 123
get_fundamental_variables() (py-

bamm.kinetics.BaseKinetics method), 124
get_fundamental_variables() (py-

bamm.kinetics.NoReaction method), 127
get_fundamental_variables() (py-

bamm.lithium_plating.NoPlating method),
130

get_fundamental_variables() (py-
bamm.lithium_plating.Plating method), 131

get_fundamental_variables() (py-
bamm.oxygen_diffusion.Full method), 138

get_fundamental_variables() (py-
bamm.oxygen_diffusion.LeadingOrder
method), 139

get_fundamental_variables() (py-
bamm.oxygen_diffusion.NoOxygen method),
140

get_fundamental_variables() (py-
bamm.particle.FickianDiffusion method),
142

get_fundamental_variables() (py-
bamm.particle.MSMRDiffusion method),
145

get_fundamental_variables() (py-
bamm.particle.PolynomialProfile method),
143

get_fundamental_variables() (py-
bamm.particle.XAveragedPolynomialProfile
method), 144

get_fundamental_variables() (py-
bamm.particle_mechanics.CrackPropagation
method), 147

get_fundamental_variables() (py-
bamm.particle_mechanics.SwellingOnly
method), 149

get_fundamental_variables() (py-
bamm.porosity.Constant method), 149

get_fundamental_variables() (py-
bamm.porosity.ReactionDrivenODE method),
151

get_fundamental_variables() (py-
bamm.sei.ConstantSEI method), 135

get_fundamental_variables() (pybamm.sei.NoSEI
method), 135

get_fundamental_variables() (py-
bamm.sei.SEIGrowth method), 136

get_fundamental_variables() (py-
bamm.thermal.isothermal.Isothermal method),
152

get_fundamental_variables() (py-
bamm.thermal.lumped.Lumped method),
153

get_fundamental_variables() (py-

Index 233

PyBaMM Documentation, Release 24.1

bamm.thermal.pouch_cell.CurrentCollector1D
method), 155

get_fundamental_variables() (py-
bamm.thermal.pouch_cell.CurrentCollector2D
method), 157

get_fundamental_variables() (py-
bamm.thermal.pouch_cell.x_full.OneDimensionalX
method), 154

get_git_commit_info() (in module pybamm), 218
get_initial_ocps() (in module pybamm.lithium_ion),

85
get_initial_ocps() (py-

bamm.lithium_ion.ElectrodeSOHSolver
method), 83

get_initial_stoichiometries() (in module py-
bamm.lithium_ion), 84

get_initial_stoichiometries() (py-
bamm.lithium_ion.ElectrodeSOHSolver
method), 83

get_min_max_ocps() (in module pybamm.lithium_ion),
85

get_min_max_ocps() (py-
bamm.lithium_ion.ElectrodeSOHSolver
method), 84

get_min_max_stoichiometries() (in module py-
bamm.lithium_ion), 85

get_min_max_stoichiometries() (py-
bamm.lithium_ion.ElectrodeSOHSolver
method), 84

get_parameter_info() (pybamm.BaseModel method),
72

get_parameter_info() (py-
bamm.electrolyte_conductivity.Full method),
109

get_solve() (pybamm.JaxSolver method), 198
get_spatial_var() (pybamm.QuickPlot method), 215
get_termination_reason() (pybamm.BaseSolver

method), 196
get_variable() (pybamm.VariableDot method), 45
grad() (in module pybamm), 56
grad_squared() (in module pybamm), 57
Gradient (class in pybamm), 53
gradient() (pybamm.FiniteVolume method), 184
gradient() (pybamm.ScikitFiniteElement method), 192
gradient() (pybamm.SpatialMethod method), 179
gradient() (pybamm.SpectralVolume method), 189
gradient_matrix() (pybamm.FiniteVolume method),

184
gradient_matrix() (pybamm.ScikitFiniteElement

method), 193
gradient_matrix() (pybamm.SpectralVolume

method), 189
gradient_squared() (pybamm.ScikitFiniteElement

method), 193

gradient_squared() (pybamm.SpatialMethod
method), 180

GradientSquared (class in pybamm), 53

H
has_symbol_of_classes() (pybamm.Symbol method),

40
have_jax() (in module pybamm), 219

I
IDAKLUSolver (class in pybamm), 199
indefinite_integral() (pybamm.FiniteVolume

method), 185
indefinite_integral() (py-

bamm.ScikitFiniteElement method), 193
indefinite_integral() (pybamm.SpatialMethod

method), 180
indefinite_integral() (py-

bamm.ZeroDimensionalSpatialMethod
method), 194

indefinite_integral_matrix_edges() (py-
bamm.FiniteVolume method), 185

indefinite_integral_matrix_nodes() (py-
bamm.FiniteVolume method), 186

IndefiniteIntegral (class in pybamm), 54
IndependentVariable (class in pybamm), 45
Index (class in pybamm), 52
info() (pybamm.BaseModel method), 72
info() (pybamm.electrolyte_conductivity.Full method),

109
initial_conditions (pybamm.BaseModel attribute),

69
initial_conditions (pybamm.BaseSubModel at-

tribute), 89
initialise_2D() (pybamm.ProcessedVariable

method), 206
initialise_sensitivity_explicit_forward()

(pybamm.ProcessedVariable method), 206
Inner (class in pybamm), 50
input_parameters (pybamm.BaseModel property), 72
input_parameters (py-

bamm.electrolyte_conductivity.Full property),
109

InputParameter (class in pybamm), 65
insert_reference_electrode() (py-

bamm.lithium_ion.BaseModel method), 79
install_jax() (in module pybamm), 218
Integral (class in pybamm), 54
integral() (pybamm.FiniteVolume method), 186
integral() (pybamm.ScikitFiniteElement method), 193
integral() (pybamm.SpatialMethod method), 180
integral() (pybamm.ZeroDimensionalSpatialMethod

method), 194

234 Index

PyBaMM Documentation, Release 24.1

Integrated (class in pybamm.electrolyte_conductivity),
107

internal_neumann_condition() (py-
bamm.FiniteVolume method), 186

internal_neumann_condition() (py-
bamm.SpatialMethod method), 180

Interpolant (class in pybamm), 65
InverseButlerVolmer (class in pybamm.kinetics), 129
is_constant() (pybamm.Array method), 47
is_constant() (pybamm.BinaryOperator method), 49
is_constant() (pybamm.Concatenation method), 59
is_constant() (pybamm.Function method), 62
is_constant() (pybamm.Parameter method), 42
is_constant() (pybamm.Scalar method), 46
is_constant() (pybamm.Symbol method), 40
is_constant() (pybamm.UnaryOperator method), 52
is_jax_compatible() (in module pybamm), 219
Isothermal (class in pybamm.thermal.isothermal), 152
items() (pybamm.ParameterValues method), 163

J
jac() (pybamm.Jacobian method), 66
jac() (pybamm.Symbol method), 41
Jacobian (class in pybamm), 66
jacobian (pybamm.BaseModel attribute), 70
jacobian_algebraic (pybamm.BaseModel attribute),

70
jacobian_rhs (pybamm.BaseModel attribute), 70
jax_bdf_integrate() (in module pybamm), 199
JaxSolver (class in pybamm), 198

K
keys() (pybamm.ParameterValues method), 164

L
Laplacian (class in pybamm), 53
laplacian() (in module pybamm), 57
laplacian() (pybamm.FiniteVolume method), 186
laplacian() (pybamm.ScikitFiniteElement method),

193
laplacian() (pybamm.SpatialMethod method), 181
last_state (pybamm.Solution property), 205
latexify() (pybamm.BaseModel method), 72
latexify() (pybamm.electrolyte_conductivity.Full

method), 109
LeadAcidParameters (class in pybamm), 166
LeadingOrder (class in pybamm.electrode.ohm), 102
LeadingOrder (class in py-

bamm.electrolyte_conductivity), 106
LeadingOrder (class in pybamm.electrolyte_diffusion),

116
LeadingOrder (class in pybamm.oxygen_diffusion), 139

LeadingOrderAlgebraic (class in py-
bamm.electrolyte_conductivity.surface_potential_form),
113

LeadingOrderDifferential (class in py-
bamm.electrolyte_conductivity.surface_potential_form),
113

Linear (class in pybamm.kinetics), 126
linspace() (in module pybamm), 47
LithiumIonParameters (class in pybamm), 166
LithiumMetalExplicit (class in py-

bamm.electrode.ohm), 105
load() (in module pybamm), 218
load_model() (pybamm.expression_tree.operations.serialise.Serialise

method), 67
Log (class in pybamm), 63
log() (in module pybamm), 64
log10() (in module pybamm), 64
LoggingCallback (class in pybamm.callbacks), 220
LOQS (class in pybamm.lead_acid), 86
LossActiveMaterial (class in py-

bamm.active_material), 92
Lumped (class in pybamm.thermal.lumped), 153

M
Marcus (class in pybamm.kinetics), 126
Mass (class in pybamm), 53
mass_matrix (pybamm.BaseModel attribute), 70
mass_matrix() (pybamm.ScikitFiniteElement method),

193
mass_matrix() (pybamm.SpatialMethod method), 181
mass_matrix() (pybamm.ZeroDimensionalSpatialMethod

method), 194
mass_matrix_inv (pybamm.BaseModel attribute), 70
Matrix (class in pybamm), 47
MatrixMultiplication (class in pybamm), 49
Max (class in pybamm), 64
max() (in module pybamm), 64
Maximum (class in pybamm), 50
maximum() (in module pybamm), 51
Mesh (class in pybamm), 170
MeshGenerator (class in pybamm), 170
meshgrid() (in module pybamm), 47
Min (class in pybamm), 64
min() (in module pybamm), 64
Minimum (class in pybamm), 50
minimum() (in module pybamm), 51
module
pybamm, 35

Modulo (class in pybamm), 50
MPM (class in pybamm.lithium_ion), 81
MSMR (class in pybamm.lithium_ion), 83
MSMRButlerVolmer (class in pybamm.kinetics), 128
MSMRDiffusion (class in pybamm.particle), 145

Index 235

PyBaMM Documentation, Release 24.1

MSMROpenCircuitPotential (class in py-
bamm.open_circuit_potential), 133

Multiplication (class in pybamm), 49

N
name (pybamm.BaseModel attribute), 69
name (pybamm.Event attribute), 78
name (pybamm.Symbol property), 41
ndim (pybamm.Array property), 47
ndim_for_testing (pybamm.Symbol property), 41
Negate (class in pybamm), 52
negative (pybamm.BatteryModelOptions property), 78
new_copy() (pybamm.BaseModel method), 73
new_copy() (pybamm.electrolyte_conductivity.Full

method), 110
new_copy() (pybamm.Symbol method), 41
NewmanTobias (class in pybamm.lithium_ion), 82
NoConvection (class in py-

bamm.convection.through_cell), 96
NoConvection (class in pybamm.convection.transverse),

99
node_to_edge() (pybamm.FiniteVolume method), 186
NoOxygen (class in pybamm.oxygen_diffusion), 140
NoPlating (class in pybamm.lithium_plating), 130
NoReaction (class in pybamm.kinetics), 126
NoSEI (class in pybamm.sei), 135
NotEqualHeaviside (class in pybamm), 50
numpy_concatenation() (in module pybamm), 60
NumpyConcatenation (class in pybamm), 59

O
OCVElement (class in py-

bamm.equivalent_circuit_elements), 158
on_boundary() (pybamm.ScikitSubMesh2D method),

173
on_cycle_end() (pybamm.callbacks.Callback method),

219
on_cycle_end() (pybamm.callbacks.CallbackList

method), 220
on_cycle_end() (pybamm.callbacks.LoggingCallback

method), 220
on_cycle_start() (pybamm.callbacks.Callback

method), 219
on_cycle_start() (pybamm.callbacks.CallbackList

method), 220
on_cycle_start() (py-

bamm.callbacks.LoggingCallback method),
220

on_experiment_end() (pybamm.callbacks.Callback
method), 219

on_experiment_end() (py-
bamm.callbacks.CallbackList method), 220

on_experiment_end() (py-
bamm.callbacks.LoggingCallback method),

220
on_experiment_error() (pybamm.callbacks.Callback

method), 219
on_experiment_error() (py-

bamm.callbacks.CallbackList method), 220
on_experiment_error() (py-

bamm.callbacks.LoggingCallback method),
220

on_experiment_infeasible() (py-
bamm.callbacks.Callback method), 219

on_experiment_infeasible() (py-
bamm.callbacks.CallbackList method), 220

on_experiment_infeasible() (py-
bamm.callbacks.LoggingCallback method),
220

on_experiment_start() (pybamm.callbacks.Callback
method), 219

on_experiment_start() (py-
bamm.callbacks.CallbackList method), 220

on_experiment_start() (py-
bamm.callbacks.LoggingCallback method),
221

on_step_end() (pybamm.callbacks.Callback method),
219

on_step_end() (pybamm.callbacks.CallbackList
method), 220

on_step_end() (pybamm.callbacks.LoggingCallback
method), 221

on_step_start() (pybamm.callbacks.Callback
method), 219

on_step_start() (pybamm.callbacks.CallbackList
method), 220

on_step_start() (pybamm.callbacks.LoggingCallback
method), 221

OneDimensionalX (class in py-
bamm.thermal.pouch_cell.x_full), 154

ones_like() (in module pybamm), 61
options (pybamm.BaseModel attribute), 69
options (pybamm.BatteryModelOptions attribute), 74
orphans (pybamm.Symbol property), 41

P
param (pybamm.BaseSubModel attribute), 89
Parameter (class in pybamm), 42
parameters (pybamm.BaseModel property), 73
parameters (pybamm.electrolyte_conductivity.Full

property), 110
parameters (pybamm.Geometry property), 169
ParameterSets (class in py-

bamm.parameters.parameter_sets), 166
ParameterValues (class in pybamm), 163
penalty_matrix() (pybamm.SpectralVolume method),

189
Plating (class in pybamm.lithium_plating), 131

236 Index

PyBaMM Documentation, Release 24.1

plot() (in module pybamm), 216
plot() (pybamm.BatchStudy method), 223
plot() (pybamm.QuickPlot method), 215
plot() (pybamm.Simulation method), 212
plot() (pybamm.Solution method), 205
plot2D() (in module pybamm), 217
plot_summary_variables() (in module pybamm), 217
plot_voltage_components() (in module pybamm),

217
PolynomialProfile (class in pybamm.particle), 142
positive (pybamm.BatteryModelOptions property), 78
post_process() (pybamm.current_collector.AlternativeEffectiveResistance2D

method), 94
post_process() (pybamm.current_collector.EffectiveResistance

method), 93
PotentialPair1plus1D (class in py-

bamm.current_collector), 95
PotentialPair2plus1D (class in py-

bamm.current_collector), 95
Power (class in pybamm), 49
power() (in module pybamm.step), 208
PowerFunctionControl (class in py-

bamm.external_circuit), 120
pre_order() (pybamm.Symbol method), 41
PrimaryBroadcast (class in pybamm), 60
PrimaryBroadcastToEdges (class in pybamm), 61
print() (pybamm.Citations method), 221
print_citations() (in module pybamm), 222
print_detailed_options() (py-

bamm.BatteryModelOptions method), 78
print_evaluated_parameters() (py-

bamm.ParameterValues method), 164
print_options() (pybamm.BatteryModelOptions

method), 78
print_parameter_info() (pybamm.BaseModel

method), 73
print_parameter_info() (py-

bamm.electrolyte_conductivity.Full method),
110

print_parameter_info() (pybamm.Geometry
method), 169

print_parameters() (pybamm.ParameterValues
method), 164

process_1D_data() (in module pybamm.parameters),
168

process_2D_data() (in module pybamm.parameters),
168

process_2D_data_csv() (in module py-
bamm.parameters), 168

process_3D_data_csv() (in module py-
bamm.parameters), 168

process_binary_operators() (py-
bamm.FiniteVolume method), 186

process_binary_operators() (py-

bamm.SpatialMethod method), 181
process_boundary_conditions() (py-

bamm.Discretisation method), 175
process_boundary_conditions() (py-

bamm.ParameterValues method), 164
process_dict() (pybamm.Discretisation method), 175
process_geometry() (pybamm.ParameterValues

method), 164
process_initial_conditions() (py-

bamm.Discretisation method), 176
process_model() (pybamm.Discretisation method),

176
process_model() (pybamm.ParameterValues method),

164
process_parameters_and_discretise() (py-

bamm.BaseModel method), 73
process_parameters_and_discretise() (py-

bamm.electrolyte_conductivity.Full method),
110

process_rhs_and_algebraic() (py-
bamm.Discretisation method), 177

process_symbol() (pybamm.Discretisation method),
177

process_symbol() (pybamm.ParameterValues
method), 165

ProcessedVariable (class in pybamm), 206
pybamm

module, 35

Q
quaternary_domain (pybamm.Symbol property), 41
QuickPlot (class in pybamm), 214
QuickPlotAxes (class in pybamm), 216

R
r_average() (in module pybamm), 57
RCElement (class in py-

bamm.equivalent_circuit_elements), 160
ReactionDriven (class in pybamm.porosity), 150
ReactionDrivenODE (class in pybamm.porosity), 150
read_citations() (pybamm.Citations method), 222
read_termination() (pybamm.Experiment method),

207
reduce_one_dimension() (pybamm.FullBroadcast

method), 60
reduce_one_dimension() (py-

bamm.FullBroadcastToEdges method), 61
reduce_one_dimension() (py-

bamm.PrimaryBroadcast method), 61
reduce_one_dimension() (py-

bamm.SecondaryBroadcast method), 61
register() (pybamm.Citations method), 222
relabel_tree() (pybamm.Symbol method), 41
render() (pybamm.Symbol method), 41

Index 237

PyBaMM Documentation, Release 24.1

replace_dirichlet_values() (py-
bamm.SpectralVolume method), 190

replace_neumann_values() (py-
bamm.SpectralVolume method), 190

reset() (pybamm.Timer method), 218
reset_axis() (pybamm.QuickPlot method), 215
resistance() (in module pybamm.step), 209
ResistanceFunctionControl (class in py-

bamm.external_circuit), 120
ResistorElement (class in py-

bamm.equivalent_circuit_elements), 159
rhs (pybamm.BaseModel attribute), 69
rhs (pybamm.BaseSubModel attribute), 89
rmse() (in module pybamm), 218
root_dir() (in module pybamm), 218

S
save() (pybamm.Simulation method), 212
save() (pybamm.Solution method), 205
save_data() (pybamm.Solution method), 205
save_model() (pybamm.BaseBatteryModel method), 74
save_model() (pybamm.BaseModel method), 73
save_model() (pybamm.electrolyte_conductivity.Full

method), 110
save_model() (pybamm.expression_tree.operations.serialise.Serialise

method), 67
save_model() (pybamm.Simulation method), 212
Scalar (class in pybamm), 46
ScikitChebyshev2DSubMesh (class in pybamm), 174
ScikitExponential2DSubMesh (class in pybamm), 173
ScikitFiniteElement (class in pybamm), 190
ScikitsDaeSolver (class in pybamm), 201
ScikitsOdeSolver (class in pybamm), 201
ScikitSubMesh2D (class in pybamm), 173
ScikitUniform2DSubMesh (class in pybamm), 173
ScipySolver (class in pybamm), 197
search() (pybamm.FuzzyDict method), 218
search() (pybamm.ParameterValues method), 165
search_tag() (pybamm.Experiment method), 207
sech() (in module pybamm), 64
secondary_domain (pybamm.Symbol property), 41
SecondaryBroadcast (class in pybamm), 61
SecondaryBroadcastToEdges (class in pybamm), 61
SEIGrowth (class in pybamm.sei), 136
sensitivities (pybamm.ProcessedVariable property),

206
sensitivities (pybamm.Solution property), 205
Serialise (class in py-

bamm.expression_tree.operations.serialise),
67

set_algebraic() (pybamm.BaseSubModel method), 90
set_algebraic() (py-

bamm.convection.through_cell.Full method),
98

set_algebraic() (pybamm.convection.transverse.Full
method), 100

set_algebraic() (py-
bamm.current_collector.BasePotentialPair
method), 95

set_algebraic() (pybamm.electrode.ohm.Full
method), 103

set_algebraic() (py-
bamm.electrolyte_conductivity.Full method),
110

set_algebraic() (py-
bamm.electrolyte_conductivity.surface_potential_form.FullAlgebraic
method), 112

set_algebraic() (py-
bamm.electrolyte_conductivity.surface_potential_form.LeadingOrderAlgebraic
method), 113

set_algebraic() (py-
bamm.external_circuit.FunctionControl
method), 119

set_algebraic() (pybamm.kinetics.BaseKinetics
method), 124

set_algebraic() (pybamm.particle.PolynomialProfile
method), 143

set_algebraic() (py-
bamm.particle.XAveragedPolynomialProfile
method), 144

set_boundary_conditions() (py-
bamm.BaseSubModel method), 90

set_boundary_conditions() (py-
bamm.convection.through_cell.Full method),
98

set_boundary_conditions() (py-
bamm.convection.transverse.Full method),
101

set_boundary_conditions() (py-
bamm.current_collector.PotentialPair1plus1D
method), 95

set_boundary_conditions() (py-
bamm.current_collector.PotentialPair2plus1D
method), 95

set_boundary_conditions() (py-
bamm.electrode.ohm.BaseModel method),
101

set_boundary_conditions() (py-
bamm.electrode.ohm.Composite method),
103

set_boundary_conditions() (py-
bamm.electrode.ohm.Full method), 104

set_boundary_conditions() (py-
bamm.electrode.ohm.LeadingOrder method),
102

set_boundary_conditions() (py-
bamm.electrolyte_conductivity.BaseElectrolyteConductivity
method), 105

238 Index

PyBaMM Documentation, Release 24.1

set_boundary_conditions() (py-
bamm.electrolyte_conductivity.Full method),
111

set_boundary_conditions() (py-
bamm.electrolyte_conductivity.surface_potential_form.Explicit
method), 114

set_boundary_conditions() (py-
bamm.electrolyte_diffusion.ConstantConcentration
method), 115

set_boundary_conditions() (py-
bamm.electrolyte_diffusion.Full method),
117

set_boundary_conditions() (py-
bamm.oxygen_diffusion.Full method), 138

set_boundary_conditions() (py-
bamm.particle.FickianDiffusion method),
142

set_boundary_conditions() (py-
bamm.particle.MSMRDiffusion method),
146

set_boundary_conditions() (py-
bamm.thermal.pouch_cell.CurrentCollector1D
method), 156

set_boundary_conditions() (py-
bamm.thermal.pouch_cell.CurrentCollector2D
method), 157

set_boundary_conditions() (py-
bamm.thermal.pouch_cell.x_full.OneDimensionalX
method), 154

set_degradation_variables() (py-
bamm.BaseBatteryModel method), 74

set_degradation_variables() (py-
bamm.lithium_ion.BaseModel method), 79

set_events() (pybamm.BaseSubModel method), 90
set_events() (pybamm.electrolyte_conductivity.Full

method), 111
set_events() (pybamm.electrolyte_diffusion.ConstantConcentration

method), 115
set_events() (pybamm.equivalent_circuit_elements.OCVElement

method), 159
set_events() (pybamm.equivalent_circuit_elements.VoltageModel

method), 162
set_events() (pybamm.interface.interface_utilisation.CurrentDriven

method), 122
set_events() (pybamm.particle_mechanics.CrackPropagation

method), 148
set_events() (pybamm.porosity.Constant method), 149
set_events() (pybamm.porosity.ReactionDriven

method), 150
set_events() (pybamm.porosity.ReactionDrivenODE

method), 151
set_external_circuit_submodel() (py-

bamm.BaseBatteryModel method), 74
set_external_circuit_submodel() (py-

bamm.equivalent_circuit.Thevenin method),
88

set_external_circuit_submodel() (py-
bamm.lead_acid.LOQS method), 86

set_id() (pybamm.Array method), 47
set_id() (pybamm.BoundaryIntegral method), 55
set_id() (pybamm.BoundaryOperator method), 55
set_id() (pybamm.DefiniteIntegralVector method), 54
set_id() (pybamm.DeltaFunction method), 55
set_id() (pybamm.EvaluateAt method), 56
set_id() (pybamm.FunctionParameter method), 43
set_id() (pybamm.Index method), 53
set_id() (pybamm.Integral method), 54
set_id() (pybamm.Interpolant method), 65
set_id() (pybamm.Scalar method), 46
set_id() (pybamm.Symbol method), 41
set_initial_conditions() (py-

bamm.active_material.LossActiveMaterial
method), 92

set_initial_conditions() (pybamm.BaseSubModel
method), 90

set_initial_conditions() (py-
bamm.convection.through_cell.Full method),
98

set_initial_conditions() (py-
bamm.convection.transverse.Full method),
101

set_initial_conditions() (py-
bamm.current_collector.BasePotentialPair
method), 95

set_initial_conditions() (py-
bamm.electrode.ohm.Full method), 104

set_initial_conditions() (py-
bamm.electrolyte_conductivity.Full method),
111

set_initial_conditions() (py-
bamm.electrolyte_diffusion.Full method),
117

set_initial_conditions() (py-
bamm.electrolyte_diffusion.LeadingOrder
method), 116

set_initial_conditions() (py-
bamm.equivalent_circuit_elements.OCVElement
method), 159

set_initial_conditions() (py-
bamm.equivalent_circuit_elements.RCElement
method), 160

set_initial_conditions() (py-
bamm.equivalent_circuit_elements.ThermalSubModel
method), 161

set_initial_conditions() (py-
bamm.external_circuit.FunctionControl
method), 120

set_initial_conditions() (py-

Index 239

PyBaMM Documentation, Release 24.1

bamm.interface.interface_utilisation.CurrentDriven
method), 122

set_initial_conditions() (py-
bamm.kinetics.BaseKinetics method), 124

set_initial_conditions() (py-
bamm.lithium_plating.Plating method), 131

set_initial_conditions() (py-
bamm.oxygen_diffusion.Full method), 139

set_initial_conditions() (py-
bamm.oxygen_diffusion.LeadingOrder
method), 139

set_initial_conditions() (py-
bamm.particle.FickianDiffusion method),
142

set_initial_conditions() (py-
bamm.particle.MSMRDiffusion method),
146

set_initial_conditions() (py-
bamm.particle.PolynomialProfile method),
143

set_initial_conditions() (py-
bamm.particle.XAveragedPolynomialProfile
method), 144

set_initial_conditions() (py-
bamm.particle_mechanics.CrackPropagation
method), 148

set_initial_conditions() (py-
bamm.porosity.ReactionDrivenODE method),
151

set_initial_conditions() (pybamm.sei.SEIGrowth
method), 137

set_initial_conditions() (py-
bamm.thermal.lumped.Lumped method),
153

set_initial_conditions() (py-
bamm.thermal.pouch_cell.CurrentCollector1D
method), 156

set_initial_conditions() (py-
bamm.thermal.pouch_cell.CurrentCollector2D
method), 157

set_initial_conditions() (py-
bamm.thermal.pouch_cell.x_full.OneDimensionalX
method), 154

set_initial_conditions_from() (py-
bamm.BaseModel method), 73

set_initial_conditions_from() (py-
bamm.electrolyte_conductivity.Full method),
111

set_initial_ocps() (pybamm.ParameterValues
method), 165

set_initial_stoichiometries() (py-
bamm.ParameterValues method), 165

set_initial_stoichiometry_half_cell() (py-
bamm.ParameterValues method), 165

set_internal_boundary_conditions() (py-
bamm.Discretisation method), 177

set_parameters() (pybamm.Simulation method), 213
set_rhs() (pybamm.active_material.LossActiveMaterial

method), 92
set_rhs() (pybamm.BaseSubModel method), 90
set_rhs() (pybamm.electrolyte_conductivity.Full

method), 111
set_rhs() (pybamm.electrolyte_conductivity.surface_potential_form.FullDifferential

method), 112
set_rhs() (pybamm.electrolyte_conductivity.surface_potential_form.LeadingOrderDifferential

method), 113
set_rhs() (pybamm.electrolyte_diffusion.Full method),

117
set_rhs() (pybamm.electrolyte_diffusion.LeadingOrder

method), 116
set_rhs() (pybamm.equivalent_circuit_elements.OCVElement

method), 159
set_rhs() (pybamm.equivalent_circuit_elements.RCElement

method), 161
set_rhs() (pybamm.equivalent_circuit_elements.ThermalSubModel

method), 162
set_rhs() (pybamm.external_circuit.FunctionControl

method), 120
set_rhs() (pybamm.interface.interface_utilisation.CurrentDriven

method), 123
set_rhs() (pybamm.lithium_plating.Plating method),

131
set_rhs() (pybamm.oxygen_diffusion.Full method), 139
set_rhs() (pybamm.oxygen_diffusion.LeadingOrder

method), 140
set_rhs() (pybamm.particle.FickianDiffusion method),

142
set_rhs() (pybamm.particle.MSMRDiffusion method),

146
set_rhs() (pybamm.particle.PolynomialProfile

method), 143
set_rhs() (pybamm.particle.XAveragedPolynomialProfile

method), 145
set_rhs() (pybamm.particle_mechanics.CrackPropagation

method), 148
set_rhs() (pybamm.porosity.ReactionDrivenODE

method), 151
set_rhs() (pybamm.sei.SEIGrowth method), 137
set_rhs() (pybamm.thermal.lumped.Lumped method),

153
set_rhs() (pybamm.thermal.pouch_cell.CurrentCollector1D

method), 156
set_rhs() (pybamm.thermal.pouch_cell.CurrentCollector2D

method), 157
set_rhs() (pybamm.thermal.pouch_cell.x_full.OneDimensionalX

method), 155
set_soc_variables() (pybamm.BaseBatteryModel

method), 74

240 Index

PyBaMM Documentation, Release 24.1

set_soc_variables() (pybamm.lead_acid.BaseModel
method), 86

set_summary_variables() (py-
bamm.lithium_ion.BaseModel method), 79

set_up() (pybamm.BaseSolver method), 196
set_up() (pybamm.IDAKLUSolver method), 200
set_up_and_parameterise_experiment() (py-

bamm.Simulation method), 213
set_up_and_parameterise_model_for_experiment()

(pybamm.Simulation method), 213
set_variable_slices() (pybamm.Discretisation

method), 177
setup_callbacks() (in module pybamm.callbacks),

221
shape (pybamm.Array property), 47
shape (pybamm.Symbol property), 41
shape_for_testing (pybamm.Symbol property), 41
shift() (pybamm.FiniteVolume method), 187
sigmoid() (in module pybamm), 51
Sign (class in pybamm), 52
sign() (in module pybamm), 58
simplify_if_constant() (in module pybamm), 37
Simulation (class in pybamm), 211
Sin (class in pybamm), 64
sin() (in module pybamm), 64
SingleOpenCircuitPotential (class in py-

bamm.open_circuit_potential), 133
Sinh (class in pybamm), 64
sinh() (in module pybamm), 64
size (pybamm.Symbol property), 41
size_average() (in module pybamm), 57
size_for_testing (pybamm.Symbol property), 42
slider_update() (pybamm.QuickPlot method), 216
smooth_absolute_value() (in module pybamm), 58
softminus() (in module pybamm), 51
softplus() (in module pybamm), 51
Solution (class in pybamm), 204
solve() (pybamm.BaseSolver method), 196
solve() (pybamm.BatchStudy method), 223
solve() (pybamm.Simulation method), 213
source() (in module pybamm), 51
SparseStack (class in pybamm), 59
spatial_variable() (pybamm.FiniteVolume method),

187
spatial_variable() (pybamm.ScikitFiniteElement

method), 194
spatial_variable() (pybamm.SpatialMethod

method), 182
SpatialMethod (class in pybamm), 177
SpatialOperator (class in pybamm), 53
SpatialVariable (class in pybamm), 45
SpecificFunction (class in pybamm), 62
SpectralVolume (class in pybamm), 188
SPM (class in pybamm.lithium_ion), 80

SPMe (class in pybamm.lithium_ion), 80
Sqrt (class in pybamm), 64
sqrt() (in module pybamm), 64
StateVector (class in pybamm), 48
StateVectorDot (class in pybamm), 48
step() (pybamm.BaseSolver method), 196
step() (pybamm.Simulation method), 214
stiffness_matrix() (pybamm.ScikitFiniteElement

method), 194
string() (in module pybamm.step), 208
sub_solutions (pybamm.Solution property), 205
SubMesh (class in pybamm), 170
SubMesh0D (class in pybamm), 171
SubMesh1D (class in pybamm), 171
submodels (pybamm.BaseModel attribute), 69
Subtraction (class in pybamm), 49
surf() (in module pybamm), 57
SurfaceForm (class in pybamm.electrode.ohm), 104
SwellingOnly (class in pybamm.particle_mechanics),

148
Symbol (class in pybamm), 37
SymbolUnpacker (class in pybamm), 68
SymmetricButlerVolmer (class in pybamm.kinetics),

124

T
t (in module pybamm), 46
t (pybamm.Solution property), 205
t_event (pybamm.Solution property), 206
Tanh (class in pybamm), 64
tanh() (in module pybamm), 64
termination (pybamm.Solution property), 206
tertiary_domain (pybamm.Symbol property), 42
test_shape() (pybamm.Symbol method), 42
ThermalParameters (class in pybamm), 166
ThermalSubModel (class in py-

bamm.equivalent_circuit_elements), 161
Thevenin (class in pybamm.equivalent_circuit), 87
Time (class in pybamm), 45
time() (pybamm.Timer method), 218
Timer (class in pybamm), 218
TimerTime (class in pybamm), 218
to_casadi() (pybamm.Symbol method), 42
to_dict() (pybamm.step._Step method), 209
to_equation() (pybamm.Array method), 47
to_equation() (pybamm.BinaryOperator method), 49
to_equation() (pybamm.Concatenation method), 59
to_equation() (pybamm.Function method), 62
to_equation() (pybamm.FunctionParameter method),

43
to_equation() (pybamm.IndependentVariable

method), 45
to_equation() (pybamm.Parameter method), 42
to_equation() (pybamm.Scalar method), 46

Index 241

PyBaMM Documentation, Release 24.1

to_equation() (pybamm.Time method), 45
to_equation() (pybamm.UnaryOperator method), 52
to_json() (pybamm.Array method), 47
to_json() (pybamm.BinaryOperator method), 49
to_json() (pybamm.Broadcast method), 60
to_json() (pybamm.DomainConcatenation method), 59
to_json() (pybamm.Event method), 78
to_json() (pybamm.Function method), 62
to_json() (pybamm.FunctionParameter method), 43
to_json() (pybamm.Index method), 53
to_json() (pybamm.InputParameter method), 65
to_json() (pybamm.Interpolant method), 66
to_json() (pybamm.Parameter method), 42
to_json() (pybamm.Scalar method), 46
to_json() (pybamm.SpatialOperator method), 53
to_json() (pybamm.SpecificFunction method), 63
to_json() (pybamm.Symbol method), 42
TotalConcentration (class in pybamm.particle), 140
TotalInterfacialCurrent (class in py-

bamm.interface), 121
TotalMainKinetics (class in pybamm.kinetics), 128
TotalSEI (class in pybamm.sei), 137

U
UnaryOperator (class in pybamm), 52
Uniform (class in pybamm.convection.transverse), 99
Uniform (class in pybamm.current_collector), 94
Uniform1DSubMesh (class in pybamm), 171
unpack_list_of_symbols() (py-

bamm.SymbolUnpacker method), 68
unpack_symbol() (pybamm.SymbolUnpacker method),

68
update() (pybamm.BaseModel method), 74
update() (pybamm.electrolyte_conductivity.Full

method), 111
update() (pybamm.ParameterValues method), 165
update() (pybamm.Solution method), 206
Upwind (class in pybamm), 56
upwind() (in module pybamm), 58
upwind_or_downwind() (pybamm.FiniteVolume

method), 187
UpwindDownwind (class in pybamm), 56
use_jacobian (pybamm.BaseModel attribute), 71
UserSupplied1DSubMesh (class in pybamm), 172
UserSupplied2DSubMesh (class in pybamm), 174

V
value (pybamm.Scalar property), 46
values() (pybamm.ParameterValues method), 165
Variable (class in pybamm), 43
VariableDot (class in pybamm), 44
variables (pybamm.BaseModel attribute), 69
variables (pybamm.BaseSubModel attribute), 89

variables_and_events (pybamm.BaseModel prop-
erty), 74

variables_and_events (py-
bamm.electrolyte_conductivity.Full property),
111

Vector (class in pybamm), 47
visualise() (pybamm.Symbol method), 42
voltage() (in module pybamm.step), 208
VoltageFunctionControl (class in py-

bamm.external_circuit), 120
VoltageModel (class in py-

bamm.equivalent_circuit_elements), 162
VoltageTermination (class in pybamm.step), 210

X
x_average() (in module pybamm), 57
XAveragedPolynomialProfile (class in py-

bamm.particle), 144

Y
y (pybamm.Solution property), 206
y_event (pybamm.Solution property), 206
Yang2017 (class in pybamm.lithium_ion), 83
yz_average() (in module pybamm), 58

Z
z_average() (in module pybamm), 58
ZeroDimensionalSpatialMethod (class in pybamm),

194
zeros_like() (in module pybamm), 61

242 Index

	PyBaMM user guide
	Installation
	Optional solvers
	Dependencies
	Required dependencies
	Optional Dependencies
	Plot dependencies
	Pandas dependencies
	Docs dependencies
	Examples dependencies
	Dev dependencies
	Cite dependencies
	Latexify dependencies
	bpx dependencies
	tqdm dependencies
	Jax dependencies
	odes dependencies

	Full installation guide
	GNU/Linux & macOS
	Prerequisites
	Install PyBaMM
	User install
	Optional - scikits.odes solver
	Optional - JaxSolver

	Uninstall PyBaMM

	Windows
	Prerequisites
	Install PyBaMM
	User install
	Optional - JaxSolver

	Uninstall PyBaMM
	Installation using WSL

	Install from source (Windows Subsystem for Linux)
	Install WSL
	Install PyBaMM
	Get PyBaMM’s Source Code
	5. Follow the Installation Steps

	Using Visual Studio Code with the WSL

	Install from source (GNU Linux and macOS)
	Prerequisites
	Installing the build-time requirements
	Manual install of build time requirements

	Installing PyBaMM
	Using Nox (recommended)
	Manual install

	Running the tests
	Using Nox (recommended)
	Using the test runner

	How to build the PyBaMM documentation
	Doctests, examples, and coverage
	Extra tips while using Nox
	Troubleshooting

	Install from source (Docker)
	Prerequisites
	Pulling the Docker image
	Running the Docker container
	Exiting the Docker container
	Building Docker image locally from source
	Building Docker images with optional arguments
	Using Git inside a running Docker container
	Using Visual Studio Code inside a running Docker container

	Getting Started
	Fundamentals
	Core framework
	Model and Parameter Library
	Battery-specific tools

	Battery Models
	Review Articles
	Model References
	Lithium-Ion Batteries
	Lead-Acid Batteries

	Contributing to PyBaMM
	Pre-commit checks
	Installing and using pre-commit

	Workflow
	A. Before you begin
	B. Writing your code
	C. Merging your changes with PyBaMM

	Coding style guidelines
	Ruff
	Naming

	Dependencies and reusing code
	Separating dependencies
	Managing Optional Dependencies and Their Imports

	Testing
	Writing tests
	Running more tests
	Testing the example notebooks
	Testing the example scripts
	Debugging
	Profiling

	Documentation
	Building the documentation
	Example notebooks

	Citations
	Infrastructure
	Installation
	Continuous Integration using GitHub Actions
	Codecov
	Read the Docs
	Google Colab
	GitHub

	Acknowledgements

	Example notebooks
	API documentation
	Expression Tree
	Symbol
	Parameter
	Variable
	Independent Variable
	Scalar
	Array
	Matrix
	Vector
	State Vector
	Binary Operators
	Unary Operators
	Concatenations
	Broadcasting Operators
	Functions
	Input Parameter
	Interpolant
	Operations on expression trees
	EvaluatorPython
	Jacobian
	Convert to CasADi
	Serialise
	Symbol Unpacker

	Models
	Base Models
	Base Model
	Base Battery Model
	Event

	Lithium-ion Models
	Base Lithium-ion Model
	Single Particle Model (SPM)
	Single Particle Model with Electrolyte (SPMe)
	Many Particle Model (MPM)
	Doyle-Fuller-Newman (DFN)
	Newman-Tobias
	Multi-Species Multi-Reaction (MSMR) Model
	Yang et al 2017
	Electrode SOH models

	Lead Acid Models
	Base Model
	Leading-Order Quasi-Static Model
	Full Model

	Equivalent Circuit Models
	Thevenin Model

	Submodels
	Base Submodel
	Active Material
	Base Model
	Constant Active Material
	Loss of Active Material

	Current Collector
	Base Model
	Effective Current collector Resistance models
	Uniform
	Potential Pair models

	Convection
	Base Convection
	Through-cell Convection
	Base Model
	No Convection
	Leading-Order Through-cell Model
	Full Through-cell Model

	Transverse Convection
	Base Model
	No Transverse Convection
	Uniform Transverse Model
	Full Transverse Convection

	Electrode
	Electrode Base Model
	Ohmic
	Base Model
	Leading Order Model
	Composite Model
	Full Model
	Surface Form
	Explicit potential drop for lithium metal

	Electrolyte Conductivity
	Base Electrolyte Conductivity Submodel
	Leading Order Model
	Composite Model
	Integrated Model
	Full Model
	Surface Form
	Full Model
	Leading Order Model
	Explicit Model

	Electrolyte Diffusion
	Base Electrolyte Diffusion Submodel
	Constant Concentration
	Leading Order Model
	Full Model

	External circuit
	Explicit control external circuit
	Function control external circuit

	Interface
	Interface Base Model
	Total Interfacial Current Model
	Interface Utilisation
	Utilisation Base Model
	Constant Utilisation
	CurrentDriven Utilisation
	Full Utilisation

	Kinetics
	Base Kinetics
	Butler Volmer
	Diffusion-limited
	Linear
	Marcus
	NoReaction
	Tafel
	MSMR Butler Volmer
	Total Main Kinetics
	Inverse Kinetics
	Inverse Butler-Volmer

	Lithium Plating
	Base Plating
	No Plating
	Plating

	Open-circuit potential models
	Base Open Circuit Potential
	Current Sigmoid Open Circuit Potential
	Single Open Circuit Potential
	MSMR Open Circuit Potential

	SEI models
	SEI Base Model
	Constant SEI
	No SEI
	SEI Growth
	Total SEI

	Oxygen Diffusion
	Base Model
	Full Model
	Leading Order Model
	No Oxygen

	Particle
	Particle Base Model
	Fickian Diffusion
	Polynomial Profile
	X-averaged Polynomial Profile
	MSMR Diffusion

	Particle Cracking
	Base Particle Mechanics Model
	Crack Propagation Model
	Swelling Only Model

	Porosity
	Base Model
	Constant Porosity
	Reaction-driven Model
	Reaction-driven Model as an ODE

	Thermal
	Base Thermal
	Isothermal Model
	Lumped Model
	Pouch Cell
	One Dimensional Model
	Thermal Model for “1+1D” Pouch Cell
	Thermal Model for “2+1D” Pouch Cell

	transport_efficiency
	Base Model
	Bruggeman Model

	Equivalent Circuit Elements
	OCV Element
	Resistor Element
	RC Element
	Thermal SubModel
	Voltage Model

	Parameters
	Parameter Values
	Geometric Parameters
	Electrical Parameters
	Thermal Parameters
	Lithium-ion Parameters
	Lead-Acid Parameters
	Parameters Sets
	Adding Parameter Sets
	Third-Party Parameter Sets
	Bundled Parameter Sets
	Lead-acid Parameter Sets
	Lithium-ion Parameter Sets

	Process Parameter Data

	Geometry
	Geometry
	Battery Geometry

	Meshes
	Meshes
	0D Sub Mesh
	1D Sub Meshes
	2D Sub Meshes

	Discretisation and spatial methods
	Discretisation
	Spatial Method
	Finite Volume
	Spectral Volume
	Scikit Finite Elements
	Zero Dimensional Spatial Method

	Solvers
	Base Solver
	Dummy Solver
	Scipy Solver
	JAX Solver
	IDAKLU Solver
	Scikits.odes Solvers
	Casadi Solver
	Algebraic Solvers
	Solutions
	Post-Process Variables

	Experiments
	Base Experiment Class
	Experiment step functions
	Step terminations

	Simulation
	Plotting
	Quick Plot
	Plot
	Plot 2D
	Plot Voltage Components
	Plot Summary Variables

	Utility functions
	Callbacks
	Citations
	Batch Study

	Python Module Index
	Index

