
PyBaMM Documentation

Valentin Sulzer

Mar 12, 2021

Contents

1 Contents 3
1.1 Expression Tree . 3
1.2 Models . 23
1.3 Parameters . 65
1.4 Geometry . 68
1.5 Meshes . 70
1.6 Discretisation and spatial methods . 71
1.7 Solvers . 84
1.8 Post-Process Variables . 90
1.9 Utility functions . 91

2 Examples 93

3 Contributing 95
3.1 Adding Parameter Values . 95
3.2 Adding a Model . 97
3.3 Adding a Spatial Method . 100
3.4 Adding a Solver . 102

Python Module Index 105

Index 107

i

ii

PyBaMM Documentation

Python Battery Mathematical Modelling (PyBAMM) solves continuum models for batteries, using both numerical
methods and asymptotic analysis.

PyBaMM is hosted on GitHub. This page provides the API, or developer documentation for pybamm.

• genindex

• modindex

• search

Contents 1

https://github.com/pybamm-team/PyBaMM

PyBaMM Documentation

2 Contents

CHAPTER 1

Contents

1.1 Expression Tree

1.1.1 Symbol

class pybamm.Symbol(name, children=None, domain=None, auxiliary_domains=None)
Base node class for the expression tree

Parameters

• name (str) – name for the node

• children (iterable Symbol, optional) – children to attach to this node, default to an
empty list

• domain (iterable of str, or str) – list of domains over which the node is valid
(empty list indicates the symbol is valid over all domains)

__abs__()
return an AbsoluteValue object

__add__(other)
return an Addition object

__getitem__(key)
return a Index object

__init__(name, children=None, domain=None, auxiliary_domains=None)
Initialize self. See help(type(self)) for accurate signature.

__matmul__(other)
return a MatrixMultiplication object

__mul__(other)
return a Multiplication object

3

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

__neg__()
return a Negate object

__pow__(other)
return a Power object

__radd__(other)
return an Addition object

__repr__()
returns the string __class__(id, name, children, domain)

__rmatmul__(other)
return a MatrixMultiplication object

__rmul__(other)
return a Multiplication object

__rpow__(other)
return a Power object

__rsub__(other)
return a Subtraction object

__rtruediv__(other)
return a Division object

__str__()
return a string representation of the node and its children

__sub__(other)
return a Subtraction object

__truediv__(other)
return a Division object

children
returns the cached children of this node.

Note: it is assumed that children of a node are not modified after initial creation

diff(variable)
Differentiate a symbol with respect to a variable. For any symbol that can be differentiated, return 1
if differentiating with respect to yourself, self._diff(variable) if variable is in the expression tree of the
symbol, and zero otherwise.

Parameters variable (pybamm.Symbol) – The variable with respect to which to differen-
tiate

domain
list of applicable domains

Returns

Return type iterable of str

evaluate(t=None, y=None, known_evals=None)
Evaluate expression tree (wrapper to allow using dict of known values). If the dict ‘known_evals’ is
provided, the dict is searched for self.id; if self.id is in the keys, return that value; otherwise, evaluate
using _base_evaluate() and add that value to known_evals

Parameters

4 Chapter 1. Contents

PyBaMM Documentation

• t (float or numeric type, optional) – time at which to evaluate (default
None)

• y (numpy.array, optional) – array to evaluate when solving (default None)

• known_evals (dict, optional) – dictionary containing known values (default
None)

Returns

• number or array – the node evaluated at (t,y)

• known_evals (if known_evals input is not None) (dict) – the dictionary of known values

evaluate_for_shape()
Evaluate expression tree to find its shape. For symbols that cannot be evaluated directly (e.g. Variable
or Parameter), a vector of the appropriate shape is returned instead, using the symbol’s domain. See
pybamm.Symbol.evaluate()

evaluate_ignoring_errors()
Evaluates the expression. If a node exists in the tree that cannot be evaluated as a scalar or vectr (e.g.
Parameter, Variable, StateVector), then None is returned. Otherwise the result of the evaluation is given

See also:

evaluate() evaluate the expression

evaluates_on_edges()
Returns True if a symbol evaluates on an edge, i.e. symbol contains a gradient operator, but not a diver-
gence operator, and is not an IndefiniteIntegral.

evaluates_to_number()
Returns True if evaluating the expression returns a number. Returns False otherwise, including if NotIm-
plementedError or TyperError is raised. !Not to be confused with isinstance(self, pybamm.Scalar)!

See also:

evaluate() evaluate the expression

has_symbol_of_classes(symbol_classes)
Returns True if equation has a term of the class(es) symbol_class.

Parameters symbol_classes (pybamm class or iterable of classes) – The
classes to test the symbol against

is_constant()
returns true if evaluating the expression is not dependent on t or y

See also:

evaluate() evaluate the expression

jac(variable)
Differentiate a symbol with respect to a (slice of) a State Vector. Default behaviour is to return 1 if
differentiating with respect to yourself and zero otherwise. Binary and Unary Operators override this.

Parameters variable (pybamm.Symbol) – The variable with respect to which to differen-
tiate

name
name of the node

1.1. Expression Tree 5

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

new_copy()
Make a new copy of a symbol, to avoid Tree corruption errors while bypassing copy.deepcopy(), which is
slow.

orphans
Returning new copies of the children, with parents removed to avoid corrupting the expression tree internal
data

pre_order()
returns an iterable that steps through the tree in pre-order fashion

Examples

>>> import pybamm
>>> a = pybamm.Symbol('a')
>>> b = pybamm.Symbol('b')
>>> for node in (a*b).pre_order():
... print(node.name)

*
a
b

relabel_tree(symbol, counter)
Finds all children of a symbol and assigns them a new id so that they can be visualised properly using the
graphviz output

render()
print out a visual representation of the tree (this node and its children)

set_id()
Set the immutable “identity” of a variable (e.g. for identifying y_slices).

This is identical to what we’d put in a __hash__ function However, implementing __hash__ requires also
implementing __eq__, which would then mess with loop-checking in the anytree module.

Hashing can be slow, so we set the id when we create the node, and hence only need to hash once.

shape
Shape of an object, found by evaluating it with appropriate t and y.

shape_for_testing
Shape of an object for cases where it cannot be evaluated directly. If a symbol cannot be evaluated directly
(e.g. it is a Variable or Parameter), it is instead given an arbitrary domain-dependent shape.

simplify(simplified_symbols=None)
Simplify the expression tree. See pybamm.Simplification.

size
Size of an object, found by evaluating it with appropriate t and y

size_for_testing
Size of an object, based on shape for testing

test_shape()
Check that the discretised self has a pybamm shape, i.e. can be evaluated

Raises pybamm.ShapeError – If the shape of the object cannot be found

visualise(filename)
Produces a .png file of the tree (this node and its children) with the name filename

6 Chapter 1. Contents

PyBaMM Documentation

Parameters filename (str) – filename to output, must end in “.png”

1.1.2 Parameter

class pybamm.Parameter(name, domain=[])
A node in the expression tree representing a parameter

This node will be replaced by a Scalar node by :class‘.Parameter‘

Parameters

• name (str) – name of the node

• domain (iterable of str, optional) – list of domains the parameter is valid
over, defaults to empty list

evaluate_for_shape()
Returns the scalar ‘NaN’ to represent the shape of a parameter. See pybamm.Symbol.
evaluate_for_shape()

new_copy()
See pybamm.Symbol.new_copy().

class pybamm.FunctionParameter(name, *children, diff_variable=None)
A node in the expression tree representing a function parameter

This node will be replaced by a pybamm.Function node if a callable function is passed to the parameter
values, and otherwise (in some rarer cases, such as constant current) a pybamm.Scalar node.

Parameters

• name (str) – name of the node

• child (Symbol) – child node

• diff_variable (pybamm.Symbol, optional) – if diff_variable is specified, the Func-
tionParameter node will be replaced by a pybamm.Function and then differentiated with
respect to diff_variable. Default is None.

diff(variable)
See pybamm.Symbol.diff().

evaluate_for_shape()
Returns the sum of the evaluated children See pybamm.Symbol.evaluate_for_shape()

get_children_domains(children_list)
Obtains the unique domain of the children. If the children have different domains then raise an error

new_copy()
See pybamm.Symbol.new_copy().

set_id()
See pybamm.Symbol.set_id()

1.1.3 Variable

class pybamm.Variable(name, domain=None, auxiliary_domains=None)
A node in the expression tree represending a dependent variable

This node will be discretised by Discretisation and converted to a Vector node.

Parameters

1.1. Expression Tree 7

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

• name (str) – name of the node

• domain (iterable of str) – list of domains that this variable is valid over

• auxiliary_domains (dict) – dictionary of auxiliary domains ({‘secondary’: . . . , ‘ter-
tiary’: . . . }). For example, for the single particle model, the particle concentration would
be a Variable with domain ‘negative partilce’ and secondary auxiliary domain ‘current col-
lector’. For the DFN, the particle concentration would be a Variable with domain ‘negative
particle’, secondary domain ‘negative electrode’ and tertiary domain ‘current collector’

• *Extends –

evaluate_for_shape()
See pybamm.Symbol.evaluate_for_shape_using_domain()

new_copy()
See pybamm.Symbol.new_copy().

1.1.4 Independent Variable

class pybamm.IndependentVariable(name, domain=[])
A node in the expression tree representing an independent variable

Used for expressing functions depending on a spatial variable or time

Parameters

• name (str) – name of the node

• domain (iterable of str) – list of domains that this variable is valid over

• *Extends –

evaluate_for_shape()
See pybamm.Symbol.evaluate_for_shape_using_domain()

class pybamm.Time
A node in the expression tree representing time

Extends: Symbol

evaluate_for_shape()
Return the scalar ‘0’ to represent the shape of the independent variable Time. See pybamm.Symbol.
evaluate_for_shape()

new_copy()
See pybamm.Symbol.new_copy().

class pybamm.SpatialVariable(name, domain=None, coord_sys=None)
A node in the expression tree representing a spatial variable

Parameters

• name (str) – name of the node (e.g. “x”, “y”, “z”, “r”, “x_n”, “x_s”, “x_p”, “r_n”, “r_p”)

• domain (iterable of str) – list of domains that this variable is valid over (e.g.
“cartesian”, “spherical polar”)

• *Extends –

new_copy()
See pybamm.Symbol.new_copy().

8 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

pybamm.t = the independent variable time
A node in the expression tree representing time

Extends: Symbol

1.1.5 Scalar

class pybamm.Scalar(value, name=None, domain=[])
A node in the expression tree representing a scalar value

Extends: Symbol

Parameters

• value (numeric) – the value returned by the node when evaluated

• name (str, optional) – the name of the node. Defaulted to str(value) if not
provided

• domain (iterable of str, optional) – list of domains the parameter is valid
over, defaults to empty list

jac(variable)
See pybamm.Symbol.jac().

new_copy()
See pybamm.Symbol.new_copy().

set_id()
See pybamm.Symbol.set_id().

value
the value returned by the node when evaluated

1.1.6 Matrix

class pybamm.Matrix(entries, name=None, domain=[], entries_string=None)
node in the expression tree that holds a matrix type (e.g. numpy.array)

Extends: Array

Parameters

• entries (numpy.array) – the array associated with the node

• name (str, optional) – the name of the node

1.1.7 Vector

class pybamm.Vector(entries, name=None, domain=[], entries_string=None)
node in the expression tree that holds a vector type (e.g. numpy.array)

Extends: Array

Parameters

• entries (numpy.array) – the array associated with the node

• name (str, optional) – the name of the node

1.1. Expression Tree 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

• domain (iterable of str, optional) – list of domains the parameter is valid
over, defaults to empty list

1.1.8 State Vector

class pybamm.StateVector(*y_slices, name=None, domain=None, auxiliary_domains=None)
node in the expression tree that holds a slice to read from an external vector type

Parameters

• y_slice (slice) – the slice of an external y to read

• name (str, optional) – the name of the node

• domain (iterable of str, optional) – list of domains the parameter is valid
over, defaults to empty list

• auxiliary_domains (dict of str, optional) – dictionary of auxiliary do-
mains

• *Extends –

evaluate_for_shape()
Returns a vector of NaNs to represent the shape of a StateVector. The size of a StateVector is the number
of True elements in its evaluation_array See pybamm.Symbol.evaluate_for_shape()

evaluation_array
Array to use for evaluating

jac(variable)
Differentiate a slice of a StateVector of size m with respect to another slice of a StateVector of size n. This
returns a (sparse) matrix of size m x n with ones where the y slices match, and zeros elsewhere.

Parameters variable (pybamm.Symbol) – The variable with respect to which to differen-
tiate

new_copy()
See pybamm.Symbol.new_copy().

set_evaluation_array(y_slices)
Set evaluation array using slices

set_id()
See pybamm.Symbol.set_id()

size
Size of an object, found by evaluating it with appropriate t and y

1.1.9 Binary Operators

class pybamm.BinaryOperator(name, left, right)
A node in the expression tree representing a binary operator (e.g. +, *)

Derived classes will specify the particular operator

Extends: Symbol

Parameters

• name (str) – name of the node

• left (Symbol or Number) – lhs child node (converted to Scalar if Number)

10 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

• right (Symbol or Number) – rhs child node (converted to Scalar if Number)

evaluate(t=None, y=None, known_evals=None)
See pybamm.Symbol.evaluate().

evaluate_for_shape()
See pybamm.Symbol.evaluate_for_shape().

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

get_children_auxiliary_domains(l_aux_domains, r_aux_domains)
Combine auxiliary domains from children, at all levels

get_children_domains(ldomain, rdomain)
Combine domains from children in appropriate way

new_copy()
See pybamm.Symbol.new_copy().

class pybamm.Power(left, right)
A node in the expression tree representing a ** power operator

Extends: BinaryOperator

class pybamm.Addition(left, right)
A node in the expression tree representing an addition operator

Extends: BinaryOperator

class pybamm.Subtraction(left, right)
A node in the expression tree representing a subtraction operator

Extends: BinaryOperator

class pybamm.Multiplication(left, right)
A node in the expression tree representing a multiplication operator (Hadamard product). Overloads cases where
the “*” operator would usually return a matrix multiplication (e.g. scipy.sparse.coo.coo_matrix)

Extends: BinaryOperator

class pybamm.MatrixMultiplication(left, right)
A node in the expression tree representing a matrix multiplication operator

Extends: BinaryOperator

diff(variable)
See pybamm.Symbol.diff().

class pybamm.Division(left, right)
A node in the expression tree representing a division operator

Extends: BinaryOperator

class pybamm.Inner(left, right)
A node in the expression tree which represents the inner (or dot) product. This operator should be used to
take the inner product of two mathematical vectors (as opposed to the computational vectors arrived at post-
discretisation) of the form v = v_x e_x + v_y e_y + v_z e_z where v_x, v_y, v_z are scalars and e_x, e_y, e_z are
x-y-z-directional unit vectors. For v and w mathematical vectors, inner product returns v_x * w_x + v_y * w_y
+ v_z * w_z. In addition, for some spatial discretisations mathematical vector quantities (such as i = grad(phi))
are evaluated on a different part of the grid to mathematical scalars (e.g. for finite volume mathematical scalars
are evaluated on the nodes but mathematical vectors are evaluated on cell edges). Therefore, inner also transfers
the inner product of the vector onto the scalar part of the grid if required by a particular discretisation.

1.1. Expression Tree 11

PyBaMM Documentation

Extends: BinaryOperator

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

class pybamm.Outer(left, right)
A node in the expression tree representing an outer product. This takes a 1D vector in the current collector
domain of size (n,1) and a 1D variable of size (m,1), takes their outer product, and reshapes this into a vector of
size (nm,1). It can also take in a vector in a single particle and a vector of the electrolyte domain to repeat that
particle. Note: this class might be a bit dangerous, so at the moment it is very restrictive in what symbols can
be passed to it

Extends: BinaryOperator

diff(variable)
See pybamm.Symbol.diff().

class pybamm.Kron(left, right)
A node in the expression tree representing a (sparse) kronecker product operator

Extends: BinaryOperator

diff(variable)
See pybamm.Symbol.diff().

jac(variable)
See pybamm.Symbol.jac().

pybamm.outer(left, right)
Return outer product of two symbols. If the symbols have the same domain, the outer product is just a multipli-
cation. If they have different domains, make a copy of the left child with same domain as right child, and then
take outer product.

pybamm.source(left, right, boundary=False)
A convinience function for creating (part of) an expression tree representing a source term. This is necessary for
spatial methods where the mass matrix is not the identity (e.g. finite element formulation with piecwise linear
basis functions). The left child is the symbol representing the source term and the right child is the symbol of the
equation variable (currently, the finite element formulation in PyBaMM assumes all functions are constructed
using the same basis, and the matrix here is constructed accoutning for the boundary conditions of the right
child). The method returns the matrix-vector product of the mass matrix (adjusted to account for any Dirichlet
boundary conditions imposed the the right symbol) and the discretised left symbol.

Parameters

• left (Symbol) – The left child node, which represents the expression for the source term.

• right (Symbol) – The right child node. This is the symbol whose boundary conditions
are accounted for in the construction of the mass matrix.

• boundary (bool, optional) – If True, then the mass matrix should is assembled
over the boundary, corresponding to a source term which only acts on the boundary of the
domain. If False (default), the matrix is assembled over the entire domain, corresponding to
a source term in the bulk.

1.1.10 Unary Operators

class pybamm.UnaryOperator(name, child, domain=None, auxiliary_domains=None)
A node in the expression tree representing a unary operator (e.g. ‘-‘, grad, div)

Derived classes will specify the particular operator

12 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation

Extends: Symbol

Parameters

• name (str) – name of the node

• child (Symbol) – child node

evaluate(t=None, y=None, known_evals=None)
See pybamm.Symbol.evaluate().

evaluate_for_shape()
Default behaviour: unary operator has same shape as child See pybamm.Symbol.
evaluate_for_shape()

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

new_copy()
See pybamm.Symbol.new_copy().

class pybamm.Negate(child)
A node in the expression tree representing a - negation operator

Extends: UnaryOperator

class pybamm.AbsoluteValue(child)
A node in the expression tree representing an abs operator

Extends: UnaryOperator

diff(variable)
See pybamm.Symbol.diff().

jac(variable)
See pybamm.Symbol.jac().

class pybamm.Index(child, index, name=None)
A node in the expression tree, which stores the index that should be extracted from its child after the child has
been evaluated.

Parameters

• child (pybamm.Symbol) – The symbol of which to take the index

• index (int or slice) – The index (if int) or indices (if slice) to extract from the
symbol

• name (str, optional) – The name of the symbol

evaluate_for_shape()
Default behaviour: unary operator has same shape as child See pybamm.Symbol.
evaluate_for_shape()

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

set_id()
See pybamm.Symbol.set_id()

class pybamm.SpatialOperator(name, child, domain=None, auxiliary_domains=None)
A node in the expression tree representing a unary spatial operator (e.g. grad, div)

Derived classes will specify the particular operator

This type of node will be replaced by the Discretisation class with a Matrix

1.1. Expression Tree 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

Extends: UnaryOperator

Parameters

• name (str) – name of the node

• child (Symbol) – child node

diff(variable)
See pybamm.Symbol.diff().

jac(variable)
See pybamm.Symbol.jac().

class pybamm.Gradient(child)
A node in the expression tree representing a grad operator

Extends: SpatialOperator

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

class pybamm.Divergence(child)
A node in the expression tree representing a div operator

Extends: SpatialOperator

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

class pybamm.Laplacian(child)
A node in the expression tree representing a laplacian operator. This is currently only implemeted in the weak
form for finite element formulations.

Extends: SpatialOperator

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

class pybamm.Gradient_Squared(child)
A node in the expression tree representing a the inner product of the grad operator with itself. In particular, this
is useful in the finite element formualtion where we only require the (sclar valued) square of the gradient, and
not the gradient itself.

Extends: SpatialOperator

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

class pybamm.Mass(child)
Returns the mass matrix for a given symbol, accounting for Dirchlet boundary conditions where necessary (e.g.
in the finite element formualtion) Extends: SpatialOperator

evaluate_for_shape()
Default behaviour: unary operator has same shape as child See pybamm.Symbol.
evaluate_for_shape()

class pybamm.Integral(child, integration_variable)
A node in the expression tree representing an integral operator

𝐼 =

∫︁ 𝑏

𝑎

𝑓(𝑢) 𝑑𝑢,

where 𝑎 and 𝑏 are the left-hand and right-hand boundaries of the domain respectively, and 𝑢 ∈ domain. Can be
integration with respect to time or space.

14 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

Parameters

• function (pybamm.Symbol) – The function to be integrated (will become
self.children[0])

• integration_variable (pybamm.IndependentVariable) – The variable over
which to integrate

• **Extends (** SpatialOperator) –

evaluate_for_shape()
See pybamm.Symbol.evaluate_for_shape_using_domain()

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

set_id()
See pybamm.Symbol.set_id()

class pybamm.IndefiniteIntegral(child, integration_variable)
A node in the expression tree representing an indefinite integral operator

𝐼 =

∫︁ 𝑥

𝑥𝑒𝑥𝑡𝑚𝑖𝑛

𝑓(𝑢) 𝑑𝑢

where 𝑢 ∈ domain which can represent either a spatial or temporal variable.

Parameters

• function (pybamm.Symbol) – The function to be integrated (will become
self.children[0])

• integration_variable (pybamm.IndependentVariable) – The variable over
which to integrate

• **Extends (** Integral) –

evaluate_for_shape()
See pybamm.Symbol.evaluate_for_shape_using_domain()

class pybamm.DefiniteIntegralVector(child, vector_type=’row’)
A node in the expression tree representing an integral of the basis used for discretisation

𝐼 =

∫︁ 𝑏

𝑎

𝜓(𝑥) 𝑑𝑥,

where 𝑎 and 𝑏 are the left-hand and right-hand boundaries of the domain respectively and 𝜓 is the basis function.

Parameters

• variable (pybamm.Symbol) – The variable whose basis will be integrated over the
entire domain

• vector_type (str, optional) – Whether to return a row or column vector (default
is row)

• **Extends (** SpatialOperator) –

evaluate_for_shape()
See pybamm.Symbol.evaluate_for_shape_using_domain()

set_id()
See pybamm.Symbol.set_id()

1.1. Expression Tree 15

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

class pybamm.BoundaryIntegral(child, region=’entire’)
A node in the expression tree representing an integral operator over the boundary of a domain

𝐼 =

∫︁
𝜕𝑎

𝑓(𝑢) 𝑑𝑢,

where 𝜕𝑎 is the boundary of the domain, and 𝑢 ∈ domain boundary.

Parameters

• function (pybamm.Symbol) – The function to be integrated (will become
self.children[0])

• region (str, optional) – The region of the boundary over which to integrate. If
region is entire (default) the integration is carried out over the entire boundary. If region is
negative tab or positive tab then the integration is only carried out over the appropriate part
of the boundary corresponding to the tab.

• **Extends (** SpatialOperator) –

evaluate_for_shape()
See pybamm.Symbol.evaluate_for_shape_using_domain()

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

set_id()
See pybamm.Symbol.set_id()

class pybamm.DeltaFunction(child, side, domain)
Delta function. Currently can only be implemented at the edge of a domain

Parameters

• child (pybamm.Symbol) – The variable that sets the strength of the delta function

• side (str) – Which side of the domain to implement the delta function on

• **Extends (** SpatialOperator) –

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

set_id()
See pybamm.Symbol.set_id()

class pybamm.BoundaryOperator(name, child, side)
A node in the expression tree which gets the boundary value of a variable.

Parameters

• name (str) – The name of the symbol

• child (pybamm.Symbol) – The variable whose boundary value to take

• side (str) – Which side to take the boundary value on (“left” or “right”)

• **Extends (** SpatialOperator) –

evaluate_for_shape()
See pybamm.Symbol.evaluate_for_shape_using_domain()

set_id()
See pybamm.Symbol.set_id()

16 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

class pybamm.BoundaryValue(child, side)
A node in the expression tree which gets the boundary value of a variable.

Parameters

• child (pybamm.Symbol) – The variable whose boundary value to take

• side (str) – Which side to take the boundary value on (“left” or “right”)

• **Extends (** BoundaryOperator) –

class pybamm.BoundaryGradient(child, side)
A node in the expression tree which gets the boundary flux of a variable.

Parameters

• child (pybamm.Symbol) – The variable whose boundary flux to take

• side (str) – Which side to take the boundary flux on (“left” or “right”)

• **Extends (** BoundaryOperator) –

pybamm.grad(expression)
convenience function for creating a Gradient

Parameters expression (Symbol) – the gradient will be performed on this sub-expression

Returns the gradient of expression

Return type Gradient

pybamm.div(expression)
convenience function for creating a Divergence

Parameters expression (Symbol) – the divergence will be performed on this sub-expression

Returns the divergence of expression

Return type Divergence

pybamm.laplacian(expression)
convenience function for creating a Laplacian

Parameters expression (Symbol) – the laplacian will be performed on this sub-expression

Returns the laplacian of expression

Return type Laplacian

pybamm.grad_squared(expression)
convenience function for creating a Gradient_Squared

Parameters expression (Symbol) – the inner product of the gradient with itself will be per-
formed on this sub-expression

Returns inner product of the gradient of expression with itself

Return type Gradient_Squared

pybamm.surf(symbol, set_domain=False)
convenience function for creating a right BoundaryValue, usually in the spherical geometry

Parameters symbol (pybamm.Symbol) – the surface value of this symbol will be returned

Returns the surface value of symbol

Return type pybamm.BoundaryValue

1.1. Expression Tree 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

pybamm.x_average(symbol)
convenience function for creating an average in the x-direction

Parameters symbol (pybamm.Symbol) – The function to be averaged

Returns the new averaged symbol

Return type Symbol

pybamm.boundary_value(symbol, side)
convenience function for creating a pybamm.BoundaryValue

Parameters

• symbol (pybamm.Symbol) – The symbol whose boundary value to take

• side (str) – Which side to take the boundary value on (“left” or “right”)

Returns the new integrated expression tree

Return type BoundaryValue

1.1.11 Concatenations

class pybamm.Concatenation(*children, name=None, check_domain=True, concat_fun=None)
A node in the expression tree representing a concatenation of symbols

Extends: pybamm.Symbol

Parameters children (iterable of pybamm.Symbol) – The symbols to concatenate

evaluate(t=None, y=None, known_evals=None)
See pybamm.Symbol.evaluate().

evaluate_for_shape()
See pybamm.Symbol.evaluate_for_shape()

get_children_auxiliary_domains(children)
Combine auxiliary domains from children, at all levels

new_copy()
See pybamm.Symbol.new_copy().

class pybamm.NumpyConcatenation(*children)
A node in the expression tree representing a concatenation of equations, when we don’t care about domains.
The class pybamm.DomainConcatenation, which is careful about domains and uses broadcasting where
appropriate, should be used whenever possible instead.

Upon evaluation, equations are concatenated using numpy concatenation.

Extends: Concatenation

Parameters children (iterable of pybamm.Symbol) – The equations to concatenate

class pybamm.DomainConcatenation(children, mesh, copy_this=None)
A node in the expression tree representing a concatenation of symbols, being careful about domains.

It is assumed that each child has a domain, and the final concatenated vector will respect the sizes and ordering
of domains established in mesh keys

Extends: pybamm.Concatenation

Parameters

• children (iterable of pybamm.Symbol) – The symbols to concatenate

18 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

• mesh (pybamm.BaseMesh) – The underlying mesh for discretisation, used to obtain the
number of mesh points in each domain.

• copy_this (pybamm.DomainConcatenation (optional)) – if provided, this class is
initialised by copying everything except the children from copy_this. mesh is not used in
this case

class pybamm.SparseStack(*children)
A node in the expression tree representing a concatenation of sparse matrices. As with NumpyConcatenation,
we don’t care about domains. The class pybamm.DomainConcatenation, which is careful about domains
and uses broadcasting where appropriate, should be used whenever possible instead.

Extends: Concatenation

Parameters children (iterable of Concatenation) – The equations to concatenate

1.1.12 Broadcasting Operators

class pybamm.Broadcast(child, broadcast_domain, auxiliary_domains=None, broadcast_type=’full’,
name=None)

A node in the expression tree representing a broadcasting operator. Broadcasts a child to a specified domain.
After discretisation, this will evaluate to an array of the right shape for the specified domain.

Parameters

• child (Symbol) – child node

• broadcast_domain (iterable of str) – Primary domain for broadcast. This will
become the domain of the symbol

• auxiliary_domain (iterable of str) – Secondary domain for broadcast. Cur-
rently, this is only used for testing that symbols have the right shape.

• broadcast_type (str, optional) – Whether to broadcast to the full domain (pri-
mary and secondary) or only in the primary direction. Default is “full”.

• name (str) – name of the node

• **Extends (** SpatialOperator) –

check_and_set_domain_and_broadcast_type(child, broadcast_domain, broadcast_type)
Set broadcast domain and broadcast type, performing basic checks to make sure it is compatible with the
child

evaluate_for_shape()
Returns a vector of NaNs to represent the shape of a Broadcast. See pybamm.Symbol.
evaluate_for_shape_using_domain()

class pybamm.FullBroadcast(child, broadcast_domain, auxiliary_domains, name=None)
A class for full broadcasts

evaluate_for_shape()
Returns a vector of NaNs to represent the shape of a Broadcast. See pybamm.Symbol.
evaluate_for_shape_using_domain()

class pybamm.PrimaryBroadcast(child, broadcast_domain, name=None)
A node in the expression tree representing a primary broadcasting operator. Broadcasts in a primary dimension
only. That is, makes explicit copies

Parameters

• child (Symbol) – child node

1.1. Expression Tree 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

• broadcast_domain (iterable of str) – Primary domain for broadcast. This will
become the domain of the symbol

• name (str) – name of the node

• **Extends (** SpatialOperator) –

evaluate_for_shape()
Returns a vector of NaNs to represent the shape of a Broadcast. See pybamm.Symbol.
evaluate_for_shape_using_domain()

1.1.13 Simplify

class pybamm.Simplification(simplified_symbols=None)

simplify(symbol)
This function recurses down the tree, applying any simplifications defined in classes derived from py-
bamm.Symbol. E.g. any expression multiplied by a pybamm.Scalar(0) will be simplified to a py-
bamm.Scalar(0). If a symbol has already been simplified, the stored value is returned.

Parameters

• symbol (pybamm.Symbol) –

• symbol to simplify (The) –

Returns

• pybamm.Symbol

• Simplified symbol

pybamm.simplify_if_constant(symbol)
Utility function to simplify an expression tree if it evalutes to a constant scalar, vector or matrix

pybamm.simplify_addition_subtraction(myclass, left, right)
if children are associative (addition, subtraction, etc) then try to find groups of constant children (that produce a
value) and simplify them to a single term

The purpose of this function is to simplify expressions like (1 + (1 + p)), which should be simplified to (2 +
p). The former expression consists of an Addition, with a left child of Scalar type, and a right child of another
Addition containing a Scalar and a Parameter. For this case, this function will first flatten the expression to
a list of the bottom level children (i.e. [Scalar(1), Scalar(2), Parameter(p)]), and their operators (i.e. [None,
Addition, Addition]), and then combine all the constant children (i.e. Scalar(1) and Scalar(1)) to a single child
(i.e. Scalar(2))

Note that this function will flatten the expression tree until a symbol is found that is not either an Addition or a
Subtraction, so this function would simplify (3 - (2 + a*b*c)) to (1 + a*b*c)

This function is useful if different children expressions contain non-constant terms that prevent them from being
simplified, so for example (1 + a) + (b - 2) - (6 + c) will be simplified to (-7 + a + b - c)

Parameters

• myclass (class) – the binary operator class (pybamm.Addition or pybamm.Subtraction)
operating on children left and right

• left (derived from pybamm.Symbol) – the left child of the binary operator

• right (derived from pybamm.Symbol) – the right child of the binary operator

20 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

pybamm.simplify_multiplication_division(myclass, left, right)
if children are associative (multiply, division, etc) then try to find groups of constant children (that produce a
value) and simplify them

The purpose of this function is to simplify expressions of the type (1 * c / 2), which should simplify to (0.5 *
c). The former expression consists of a Division, with a left child of a Multiplication containing a Scalar and
a Parameter, and a right child consisting of a Scalar. For this case, this function will first flatten the expression
to a list of the bottom level children on the numerator (i.e. [Scalar(1), Parameter(c)]) and their operators (i.e.
[None, Multiplication]), as well as those children on the denominator (i.e. [Scalar(2)]. After this, all the constant
children on the numerator and denominator (i.e. Scalar(1) and Scalar(2)) will be combined appropriately, in this
case to Scalar(0.5), and combined with the nonconstant children (i.e. Parameter(c))

Note that this function will flatten the expression tree until a symbol is found that is not either an Multiplication,
Division or MatrixMultiplication, so this function would simplify (3*(1 + d)*2) to (6 * (1 + d))

As well as Multiplication and Division, this function can handle MatrixMultiplication. If any MatrixMultipli-
cations are found on the numerator/denominator, no reordering of children is done to find groups of constant
children. In this case only neighbouring constant children on the numerator are simplified

Parameters

• myclass (class) – the binary operator class (pybamm.Addition or pybamm.Subtraction)
operating on children left and right

• left (derived from pybamm.Symbol) – the left child of the binary operator

• right (derived from pybamm.Symbol) – the right child of the binary operator

1.1.14 Functions

class pybamm.Function(function, *children)
A node in the expression tree representing an arbitrary function

Parameters

• function (method) – A function can have 0 or many inputs. If no inputs
are given, self.evaluate() simply returns func(). Otherwise, self.evaluate(t, y) returns
func(child0.evaluate(t, y), child1.evaluate(t, y), etc).

• children (pybamm.Symbol) – The children nodes to apply the function to

• **Extends (** pybamm.Symbol) –

diff(variable)
See pybamm.Symbol.diff().

evaluate(t=None, y=None, known_evals=None)
See pybamm.Symbol.evaluate().

evaluate_for_shape()
Default behaviour: has same shape as all child See pybamm.Symbol.evaluate_for_shape()

get_children_domains(children_list)
Obtains the unique domain of the children. If the children have different domains then raise an error

new_copy()
See pybamm.Symbol.new_copy().

class pybamm.SpecificFunction(function, child)
Parent class for the specific functions, which implement their own diff operators directly.

Parameters

1.1. Expression Tree 21

PyBaMM Documentation

• function (method) – Function to be applied to child

• child (pybamm.Symbol) – The child to apply the function to

class pybamm.Cos(child)
Cosine function

pybamm.cos(child)
Returns cosine function of child.

class pybamm.Cosh(child)
Hyberbolic cosine function

pybamm.cosh(child)
Returns hyperbolic cosine function of child.

class pybamm.Exponential(child)
Exponential function

pybamm.exp(child)
Returns exponential function of child.

class pybamm.Log(child)
Logarithmic function

pybamm.log(child)
Returns logarithmic function of child.

pybamm.max(child)
Returns max function of child.

pybamm.min(child)
Returns min function of child.

class pybamm.Sin(child)
Sine function

pybamm.sin(child)
Returns sine function of child.

class pybamm.Sinh(child)
Hyperbolic sine function

pybamm.sinh(child)
Returns hyperbolic sine function of child.

1.1.15 EvaluatorPython

class pybamm.EvaluatorPython(symbol)
Converts a pybamm expression tree into pure python code that will calculate the result of calling evaluate(t, y)
on the given expression tree.

Parameters symbol (pybamm.Symbol) – The symbol to convert to python code

evaluate(t=None, y=None, known_evals=None)
Acts as a drop-in replacement for pybamm.Symbol.evaluate()

22 Chapter 1. Contents

PyBaMM Documentation

1.2 Models

Below is an overview of all the battery models included in PyBaMM. Each of the pre-built models contains a reference
to the paper in which it is derived.

The models can be customised using the options dictionary defined in the pybamm.BaseBatteryModel (which
also provides information on which options and models are compatible) Visit our examples page to see how these
models can be solved, and compared, using PyBaMM.

1.2.1 Base Models

Base Model

class pybamm.BaseModel(name=’Unnamed model’)
Base model class for other models to extend.

name
A string giving the name of the model

Type str

options
A dictionary of options to be passed to the model

Type dict

rhs
A dictionary that maps expressions (variables) to expressions that represent the rhs

Type dict

algebraic
A dictionary that maps expressions (variables) to expressions that represent the algebraic equations. The
algebraic expressions are assumed to equate to zero. Note that all the variables in the model must exist in
the keys of rhs or algebraic.

Type dict

initial_conditions
A dictionary that maps expressions (variables) to expressions that represent the initial conditions for the
state variables y. The initial conditions for algebraic variables are provided as initial guesses to a root
finding algorithm that calculates consistent initial conditions.

Type dict

boundary_conditions
A dictionary that maps expressions (variables) to expressions that represent the boundary conditions

Type dict

variables
A dictionary that maps strings to expressions that represent the useful variables

Type dict

events
A list of events that should cause the solver to terminate (e.g. concentration goes negative)

Type list

1.2. Models 23

https://github.com/pybamm-team/PyBaMM/tree/master/examples/notebooks/models
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation

concatenated_rhs
After discretisation, contains the expressions representing the rhs equations concatenated into a single
expression

Type pybamm.Concatenation

concatenated_algebraic
After discretisation, contains the expressions representing the algebraic equations concatenated into a sin-
gle expression

Type pybamm.Concatenation

concatenated_initial_conditions
After discretisation, contains the vector of initial conditions

Type numpy.array

mass_matrix
After discretisation, contains the mass matrix for the model. This is computed automatically

Type pybamm.Matrix

jacobian
Contains the Jacobian for the model. If model.use_jacobian is True, the Jacobian is computed automati-
cally during the set up in solve

Type pybamm.Concatenation

use_jacobian
Whether to use the Jacobian when solving the model (default is True)

Type bool

use_simplify
Whether to simplify the expression tress representing the rhs and algebraic equations, Jacobain (if using)
and events, before solving the model (default is True)

Type bool

use_to_python
Whether to convert the expression tress representing the rhs and algebraic equations, Jacobain (if using)
and events into pure python code that will calculate the result of calling evaluate(t, y) on the given expres-
sion tree (default is True)

Type bool

check_algebraic_equations(post_discretisation)
Check that the algebraic equations are well-posed. Before discretisation, each algebraic equation key must
appear in the equation After discretisation, there must be at least one StateVector in each algebraic equation

check_default_variables_dictionaries()
Chec that the right variables are provided.

check_ics_bcs()
Check that the initial and boundary conditions are well-posed.

check_well_determined(post_discretisation)
Check that the model is not under- or over-determined.

check_well_posedness(post_discretisation=False)
Check that the model is well-posed by executing the following tests: - Model is not over- or underde-
termined, by comparing keys and equations in rhs and algebraic. Overdetermined if more equations
than variables, underdetermined if more variables than equations. - There is an initial condition in

24 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation

self.initial_conditions for each variable/equation pair in self.rhs - There are appropriate boundary con-
ditions in self.boundary_conditions for each variable/equation pair in self.rhs and self.algebraic

Parameters post_discretisation (boolean) – A flag indicating tests to be skipped
after discretisation

update(*submodels)
Update model to add new physics from submodels

Parameters submodel (iterable of pybamm.BaseModel) – The submodels from which to
create new model

Base Battery Model

class pybamm.BaseBatteryModel(options=None, name=’Unnamed battery model’)
Base model class with some default settings and required variables

options
A dictionary of options to be passed to the model. The options that can be set are listed below. Note that
not all of the options are compatible with each other and with all of the models implemented in PyBaMM.

• “dimensionality” [int, optional] Sets the dimension of the current collector problem. Can be 0 (de-
fault), 1 or 2.

• “surface form” [bool or str, optional] Whether to use the surface formulation of the problem. Can
be False (default), “differential” or “algebraic”. Must be ‘False’ for lithium-ion models.

• “convection” [bool or str, optional] Whether to include the effects of convection in the model. Can
be False (default), “differential” or “algebraic”. Must be ‘False’ for lithium-ion models.

• “side reactions” [list, optional] Contains a list of any side reactions to include. Default is []. If this
list is not empty (i.e. side reactions are included in the model), then “surface form” cannot be
‘False’.

• “interfacial surface area” [str, optional] Sets the model for the interfacial surface area. Can be
“constant” (default) or “varying”. Not currently implemented in any of the models.

• “current collector” [str, optional] Sets the current collector model to use. Can be “uniform” (de-
fault), “potential pair”, “potential pair quite conductive” or “single particle potential pair”.

• “particle” [str, optional] Sets the submodel to use to describe behaviour within the particle. Can be
“Fickian diffusion” (default) or “fast diffusion”.

• “thermal” [str, optional] Sets the thermal model to use. Can be “isothermal” (default), “x-full”,
“x-lumped”, “xyz-lumped” or “lumped”. Must be “isothermal” for lead-acid models.

• “thermal current collector” [bool, optional] Whether to include thermal effects in the current col-
lector in one-dimensional models (default is False). Note that this option only takes effect if
“dimensionality” is 0. If “dimensionality” is 1 or 2 current collector effects are always included.
Must be ‘False’ for lead-acid models.

Type dict

Extends: pybamm.BaseModel

default_solver
Create and return the default solver for this model

process_parameters_and_discretise(symbol, parameter_values, disc)
Process parameters and discretise a symbol using supplied parameter values and discretisation. Note: care
should be taken if using spatial operators on dimensional symbols. Operators in pybamm are written in

1.2. Models 25

https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

non-dimensional form, so may need to be scaled by the appropriate length scale. It is recommended to use
this method on non-dimensional symbols.

Parameters

• symbol (pybamm.Symbol) – Symbol to be processed

• parameter_values (pybamm.ParameterValues) – The parameter values to use
during processing

• disc (pybamm.Discretisation) – The discrisation to use

Returns Processed symbol

Return type pybamm.Symbol

set_soc_variables()
Set variables relating to the state of charge. This function is overriden by the base battery models

1.2.2 Lithium-ion Models

Base Lithium-ion Model

class pybamm.lithium_ion.BaseModel(options=None, name=’Unnamed lithium-ion model’)
Overwrites default parameters from Base Model with default parameters for lithium-ion models

Extends: pybamm.BaseBatteryModel

Single Particle Model (SPM)

class pybamm.lithium_ion.SPM(options=None, name=’Single Particle Model’)
Single Particle Model (SPM) of a lithium-ion battery, from1.

References

Extends: pybamm.lithium_ion.BaseModel

default_solver
Create and return the default solver for this model

Single Particle Model with Electrolyte (SPMe)

class pybamm.lithium_ion.SPMe(options=None, name=’Single Particle Model with electrolyte’)
Single Particle Model with Electrolyte (SPMe) of a lithium-ion battery, from1.

References

Extends: pybamm.lithium_ion.BaseModel

default_solver
Create and return the default solver for this model

1 SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. In: arXiv
preprint arXiv:1905.12553 (2019).

1 SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. In: arXiv
preprint arXiv:1905.12553 (2019).

26 Chapter 1. Contents

PyBaMM Documentation

Doyle-Fuller-Newman (DFN)

class pybamm.lithium_ion.DFN(options=None, name=’Doyle-Fuller-Newman model’)
Doyle-Fuller-Newman (DFN) model of a lithium-ion battery, from1.

References

Extends: pybamm.lithium_ion.BaseModel

default_solver
Create and return the default solver for this model

1.2.3 Lead Acid Models

Base Model

class pybamm.lead_acid.BaseModel(options=None, name=’Unnamed lead-acid model’)
Overwrites default parameters from Base Model with default parameters for lead-acid models

Extends: pybamm.BaseBatteryModel

set_soc_variables()
Set variables relating to the state of charge.

Leading-Order Quasi-Static Model

class pybamm.lead_acid.LOQS(options=None, name=’LOQS model’)
Leading-Order Quasi-Static model for lead-acid, from1.

References

Extends: pybamm.lead_acid.BaseModel

default_solver
Create and return the default solver for this model

Higher-Order Models

class pybamm.lead_acid.BaseHigherOrderModel(options=None, name=’Composite model’)
Base model for higher-order models for lead-acid, from1. Uses leading-order model from pybamm.
lead_acid.LOQS

1 SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. In: arXiv
preprint arXiv:1905.12553 (2019).

1 V Sulzer, SJ Chapman, CP Please, DA Howey, and CW Monroe. Faster lead-acid battery simulations from porous-electrode theory: Part II.
Asymptotic analysis. Journal of The Electrochemical Society 166.12 (2019), A2372–A2382.

1 V Sulzer, SJ Chapman, CP Please, DA Howey, and CW Monroe. Faster lead-acid battery simulations from porous-electrode theory: Part II.
Asymptotic analysis. Journal of The Electrochemical Society 166.12 (2019), A2372–A2382.

1.2. Models 27

PyBaMM Documentation

References

Extends: pybamm.lead_acid.BaseModel

default_solver
Create and return the default solver for this model

set_full_convection_submodel()
Update convection submodel, now that we have the spatially heterogeneous interfacial current densities

set_full_interface_submodel()
Set full interface submodel, to get spatially heterogeneous interfacial current densities

set_full_porosity_submodel()
Update porosity submodel, now that we have the spatially heterogeneous interfacial current densities

class pybamm.lead_acid.FOQS(options=None, name=’FOQS model’)
First-order quasi-static model for lead-acid, from1. Uses leading-order model from pybamm.lead_acid.
LOQS

Extends: pybamm.lead_acid.BaseHigherOrderModel

set_full_porosity_submodel()
Update porosity submodel, now that we have the spatially heterogeneous interfacial current densities

class pybamm.lead_acid.Composite(options=None, name=’Composite model’)
Composite model for lead-acid, from1. Uses leading-order model from pybamm.lead_acid.LOQS

Extends: pybamm.lead_acid.BaseHigherOrderModel

set_full_porosity_submodel()
Update porosity submodel, now that we have the spatially heterogeneous interfacial current densities

class pybamm.lead_acid.CompositeExtended(options=None, name=’Extended composite
model’)

Extended composite model for lead-acid, from2. Uses leading-order model from pybamm.lead_acid.
LOQS

References

Extends: pybamm.lead_acid.BaseHigherOrderModel

set_full_porosity_submodel()
Update porosity submodel, now that we have the spatially heterogeneous interfacial current densities

Full Model

class pybamm.lead_acid.Full(options=None, name=’Full model’)
Porous electrode model for lead-acid, from1, based on the Full model.

References

Extends: pybamm.lead_acid.BaseModel

default_solver
Create and return the default solver for this model

2 V Sulzer. Mathematical modelling of lead-acid batteries. PhD thesis, University of Oxford, 2019.
1 V Sulzer, SJ Chapman, CP Please, DA Howey, and CW Monroe. Faster lead-acid battery simulations from porous-electrode theory: Part II.

Asymptotic analysis. Journal of The Electrochemical Society 166.12 (2019), A2372–A2382.

28 Chapter 1. Contents

PyBaMM Documentation

1.2.4 Submodels

Base Submodel

class pybamm.BaseSubModel(param, domain=None, reactions=None)
The base class for all submodels. All submodels inherit from this class and must only provide public methods
which overwrite those in this base class. Any methods added to a submodel that do not overwrite those in this
bass class are made private with the prefix ‘_’, providing a consistent public interface for all submodels.

Parameters param (parameter class) – The model parameter symbols

param
The model parameter symbols

Type parameter class

rhs
A dictionary that maps expressions (variables) to expressions that represent the rhs

Type dict

algebraic
A dictionary that maps expressions (variables) to expressions that represent the algebraic equations. The
algebraic expressions are assumed to equate to zero. Note that all the variables in the model must exist in
the keys of rhs or algebraic.

Type dict

initial_conditions
A dictionary that maps expressions (variables) to expressions that represent the initial conditions for the
state variables y. The initial conditions for algebraic variables are provided as initial guesses to a root
finding algorithm that calculates consistent initial conditions.

Type dict

boundary_conditions
A dictionary that maps expressions (variables) to expressions that represent the boundary conditions

Type dict

variables
A dictionary that maps strings to expressions that represent the useful variables

Type dict

events
A dictionary of events that should cause the solver to terminate (e.g. concentration goes negative). The
keys are strings and the values are symbols.

Type dict

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

1.2. Models 29

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Current Collector

Base Model

class pybamm.current_collector.BaseModel(param)
Base class for current collector submodels

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.BaseSubModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other

30 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Composite Potential Pair models

class pybamm.current_collector.BaseCompositePotentialPair(param)
Composite potential pair model for the current collectors. This is identical to the BasePotentialPair model,
except the name of the fundamental variables are changed to avoid clashes with leading order.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.current_collector.BasePotentialPair

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

class pybamm.current_collector.CompositePotentialPair2plus1D(param)

class pybamm.current_collector.CompositePotentialPair1plus1D(param)

Effective Current collector Resistance models

class pybamm.current_collector.EffectiveResistance2D
A model which calculates the effective Ohmic resistance of the current collectors in the limit of large electrical
conductivity. Note: This submodel should be solved before a one-dimensional model to calculate and return the
effective current collector resistance.

Extends: pybamm.BaseModel

get_processed_potentials(solution, mesh, param_values, V_av, I_av)
Calculates the potentials in the current collector given the average voltage and current. Note: This takes in
the processed V_av and I_av from a 1D simulation representing the average cell behaviour and returns a
dictionary of processed potentials.

Uniform

class pybamm.current_collector.Uniform(param)
A submodel for uniform potential in the current collectors which is valid in the limit of fast conductivity in the
current collectors.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.current_collector.BaseModel

1.2. Models 31

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Potential Pair models

class pybamm.current_collector.BasePotentialPair(param)
A submodel for Ohm’s law plus conservation of current in the current collectors.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.current_collector.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

class pybamm.current_collector.PotentialPair2plus1D(param)
Base class for a 2+1D potential pair model

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

class pybamm.current_collector.PotentialPair1plus1D(param)
Base class for a 1+1D potential pair model

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of

32 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Quite Conductive Potential Pair models

class pybamm.current_collector.BaseQuiteConductivePotentialPair(param)
A submodel for Ohm’s law plus conservation of current in the current collectors, in the limit of quite conductive
electrodes.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.current_collector.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

class pybamm.current_collector.QuiteConductivePotentialPair1plus1D(param)

class pybamm.current_collector.QuiteConductivePotentialPair2plus1D(param)

Single Particle Potential Pair models

class pybamm.current_collector.SingleParticlePotentialPair(param)
A submodel for Ohm’s law plus conservation of current in the current collectors, which uses the voltage-current
relationship from the SPM(e).

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.current_collector.PotentialPair2plus1D

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

1.2. Models 33

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Convection

Base Model

class pybamm.convection.BaseModel(param)
Base class for convection submodels.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.BaseSubModel

No Convection

class pybamm.convection.NoConvection(param)
A submodel for case where there is no convection.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.convection.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Leading-Order Model

class pybamm.convection.LeadingOrder(param)
A submodel for the leading-order approximation of pressure-driven convection

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.convection.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

34 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Composite Model

class pybamm.convection.Composite(param)
Class for composite pressure-driven convection

Parameters

• param (parameter class) – The parameters to use for this submodel

• *Extends –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Full Model

class pybamm.convection.Full(param)
Submodel for the full model of pressure-driven convection

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.convection.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

1.2. Models 35

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Electrode

Electrode Base Model

class pybamm.electrode.BaseElectrode(param, domain, reactions=None)
Base class for electrode submodels.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘Negative’ or ‘Positive’

• **Extends (** pybamm.BaseSubModel) –

default_solver
Create and return the default solver for this model

Ohmic

Base Model

class pybamm.electrode.ohm.BaseModel(param, domain, reactions=None)
A base class for electrode submodels that employ Ohm’s law.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘Negative’ or ‘Positive’

Extends: pybamm.electrode.BaseElectrode

default_solver
Create and return the default solver for this model

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

36 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Leading Order Model

class pybamm.electrode.ohm.LeadingOrder(param, domain)
An electrode submodel that employs Ohm’s law the leading-order approximation to governing equations.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘Negative’ or ‘Positive’

Extends: pybamm.electrode.ohm.BaseModel

default_solver
Create and return the default solver for this model

get_coupled_variables(variables)
Returns variables which are derived from the fundamental variables in the model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Composite Model

class pybamm.electrode.ohm.Composite(param, domain)
An explicit composite leading and first order solution to solid phase current conservation with ohm’s law. Note
that the returned current density is only the leading order approximation.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘Negative electrode’ or ‘Positive electrode’

Extends: pybamm.BaseOhm

default_solver
Create and return the default solver for this model

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

1.2. Models 37

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Full Model

class pybamm.electrode.ohm.Full(param, domain, reactions)
Full model of electrode employing Ohm’s law.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘Negative’ or ‘Positive’

Extends: pybamm.electrode.ohm.BaseModel

default_solver
Create and return the default solver for this model

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

38 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Surface Form

class pybamm.electrode.ohm.SurfaceForm(param, domain)
A submodel for the electrode with Ohm’s law in the surface potential formulation.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘Negative’ or ‘Positive’

Extends: pybamm.electrode.ohm.BaseModel

default_solver
Create and return the default solver for this model

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Electrolyte

Base Electrolyte Conductivity Submodel

class pybamm.electrolyte.BaseElectrolyteConductivity(param, domain=None, reac-
tions=None)

Base class for conservation of charge in the electrolyte.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str, optional) – The domain in which the model holds

• reactions (dict, optional) – Dictionary of reaction terms

• **Extends (** pybamm.BaseSubModel) –

Base Electrolyte Diffusion Submodel

class pybamm.electrolyte.BaseElectrolyteDiffusion(param, reactions=None)
Base class for conservation of mass in the electrolyte.

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict, optional) – Dictionary of reaction terms

• **Extends (** pybamm.BaseSubModel) –

1.2. Models 39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Stefan-Maxwell

Conductivity

Base Model

class pybamm.electrolyte.stefan_maxwell.conductivity.BaseModel(param, do-
main=None, re-
actions=None)

Base class for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str, optional) – The domain in which the model holds

• reactions (dict, optional) – Dictionary of reaction terms

• **Extends (** pybamm.electrolyte.BaseElectrolyteConductivity) –

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Leading Order Model

class pybamm.electrolyte.stefan_maxwell.conductivity.LeadingOrder(param, do-
main=None,
reac-
tions=None)

Leading-order model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive
equations. (Leading refers to leading-order in the asymptotic reduction)

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str, optional) – The domain in which the model holds

• reactions (dict, optional) – Dictionary of reaction terms

• **Extends (** pybamm.BaseStefanMaxwellConductivity) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

40 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Composite Model

class pybamm.electrolyte.stefan_maxwell.conductivity.Composite(param, do-
main=None)

Class for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations. (Com-
posite refers to a composite leading and first-order expression from the asymptotic reduction)

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str, optional) – The domain in which the model holds

• **Extends (** pybamm.electrolyte.stefan_maxwell.conductivity.
BaseHigerOrder) –

unpack(variables)
Unpack variables and return average values

Full Model

class pybamm.electrolyte.stefan_maxwell.conductivity.Full(param, reactions)
Full model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations.
(Full refers to unreduced by asymptotic methods)

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• **Extends (** pybamm.BaseStefanMaxwellConductivity) –

default_solver
Create and return the default solver for this model

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

1.2. Models 41

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Surface Form

Full Model

class pybamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.FullDifferential(param,
do-
main,
re-
ac-
tions)

Full model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations
and where capacitance is present. (Full refers to unreduced by asymptotic methods)

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.electrolyte.stefan_maxwell.conductivity.
surface_potential_form.BaseFull

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this

42 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

class pybamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.FullAlgebraic(param,
do-
main,
re-
ac-
tions)

Full model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations.
(Full refers to unreduced by asymptotic methods)

Parameters param – The parameters to use for this submodel

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Leading Order Model

class pybamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.LeadingOrderDifferential(param,
do-
main,
re-
ac-
tions)

Leading-order model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive
equations employing the surface potential difference formulation and where capacitance is present.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: BaseLeadingOrderSurfaceForm

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

class pybamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.LeadingOrderAlgebraic(param,
do-
main,
re-
ac-
tions)

Leading-order model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive
equations employing the surface potential difference formulation.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: BaseLeadingOrderSurfaceForm

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method

1.2. Models 43

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Diffusion

Base Model

class pybamm.electrolyte.stefan_maxwell.diffusion.BaseModel(param, reac-
tions=None)

Base class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations.

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict, optional) – Dictionary of reaction terms

• **Extends (** pybamm.electrolyte.BaseElectrolyteDiffusion) –

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Constant Concentration

class pybamm.electrolyte.stefan_maxwell.diffusion.ConstantConcentration(param)
Class for constant concentration of electrolyte

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.electrolyte.stefan_maxwell.diffusion.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

44 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Composite Model

class pybamm.electrolyte.stefan_maxwell.diffusion.Composite(param, reactions, ex-
tended=False)

Class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations. (Com-
posite refers to composite model by asymptotic methods)

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• extended (bool) – Whether to include feedback from the first-order terms

• **Extends (** pybamm.electrolyte.stefan_maxwell.diffusion.Full)
–

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

set_rhs(variables)
Composite reaction-diffusion with source terms from leading order

Full Model

class pybamm.electrolyte.stefan_maxwell.diffusion.Full(param, reactions)
Class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations. (Full
refers to unreduced by asymptotic methods)

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• **Extends (** pybamm.electrolyte.stefan_maxwell.diffusion.
BaseModel) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent

1.2. Models 45

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Leading Order Model

class pybamm.electrolyte.stefan_maxwell.diffusion.LeadingOrder(param, reac-
tions)

Class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations. (Leading
refers to leading order of asymptotic reduction)

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• **Extends (** pybamm.electrolyte.stefan_maxwell.diffusion.
BaseModel) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

46 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Interface

Interface Base Model

class pybamm.interface.BaseInterface(param, domain)
Base class for interfacial currents

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.BaseSubModel

Diffusion-limited Kinetics

Base Model

class pybamm.interface.diffusion_limited.BaseModel(param, domain)
Leading-order submodel for diffusion-limited kinetics

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.BaseInterface

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Full Model

class pybamm.interface.diffusion_limited.FullDiffusionLimited(param, domain)
Full submodel for diffusion-limited kinetics

Parameters

1.2. Models 47

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.diffusion_limited.BaseModel

Leading-order Model

class pybamm.interface.diffusion_limited.LeadingOrderDiffusionLimited(param,
do-
main)

Leading-order submodel for diffusion-limited kinetics

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.diffusion_limited.BaseModel

Inverse Interface Kinetics

Base Inverse First-order Kinetics

class pybamm.interface.inverse_kinetics.BaseInverseFirstOrderKinetics(param,
do-
main)

Base inverse first-order kinetics

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.kinetics.BaseFirstOrderKinetics

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Base Inverse Kinetics

class pybamm.interface.inverse_kinetics.BaseInverseKinetics(param, domain)
A base submodel that implements the inverted form of the Butler-Volmer relation to solve for the reaction
overpotential.

Parameters

• param – Model parameters

48 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

• domain (iter of str, optional) – The domain(s) in which to compute the inter-
facial current. Default is None, in which case j.domain is used.

• **Extends (** pybamm.interface.kinetics.ButlerVolmer) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Inverse Butler-Volmer

class pybamm.interface.inverse_kinetics.InverseButlerVolmer(param, domain)
A base submodel that implements the inverted form of the Butler-Volmer relation to solve for the reaction
overpotential.

Parameters

• param – Model parameters

• domain (iter of str, optional) – The domain(s) in which to compute the inter-
facial current. Default is None, in which case j.domain is used.

• **Extends (** pybamm.interface.kinetics.ButlerVolmer) –

Interface Kinetics

Base Kinetics

class pybamm.interface.kinetics.BaseModel(param, domain)
Base submodel for kinetics

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.BaseInterface

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

1.2. Models 49

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Base First-order Kinetics

class pybamm.interface.kinetics.BaseFirstOrderKinetics(param, domain)
Base first-order kinetics

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.BaseInterface

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Butler-Volmer

class pybamm.interface.kinetics.ButlerVolmer(param, domain)
Base submodel which implements the forward Butler-Volmer equation:

𝑗 = 𝑗0(𝑐) * sinh(𝜂𝑟(𝑐))

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.kinetics.BaseModel

class pybamm.interface.kinetics.FirstOrderButlerVolmer(param, domain)

No Reaction

class pybamm.interface.kinetics.NoReaction(param, domain)
Base submodel for when no reaction occurs

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.kinetics.BaseModel

50 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

Tafel

class pybamm.interface.kinetics.ForwardTafel(param, domain)
Base submodel which implements the forward Tafel equation:

𝑗 = 𝑗0(𝑐) * exp(𝜂𝑟(𝑐))

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.kinetics.BaseModel

class pybamm.interface.kinetics.FirstOrderForwardTafel(param, domain)

class pybamm.interface.kinetics.BackwardTafel(param, domain)
Base submodel which implements the backward Tafel equation:

𝑗 = −𝑗0(𝑐) * exp(−𝜂𝑟(𝑐))

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.kinetics.BaseModel

Lead Acid

class pybamm.interface.lead_acid.ButlerVolmer(param, domain)
Extends BaseInterfaceLeadAcid (for exchange-current density, etc) and kinetics.ButlerVolmer
(for kinetics)

class pybamm.interface.lead_acid.InverseButlerVolmer(param, domain)
Extends BaseInterfaceLeadAcid (for exchange-current density, etc) and inverse_kinetics.
InverseButlerVolmer (for kinetics)

class pybamm.interface.lead_acid.FirstOrderButlerVolmer(param, domain)
Extends BaseInterfaceLeadAcid (for exchange-current density, etc) and kinetics.
FirstOrderButlerVolmer (for kinetics)

class pybamm.interface.lead_acid.InverseFirstOrderKinetics(param, domain)
Extends BaseInterfaceLeadAcid (for exchange-current density, etc) and kinetics.
BaseInverseFirstOrderKinetics (for kinetics)

Lithium-Ion

class pybamm.interface.lithium_ion.ButlerVolmer(param, domain)
Extends BaseInterfaceLithiumIon (for exchange-current density, etc) and kinetics.
ButlerVolmer (for kinetics)

class pybamm.interface.lithium_ion.InverseButlerVolmer(param, domain)
Extends BaseInterfaceLithiumIon (for exchange-current density, etc) and inverse_kinetics.
InverseButlerVolmer (for kinetics)

1.2. Models 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

Oxygen Diffusion

Base Model

class pybamm.oxygen_diffusion.BaseModel(param, reactions=None)
Base class for conservation of mass of oxygen.

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict, optional) – Dictionary of reaction terms

• **Extends (** pybamm.BaseSubModel) –

Composite Model

class pybamm.oxygen_diffusion.Composite(param, reactions, extended=False)
Class for conservation of mass of oxygen. (Composite refers to composite expansion in asymptotic methods) In
this model, extremely fast oxygen kinetics in the negative electrode imposes zero oxygen concentration there,
and so the oxygen variable only lives in the separator and positive electrode. The boundary condition at the
negative electrode/ separator interface is homogeneous Dirichlet.

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• extended (bool) – Whether to include feedback from the first-order terms

• **Extends (** pybamm.oxygen_diffusion.Full) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

set_rhs(variables)
Composite reaction-diffusion with source terms from leading order

First-Order Model

class pybamm.oxygen_diffusion.FirstOrder(param, reactions)
Class for conservation of mass of oxygen. (First-order refers to first-order expansion in asymptotic methods) In
this model, extremely fast oxygen kinetics in the negative electrode imposes zero oxygen concentration there,
and so the oxygen variable only lives in the separator and positive electrode. The boundary condition at the
negative electrode/ separator interface is homogeneous Dirichlet.

Parameters

• param (parameter class) – The parameters to use for this submodel

52 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

• reactions (dict) – Dictionary of reaction terms

• **Extends (** pybamm.oxygen_diffusion.BaseModel) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Full Model

class pybamm.oxygen_diffusion.Full(param, reactions)
Class for conservation of mass of oxygen. (Full refers to unreduced by asymptotic methods) In this model,
extremely fast oxygen kinetics in the negative electrode imposes zero oxygen concentration there, and so the
oxygen variable only lives in the separator and positive electrode. The boundary condition at the negative
electrode/ separator interface is homogeneous Dirichlet.

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• **Extends (** pybamm.oxygen_diffusion.BaseModel) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

1.2. Models 53

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Leading Order Model

class pybamm.oxygen_diffusion.LeadingOrder(param, reactions)
Class for conservation of mass of oxygen. (Leading refers to leading order of asymptotic reduction)

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• **Extends (** pybamm.oxgen_diffusion.BaseModel) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

54 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Parameters variables (dict) – The variables in the whole model.

No Oxygen

class pybamm.oxygen_diffusion.NoOxygen(param)
Class for when there is no oxygen

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.oxygen_diffusion.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Particle

Particle Base Model

class pybamm.particle.BaseParticle(param, domain)
Base class for molar conservation in particles.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.BaseSubModel

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Fickian

Base Model

class pybamm.particle.fickian.BaseModel(param, domain)
Base class for molar conservation in particles which employ Fick’s law.

1.2. Models 55

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.particle.BaseParticle

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Many Particle

class pybamm.particle.fickian.ManyParticles(param, domain)
Base class for molar conservation in many particles which employs Fick’s law.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.particle.fickian.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

56 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Single Particle

class pybamm.particle.fickian.SingleParticle(param, domain)
Base class for molar conservation in a single x-averaged particle which employs Fick’s law.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.particle.fickian.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Fast

Base Model

class pybamm.particle.fast.BaseModel(param, domain)
Base class for molar conservation in particles with uniform concentration in r (i.e. infinitely fast diffusion within
particles).

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.particle.BaseParticle

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

1.2. Models 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Many Particle

class pybamm.particle.fast.ManyParticles(param, domain)
Base class for molar conservation in many particles with uniform concentration in r (i.e. infinitely fast diffusion
within particles).

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.particle.fast.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Single Particle

class pybamm.particle.fast.SingleParticle(param, domain)
Base class for molar conservation in a single x-averaged particle with uniform concentration in r (i.e. infinitely
fast diffusion within particles).

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.particle.fast.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Porosity

Base Model

class pybamm.porosity.BaseModel(param)
Base class for porosity

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.BaseSubModel

58 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Constant Porosity

class pybamm.porosity.Constant(param)
Submodel for constant porosity

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.porosity.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Leading-Order Model

class pybamm.porosity.LeadingOrder(param)
Leading-order model for reaction-driven porosity changes

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.porosity.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this

1.2. Models 59

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Full Model

class pybamm.porosity.Full(param)
Full model for reaction-driven porosity changes

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.porosity.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Thermal

Isothermal

Isothermal Model

class pybamm.thermal.isothermal.Isothermal(param)
Class for isothermal submodel.

60 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseThermal

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

X-full

Base Model

class pybamm.thermal.x_full.BaseModel(param)
Base class for full x-direction thermal submodels.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

1.2. Models 61

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

No current collector

class pybamm.thermal.x_full.NoCurrentCollector(param)
Class for full x-direction thermal submodel without current collectors

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.x_full.BaseModel

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

X-lumped

Base Model

class pybamm.thermal.x_lumped.BaseModel(param)
Base class for x-lumped thermal submodel

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

62 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

No current collector

class pybamm.thermal.x_lumped.NoCurrentCollector(param)
Class for x-lumped thermal submodel without current collectors. Note: since there are no current collectors in
this model, the electrochemical model must be 1D (x-direction only).

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseModel

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

0D current collector

class pybamm.thermal.x_lumped.CurrentCollector0D(param)
Class for x-lumped thermal model with 0D current collectors

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

1D current collector

class pybamm.thermal.x_lumped.CurrentCollector1D(param)
Class for x-lumped thermal model with 1D current collectors

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

1.2. Models 63

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Parameters variables (dict) – The variables in the whole model.

2D current collector

class pybamm.thermal.x_lumped.CurrentCollector2D(param)
Class for x-lumped thermal submodel with 2D current collectors

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

XYZ-lumped

Base Model

class pybamm.thermal.xyz_lumped.BaseModel(param)
Base class for xyz-lumped thermal submodel

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

64 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

1D current collector

class pybamm.thermal.xyz_lumped.CurrentCollector1D(param)
Class for xyz-lumped thermal submodel with 1D current collectors

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseModel

2D current collector

class pybamm.thermal.xyz_lumped.CurrentCollector2D(param)
Class for xyz-lumped thermal submodel with 2D current collectors

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseModel

Base Thermal

class pybamm.thermal.BaseThermal(param)
Base class for thermal effects

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.BaseSubModel

1.3 Parameters

1.3.1 Base Parameter Values

class pybamm.ParameterValues(base_parameters={}, optional_parameters={})
The parameter values for a simulation.

Parameters

• base_parameters (dict or string) – The base parameters If string, gets passed
to read_parameters_csv to read a file.

• optional_parameters (dict or string) – Optional parameters, overwrites
base_parameters if there is a conflict If string, gets passed to read_parameters_csv to read a
file.

process_geometry(geometry)
Assign parameter values to a geometry (inplace).

1.3. Parameters 65

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Parameters geometry (pybamm.Geometry) – Geometry specs to assign parameter values
to

process_model(model, processing=’process’)
Assign parameter values to a model. Currently inplace, could be changed to return a new model.

Parameters

• model (pybamm.BaseModel) – Model to assign parameter values for

• processing (str, optional) – Flag to indicate how to process model (default
‘process’)

– ’process’: Calls process_symbol() (walk through the symbol and replace any Pa-
rameter with a Value)

– ’update’: Calls update_scalars() for use on already-processed model (update the
value of any Scalars in the expression tree.)

Raises pybamm.ModelError – If an empty model is passed (model.rhs = {} and
model.algebraic={})

process_symbol(symbol)
Walk through the symbol and replace any Parameter with a Value. If a symbol has already been processed,
the stored value is returned.

Parameters symbol (pybamm.Symbol) – Symbol or Expression tree to set parameters for

Returns symbol – Symbol with Parameter instances replaced by Value

Return type pybamm.Symbol

read_parameters_csv(filename)
Reads parameters from csv file into dict.

Parameters filename (str) – The name of the csv file containing the parameters.

Returns {name: value} pairs for the parameters.

Return type dict

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

update_model(model, disc)
Process a discretised model. Currently inplace, could be changed to return a new model.

Parameters

• model (pybamm.BaseModel) – Model to assign parameter values for

• disc (pybamm.Discretisation) – The class that was used to discretise

update_scalars(symbol)
Update the value of any Scalars in the expression tree.

Parameters symbol (pybamm.Symbol) – Symbol or Expression tree to update

Returns symbol – Symbol with Scalars updated

Return type pybamm.Symbol

66 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

1.3.2 Geometric Parameters

Standard geometric parameters

1.3.3 Electrical Parameters

1.3.4 Thermal Parameters

1.3.5 Standard Lithium-ion Parameters

Standard parameters for lithium-ion battery models

1.3.6 Standard Lead-Acid Parameters

Standard Parameters for lead-acid battery models

1.3.7 Print parameters

pybamm.print_parameters(parameters, parameter_values, output_file=None)
Return dictionary of evaluated parameters, and optionally print these evaluated parameters to an output file. For
dimensionless parameters that depend on the C-rate, the value is given as a function of the C-rate (either x *
Crate or x / Crate depending on the dependence)

Parameters

• parameters (class or dict containing pybamm.Parameter objects) – Class or dictio-
nary containing all the parameters to be evaluated

• parameter_values (pybamm.ParameterValues) – The class of parameter values

• output_file (string, optional) – The file to print parameters to. If None, the
parameters are not printed, and this function simply acts as a test that all the parameters can
be evaluated, and returns the dictionary of evaluated parameters.

Returns evaluated_parameters – The evaluated parameters, for further processing if needed

Return type defaultdict

Notes

A C-rate of 1 C is the current required to fully discharge the battery in 1 hour, 2 C is current to discharge the
battery in 0.5 hours, etc

pybamm.print_evaluated_parameters(evaluated_parameters, output_file)
Print a dictionary of evaluated parameters to an output file

Parameters

• evaluated_parameters (defaultdict) – The evaluated parameters, for further
processing if needed

• output_file (string, optional) – The file to print parameters to. If None, the
parameters are not printed, and this function simply acts as a test that all the parameters can
be evaluated

1.3. Parameters 67

PyBaMM Documentation

1.4 Geometry

1.4.1 Geometry

class pybamm.Geometry(*geometries, custom_geometry={})
A geometry class to store the details features of the cell geometry.

Geometry extends the class dictionary and uses the key words: “negative electrode”, “positive electrode”, etc
to indicate the subdomain. Within each subdomain, there are “primary”, “secondary” or “tabs” dimensions.
“primary” dimensions correspond to dimensions on which spatial operators will be applied (e.g. the gradient
and divergence). In contrast, spatial operators do not act along “secondary” dimensions. This allows for multiple
independent particles to be included into a model.

The values assigned to each domain are dictionaries containing the spatial variables in that domain, along with
expression trees giving their min and maximum extents. For example, the following dictionary structure would
represent a Geometry with a single domain “negative electrode”, defined using the variable x_n which has a
range from 0 to the pre-defined parameter l_n.

{
"negative electrode": {

"primary": {x_n: {"min": pybamm.Scalar(0), "max": l_n}}
}

}

A user can create a new Geometry by combining one or more of the pre-defined geometries defined with the
names given below.

• “1D macro”: macroscopic 1D cell geometry (i.e. electrodes)

• “3D macro”: macroscopic 3D cell geometry

• “1+1D macro”: 1D macroscopic cell geometry with a 1D current collector

• “1+2D macro”: 1D macroscopic cell geometry with a 2D current collector

• “1D micro”: 1D microscopic cell geometry (i.e. particles)

• “1+1D micro”: This is the geometry used in the standard DFN or P2D model

• “(1+0)+1D micro”: 0D macroscopic cell geometry with 1D current collector, along with the micro-
scopic 1D particle geometry.

• “(2+0)+1D micro”: 0D macroscopic cell geometry with 1D current collector, along with the micro-
scopic 1D particle geometry.

• “(1+1)+1D micro”: 1D macroscopic cell geometry, with 1D current collector model, along with the
microscopic 1D particle geometry.

• “(2+1)+1D micro”: 1D macroscopic cell geometry, with 2D current collector model, along with the
microscopic 1D particle geometry.

• “2D current collector”: macroscopic 2D current collector geometry

Extends: dict

Parameters

• geometries (one or more strings or Geometry objects. A string
will be assumed to be) – one of the predefined Geometries given above

• custom_geometry (dict containing any extra user defined
geometry) –

68 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

add_domain(name, geometry)
Add a new domain to the geometry

Parameters

• name (string giving the name of the domain) –

• geometry (dict of variables in the domain, along with the
minimum and maximum) – extents (e.g. {“primary”: {x_n: {“min”: py-
bamm.Scalar(0), “max”: l_n}}}

class pybamm.Geometry1DMacro(custom_geometry={})
A geometry class to store the details features of the macroscopic 1D cell geometry.

Extends: Geometry

Parameters custom_geometry (dict containing any extra user defined
geometry) –

class pybamm.Geometry3DMacro(custom_geometry={})
A geometry class to store the details features of the macroscopic 3D cell geometry.

Extends: Geometry1DMacro

Parameters custom_geometry (dict containing any extra user defined
geometry) –

class pybamm.Geometry1DMicro(custom_geometry={})
A geometry class to store the details features of the microscopic 1D particle geometry.

Extends: Geometry

Parameters custom_geometry (dict containing any extra user defined
geometry) –

class pybamm.Geometry1p1DMicro(custom_geometry={})
A geometry class to store the details features of the 1+1D cell geometry. This is the geometry used in the
standard DFN or P2D model.

Extends: Geometry

Parameters custom_geometry (dict containing any extra user defined
geometry) –

class pybamm.Geometryxp1DMacro(cc_dimension=1, custom_geometry={})
A geometry class to store the details features of x+1D macroscopic cell geometry, where x is the dimension of
the current collector model.

Extends: Geometry1DMacro

Parameters

• cc_dimension (int, optional) – the dimension of the current collector model

• custom_geometry (dict, optional) – dictionary containing any extra user defined
geometry

class pybamm.Geometryxp0p1DMicro(cc_dimension=1, custom_geometry={})
A geometry class to store the details features of x+0D macroscopic cell geometry, where x is the dimension of
the current collector model, along with the microscopic 1D particle geometry.

Extends: Geometry1DMicro

Parameters

• cc_dimension (int, optional) – the dimension of the current collector model

1.4. Geometry 69

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

PyBaMM Documentation

• custom_geometry (dict, optional) – dictionary containing any extra user defined
geometry

class pybamm.Geometryxp1p1DMicro(cc_dimension=1, custom_geometry={})
A geometry class to store the details features of x+1D macroscopic cell geometry, where x is the dimension of
the current collector model, along with the microscopic 1D particle geometry.

Extends: Geometry1DMicro

Parameters

• cc_dimension (int, optional) – the dimension of the current collector model

• custom_geometry (dict, optional) – dictionary containing any extra user defined
geometry

class pybamm.Geometry2DCurrentCollector(custom_geometry={})
A geometry class to store the details features of the macroscopic 2D current collector geometry.

Extends: Geometry

Parameters custom_geometry (dict containing any extra user defined
geometry) –

1.5 Meshes

1.5.1 Meshes

class pybamm.Mesh(geometry, submesh_types, var_pts)
Mesh contains a list of submeshes on each subdomain.

Extends: dict

Parameters

• geometry – contains the geometry of the problem.

• submesh_types (dict) – contains the types of submeshes to use (e.g. Uni-
form1DSubMesh)

• submesh_pts (dict) – contains the number of points on each subdomain

add_ghost_meshes()
Create meshes for potential ghost nodes on either side of each submesh, using self.submeshclass This will
be useful for calculating the gradient with Dirichlet BCs.

combine_submeshes(*submeshnames)
Combine submeshes into a new submesh, using self.submeshclass Raises pybamm.DomainError if sub-
meshes to be combined do not match up (edges are not aligned).

Parameters submeshnames (list of str) – The names of the submeshes to be combined

Returns submesh – A new submesh with the class defined by self.submeshclass

Return type self.submeshclass

70 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

1.5.2 1D Sub Meshes

class pybamm.SubMesh1D(edges, coord_sys, tabs=None)
1D submesh class. Contains the position of the nodes, the number of mesh points, and (optionally) information
about the tab locations.

class pybamm.Uniform1DSubMesh(lims, npts, tabs=None)
A class to generate a uniform submesh on a 1D domain

Parameters

• lims (dict) – A dictionary that contains the limits of the spatial variables

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable

• tabs (dict, optional) – A dictionary that contains information about the size and
location of the tabs

1.5.3 Scikits FEM Submeshes

class pybamm.Scikit2DSubMesh(lims, npts, tabs)
Submesh class. Contains information about the 2D finite element mesh. Note: This class only allows for the
use of piecewise-linear triangular finite elements.

Parameters

• lims (dict) – A dictionary that contains the limits of each spatial variable

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable

• tabs (dict) – A dictionary that contains information about the size and location of the
tabs

on_boundary(y, z, tab)
A method to get the degrees of freedom corresponding to the subdomains for the tabs.

1.5.4 0D Sub Mesh

class pybamm.SubMesh0D(position, npts=None)
0D submesh class. Contains the position of the node.

Parameters

• position (dict) – A dictionary that contains the position of the spatial variable

• npts (dict, optional) – Number of points to be used. Included for compatibility
with other meshes, but ignored by this mesh class

1.6 Discretisation and spatial methods

1.6.1 Discretisation

class pybamm.Discretisation(mesh=None, spatial_methods=None)
The discretisation class, with methods to process a model and replace Spatial Operators with Matrices and
Variables with StateVectors

1.6. Discretisation and spatial methods 71

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Parameters

• mesh (pybamm.Mesh) – contains all submeshes to be used on each domain

• spatial_methods (dict) – a dictionary of the spatial method to be used on each do-
main. The keys correspond to the keys in a pybamm.Model

check_initial_conditions(model)
Check initial conditions are a numpy array

check_initial_conditions_rhs(model)
Check initial conditions and rhs have the same shape

check_model(model)
Perform some basic checks to make sure the discretised model makes sense.

check_tab_conditions(symbol, bcs)
Check any boundary conditions applied on “negative tab”, “positive tab” and “no tab”. For 1D current
collector meshes, these conditions are converted into boundary conditions on “left” (tab at z=0) or “right”
(tab at z=l_z) depending on the tab location stored in the mesh. For 2D current collector meshes, the
boundary conditions can be applied on the tabs directly.

Parameters

• symbol (pybamm.expression_tree.symbol.Symbol) – The symbol on which
the boundary conditions are applied.

• bcs (dict) – The dictionary of boundary conditions (a dict of {side: equation}).

Returns The dictionary of boundary conditions, with the keys changed to “left” and “right”
where necessary.

Return type dict

check_variables(model)
Check variables in variable list against rhs Be lenient with size check if the variable in model.variables
is broadcasted, or a concatenation, or an outer product (if broadcasted, variable is a multiplication with a
vector of ones)

create_mass_matrix(model)
Creates mass matrix of the discretised model. Note that the model is assumed to be of the form M*y_dot
= f(t,y), where M is the (possibly singular) mass matrix.

Parameters model (pybamm.BaseModel) – Discretised model. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns The mass matrix

Return type pybamm.Matrix

process_boundary_conditions(model)
Discretise model boundary_conditions, also converting keys to ids

Parameters model (pybamm.BaseModel) – Model to dicretise. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns Dictionary of processed boundary conditions

Return type dict

process_dict(var_eqn_dict)
Discretise a dictionary of {variable: equation}, broadcasting if necessary (can be model.rhs,
model.initial_conditions or model.variables).

72 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Parameters var_eqn_dict (dict) – Equations ({variable: equation} dict) to dicretise (can
be model.rhs, model.initial_conditions or model.variables)

Returns new_var_eqn_dict – Discretised equations

Return type dict

process_initial_conditions(model)
Discretise model initial_conditions.

Parameters model (pybamm.BaseModel) – Model to dicretise. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns Tuple of processed_initial_conditions (dict of initial conditions) and concate-
nated_initial_conditions (numpy array of concatenated initial conditions)

Return type tuple

process_model(model, inplace=True)
Discretise a model. Currently inplace, could be changed to return a new model.

Parameters

• model (pybamm.BaseModel) – Model to dicretise. Must have attributes rhs, ini-
tial_conditions and boundary_conditions (all dicts of {variable: equation})

• inplace (bool, optional) – If True, discretise the model in place. Otherwise,
return a new discretised model. Default is True.

Returns model_disc – The discretised model. Note that if inplace is True, model will have
also been discretised in place so model == model_disc. If inplace is False, model !=
model_disc

Return type pybamm.BaseModel

Raises pybamm.ModelError – If an empty model is passed (model.rhs = {} and
model.algebraic={})

process_rhs_and_algebraic(model)
Discretise model equations - differential (‘rhs’) and algebraic.

Parameters model (pybamm.BaseModel) – Model to dicretise. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns Tuple of processed_rhs (dict of processed differential equations), pro-
cessed_concatenated_rhs, processed_algebraic (dict of processed algebraic equations)
and processed_concatenated_algebraic

Return type tuple

process_symbol(symbol)
Discretise operators in model equations. If a symbol has already been discretised, the stored value is
returned.

Parameters symbol (pybamm.expression_tree.symbol.Symbol) – Symbol to dis-
cretise

Returns Discretised symbol

Return type pybamm.expression_tree.symbol.Symbol

set_internal_boundary_conditions(model)
A method to set the internal boundary conditions for the submodel. These are required to properly calculate
the gradient. Note: this method modifies the state of self.boundary_conditions.

1.6. Discretisation and spatial methods 73

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

PyBaMM Documentation

set_variable_slices(variables)
Sets the slicing for variables.

Parameters variables (iterable of pybamm.Variables) – The variables for which to set
slices

1.6.2 Spatial Method

class pybamm.SpatialMethod(mesh)
A general spatial methods class, with default (trivial) behaviour for some spatial operations. All spatial methods
will follow the general form of SpatialMethod in that they contain a method for broadcasting variables onto a
mesh, a gradient operator, and a diverence operator.

Parameters mesh – Contains all the submeshes for discretisation

boundary_integral(child, discretised_child, region)
Implements the boundary integral for a spatial method.

Parameters

• child (pybamm.Symbol) – The symbol to which is being integrated

• discretised_child (pybamm.Symbol) – The discretised symbol of the correct
size

• region (str) – The region of the boundary over which to integrate. If region is None
(default) the integration is carried out over the entire boundary. If region is negative tab
or positive tab then the integration is only carried out over the appropriate part of the
boundary corresponding to the tab.

Returns Contains the result of acting the discretised boundary integral on the child discre-
tised_symbol

Return type class: pybamm.Array

boundary_value_or_flux(symbol, discretised_child)
Returns the boundary value or flux using the approriate expression for the spatial method. To do this, we
create a sparse vector ‘bv_vector’ that extracts either the first (for side=”left”) or last (for side=”right”)
point from ‘discretised_child’.

Parameters

• symbol (pybamm.Symbol) – The boundary value or flux symbol

• discretised_child (pybamm.StateVector) – The discretised variable from
which to calculate the boundary value

Returns The variable representing the surface value.

Return type pybamm.MatrixMultiplication

broadcast(symbol, domain, auxiliary_domains, broadcast_type)
Broadcast symbol to a specified domain.

Parameters

• symbol (pybamm.Symbol) – The symbol to be broadcasted

• domain (iterable of strings) – The domain to broadcast to

• broadcast_type (str) – The type of broadcast, either: ‘primary’ or ‘full’

Returns broadcasted_symbol – The discretised symbol of the correct size for the spatial
method

74 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

Return type class: pybamm.Symbol

concatenation(disc_children)
Discrete concatenation object.

Parameters disc_children (list) – List of discretised children

Returns Concatenation of the discretised children

Return type pybamm.DomainConcatenation

delta_function(symbol, discretised_symbol)
Implements the delta function on the approriate side for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol to which is being integrated

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

divergence(symbol, discretised_symbol, boundary_conditions)
Implements the divergence for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the gradient of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right bc}})

Returns Contains the result of acting the discretised divergence on the child discretised_symbol

Return type class: pybamm.Array

gradient(symbol, discretised_symbol, boundary_conditions)
Implements the gradient for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the gradient of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right bc}})

Returns Contains the result of acting the discretised gradient on the child discretised_symbol

Return type class: pybamm.Array

gradient_squared(symbol, discretised_symbol, boundary_conditions)
Implements the inner product of the gradient with itself for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the gradient of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right bc}})

1.6. Discretisation and spatial methods 75

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

Returns Contains the result of taking the inner product of the result of acting the discretised
gradient on the child discretised_symbol with itself

Return type class: pybamm.Array

indefinite_integral(child, discretised_child)
Implements the indefinite integral for a spatial method.

Parameters

• child (pybamm.Symbol) – The symbol to which is being integrated

• discretised_child (pybamm.Symbol) – The discretised symbol of the correct
size

Returns Contains the result of acting the discretised indefinite integral on the child discre-
tised_symbol

Return type class: pybamm.Array

integral(child, discretised_child)
Implements the integral for a spatial method.

Parameters

• child (pybamm.Symbol) – The symbol to which is being integrated

• discretised_child (pybamm.Symbol) – The discretised symbol of the correct
size

Returns Contains the result of acting the discretised integral on the child discretised_symbol

Return type class: pybamm.Array

internal_neumann_condition(left_symbol_disc, right_symbol_disc, left_mesh, right_mesh)
A method to find the internal neumann conditions between two symbols on adjacent subdomains.

Parameters

• left_symbol_disc (pybamm.Symbol) – The discretised symbol on the left subdo-
main

• right_symbol_disc (pybamm.Symbol) – The discretised symbol on the right sub-
domain

• left_mesh (list) – The mesh on the left subdomain

• right_mesh (list) – The mesh on the right subdomain

laplacian(symbol, discretised_symbol, boundary_conditions)
Implements the laplacian for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the gradient of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right bc}})

Returns Contains the result of acting the discretised laplacian on the child discretised_symbol

Return type class: pybamm.Array

76 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

mass_matrix(symbol, boundary_conditions)
Calculates the mass matrix for a spatial method.

Parameters

• symbol (pybamm.Variable) – The variable corresponding to the equation for which
we are calculating the mass matrix.

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right bc}})

Returns The (sparse) mass matrix for the spatial method.

Return type pybamm.Matrix

process_binary_operators(bin_op, left, right, disc_left, disc_right)
Discretise binary operators in model equations. Default behaviour is to return a new binary operator with
the discretised children.

Parameters

• bin_op (pybamm.BinaryOperator) – Binary operator to discretise

• left (pybamm.Symbol) – The left child of bin_op

• right (pybamm.Symbol) – The right child of bin_op

• disc_left (pybamm.Symbol) – The discretised left child of bin_op

• disc_right (pybamm.Symbol) – The discretised right child of bin_op

Returns Discretised binary operator

Return type pybamm.BinaryOperator

spatial_variable(symbol)
Convert a pybamm.SpatialVariable node to a linear algebra object that can be evaluated (here, a
pybamm.Vector on either the nodes or the edges).

Parameters symbol (pybamm.SpatialVariable) – The spatial variable to be discretised.

Returns Contains the discretised spatial variable

Return type pybamm.Vector

1.6.3 Finite Volume

class pybamm.FiniteVolume(mesh)
A class which implements the steps specific to the finite volume method during discretisation.

For broadcast and mass_matrix, we follow the default behaviour from SpatialMethod.

Parameters

• mesh (pybamm.Mesh) – Contains all the submeshes for discretisation

• **Extends (“”: pybamm.SpatialMethod) –

add_ghost_nodes(symbol, discretised_symbol, bcs)
Add ghost nodes to a symbol.

For Dirichlet bcs, for a boundary condition “y = a at the left-hand boundary”, we concatenate a ghost node
to the start of the vector y with value “2*a - y1” where y1 is the value of the first node. Similarly for the
right-hand boundary condition.

1.6. Discretisation and spatial methods 77

https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

For Dirichlet bcs, for a boundary condition “y = a at the left-hand boundary”, we concatenate a ghost node
to the start of the vector y with value “2*a - y1” where y1 is the value of the first node. Similarly for the
right-hand boundary condition.

For Neumann bcs, for a boundary condition “dy/dx = b at the left-hand boundary”, we concatenate a ghost
node to the start of the vector y with value “b*h + y1” where y1 is the value of the first node and h is the
mesh size. Similarly for the right-hand boundary condition.

Parameters

• domain (list of strings) – The domain of the symbol for which to add ghost
nodes

• bcs (dict of tuples (pybamm.Scalar, str)) – Dictionary (with keys “left” and “right”)
of boundary conditions. Each boundary condition consists of a value and a flag indicating
its type (e.g. “Dirichlet”)

Returns Matrix @ discretised_symbol + bcs_vector. When evaluated, this gives the discre-
tised_symbol, with appropriate ghost nodes concatenated at each end.

Return type pybamm.Symbol (shape (n+2, n))

boundary_value_or_flux(symbol, discretised_child)
Uses linear extrapolation to get the boundary value or flux of a variable in the Finite Volume Method.

See pybamm.SpatialMethod.boundary_value()

concatenation(disc_children)
Discrete concatenation, taking edge_to_node for children that evaluate on edges. See pybamm.
SpatialMethod.concatenation()

definite_integral_matrix(domain, vector_type=’row’)
Matrix for finite-volume implementation of the definite integral in the primary dimension

𝐼 =

∫︁ 𝑏

𝑎

𝑓(𝑠) 𝑑𝑠

for where 𝑎 and 𝑏 are the left-hand and right-hand boundaries of the domain respectively

Parameters domain (list) – The domain(s) of integration

Returns

• pybamm.Matrix – The finite volume integral matrix for the domain

• vector_type (str, optional) – Whether to return a row or column vector in the primary
dimension (default is row)

delta_function(symbol, discretised_symbol)
Delta function. Implemented as a vector whose only non-zero element is the first (if symbol.side = “left”)
or last (if symbol.side = “right”), with appropriate value so that the integral of the delta function across the
whole domain is the same as the integral of the discretised symbol across the whole domain.

See pybamm.SpatialMethod.delta_function()

divergence(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the divergence operator. See pybamm.SpatialMethod.
divergence()

divergence_matrix(domain)
Divergence matrix for finite volumes in the appropriate domain. Equivalent to div(N) = (N[1:] - N[:-1])/dx

Parameters domain (list) – The domain(s) in which to compute the divergence matrix

78 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation

Returns The (sparse) finite volume divergence matrix for the domain

Return type pybamm.Matrix

edge_to_node(discretised_symbol)
Convert a discretised symbol evaluated on the cell edges to a discretised symbol evaluated on the cell
nodes. See pybamm.FiniteVolume.shift()

gradient(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the gradient operator. See pybamm.SpatialMethod.
gradient()

gradient_matrix(domain)
Gradient matrix for finite volumes in the appropriate domain. Equivalent to grad(y) = (y[1:] - y[:-1])/dx

Parameters domain (list) – The domain(s) in which to compute the gradient matrix

Returns The (sparse) finite volume gradient matrix for the domain

Return type pybamm.Matrix

indefinite_integral(child, discretised_child)
Implementation of the indefinite integral operator.

indefinite_integral_matrix_edges(domain)
Matrix for finite-volume implementation of the indefinite integral where the integrand is evaluated on mesh
edges

𝐹 (𝑥) =

∫︁ 𝑥

0

𝑓(𝑢) 𝑑𝑢

The indefinite integral must satisfy the following conditions:

• 𝐹 (0) = 0

• 𝑓(𝑥) = 𝑑𝐹
𝑑𝑥

or, in discrete form,

• BoundaryValue(F, “left”) = 0, i.e. 3 * 𝐹0 − 𝐹1 = 0

• 𝑓𝑖+1/2 = (𝐹𝑖+1 − 𝐹𝑖)/𝑑𝑥𝑖+1/2

Hence we must have

• 𝐹0 = 𝑑𝑢1/2 * 𝑓1/2/2

• 𝐹𝑖+1 = 𝐹𝑖 + 𝑑𝑢 * 𝑓𝑖+1/2

Note that 𝑓−1/2 and 𝑓𝑛+1/2 are included in the discrete integrand vector f, so we add a column of zeros at
each end of the indefinite integral matrix to ignore these.

Parameters domain (list) – The domain(s) of integration

Returns The finite volume integral matrix for the domain

Return type pybamm.Matrix

indefinite_integral_matrix_nodes(domain)
Matrix for finite-volume implementation of the indefinite integral where the integrand is evaluated on mesh
nodes. This is just a straightforward cumulative sum of the integrand

Parameters domain (list) – The domain(s) of integration

Returns The finite volume integral matrix for the domain

Return type pybamm.Matrix

1.6. Discretisation and spatial methods 79

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation

integral(child, discretised_child)
Vector-vector dot product to implement the integral operator.

internal_neumann_condition(left_symbol_disc, right_symbol_disc, left_mesh, right_mesh)
A method to find the internal neumann conditions between two symbols on adjacent subdomains.

Parameters

• left_symbol_disc (pybamm.Symbol) – The discretised symbol on the left subdo-
main

• right_symbol_disc (pybamm.Symbol) – The discretised symbol on the right sub-
domain

• left_mesh (list) – The mesh on the left subdomain

• right_mesh (list) – The mesh on the right subdomain

laplacian(symbol, discretised_symbol, boundary_conditions)
Laplacian operator, implemented as div(grad(.)) See pybamm.SpatialMethod.laplacian()

node_to_edge(discretised_symbol)
Convert a discretised symbol evaluated on the cell nodes to a discretised symbol evaluated on the cell
edges. See pybamm.FiniteVolume.shift()

process_binary_operators(bin_op, left, right, disc_left, disc_right)
Discretise binary operators in model equations. Performs appropriate averaging of diffusivities if one of
the children is a gradient operator, so that discretised sizes match up.

Parameters

• bin_op (pybamm.BinaryOperator) – Binary operator to discretise

• left (pybamm.Symbol) – The left child of bin_op

• right (pybamm.Symbol) – The right child of bin_op

• disc_left (pybamm.Symbol) – The discretised left child of bin_op

• disc_right (pybamm.Symbol) – The discretised right child of bin_op

Returns Discretised binary operator

Return type pybamm.BinaryOperator

shift(discretised_symbol, shift_key)
Convert a discretised symbol evaluated at edges/nodes, to a discretised symbol evaluated at nodes/edges.
For now we just take the arithemtic mean, though it may be better to take the harmonic mean based on [1].

[1] Recktenwald, Gerald. “The control-volume finite-difference approximation to the diffusion equation.”
(2012).

Parameters

• discretised_symbol (pybamm.Symbol) – Symbol to be averaged. When
evaluated, this symbol returns either a scalar or an array of shape (n,) or (n+1,),
where n is the number of points in the mesh for the symbol’s domain (n =
self.mesh[symbol.domain].npts)

• shift_key (str) – Whether to shift from nodes to edges (“node to edge”), or from
edges to nodes (“edge to node”)

Returns Averaged symbol. When evaluated, this returns either a scalar or an array of shape
(n+1,) (if shift_key = “node to edge”) or (n,) (if shift_key = “edge to node”)

Return type pybamm.Symbol

80 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

spatial_variable(symbol)
Creates a discretised spatial variable compatible with the FiniteVolume method.

Parameters symbol (pybamm.SpatialVariable) – The spatial variable to be discretised.

Returns Contains the discretised spatial variable

Return type pybamm.Vector

1.6.4 Scikit Finite Elements

class pybamm.ScikitFiniteElement(mesh)
A class which implements the steps specific to the finite element method during discretisation. The class uses
scikit-fem to discretise the problem to obtain the mass and stifnness matrices. At present, this class is only used
for solving the Poisson problem -grad^2 u = f in the y-z plane (i.e. not the through-cell direction).

For broadcast we follow the default behaviour from SpatialMethod.

Parameters

• mesh (pybamm.Mesh) – Contains all the submeshes for discretisation

• **Extends (“”: pybamm.SpatialMethod) –

assemble_mass_form(symbol, boundary_conditions, region=’interior’)
Assembles the form of the finite element mass matrix over the domain interior or boundary.

Parameters

• symbol (pybamm.Variable) – The variable corresponding to the equation for which
we are calculating the mass matrix.

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

• region (str, optional) – The domain over which to assemble the mass matrix
form. Can be “interior” (default) or “boundary”.

Returns The (sparse) mass matrix for the spatial method.

Return type pybamm.Matrix

bc_apply(M, boundary, zero=False)
Adjusts the assemled finite element matrices to account for boundary conditons.

Parameters

• M (scipy.sparse.coo_matrix) – The assemled finite element matrix to adjust.

• boundary (numpy.array) – Array of the indicies which correspond to the boundary.

• zero (bool, optional) – If True, the rows of M given by the indicies in boundary
are set to zero. If False, the diagonal element is set to one. default is False.

boundary_integral(child, discretised_child, region)
Implementation of the boundary integral operator. See pybamm.SpatialMethod.
boundary_integral()

boundary_integral_vector(domain, region)
A node in the expression tree representing an integral operator over the boundary of a domain

𝐼 =

∫︁
𝜕𝑎

𝑓(𝑢) 𝑑𝑢,

where 𝜕𝑎 is the boundary of the domain, and 𝑢 ∈ domain boundary.

1.6. Discretisation and spatial methods 81

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation

Parameters

• domain (list) – The domain(s) of the variable in the integrand

• region (str) – The region of the boundary over which to integrate. If region is entire
the integration is carried out over the entire boundary. If region is negative tab or posi-
tive tab then the integration is only carried out over the appropriate part of the boundary
corresponding to the tab.

Returns The finite element integral vector for the domain

Return type pybamm.Matrix

boundary_mass_matrix(symbol, boundary_conditions)
Calculates the mass matrix for the finite element method assembled over the boundary.

Parameters

• symbol (pybamm.Variable) – The variable corresponding to the equation for which
we are calculating the mass matrix.

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns The (sparse) mass matrix for the spatial method.

Return type pybamm.Matrix

boundary_value_or_flux(symbol, discretised_child)
Returns the average value of the symbol over the negative tab (“negative tab”) or the positive tab (“positive
tab”) in the Finite Element Method.

Overwrites the default pybamm.SpatialMethod.boundary_value()

definite_integral_matrix(domain, vector_type=’row’)
Matrix for finite-element implementation of the definite integral over the entire domain

𝐼 =

∫︁
Ω

𝑓(𝑠) 𝑑𝑥

for where Ω is the domain.

Parameters

• domain (list) – The domain(s) of integration

• vector_type (str, optional) – Whether to return a row or column vector (default
is row)

Returns The finite element integral vector for the domain

Return type pybamm.Matrix

divergence(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the divergence operator. See pybamm.SpatialMethod.
divergence()

gradient(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the gradient operator. See pybamm.SpatialMethod.
gradient()

gradient_squared(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the inner product of the gradient operator with itself. See
pybamm.SpatialMethod.gradient_squared()

82 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

indefinite_integral(child, discretised_child)
Implementation of the indefinite integral operator. The input discretised child must be defined on the
internal mesh edges. See pybamm.SpatialMethod.indefinite_integral()

integral(child, discretised_child)
Vector-vector dot product to implement the integral operator. See pybamm.SpatialMethod.
integral()

laplacian(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the laplacian operator.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the laplacian of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns Contains the result of acting the discretised gradient on the child discretised_symbol

Return type class: pybamm.Array

mass_matrix(symbol, boundary_conditions)
Calculates the mass matrix for the finite element method.

Parameters

• symbol (pybamm.Variable) – The variable corresponding to the equation for which
we are calculating the mass matrix.

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns The (sparse) mass matrix for the spatial method.

Return type pybamm.Matrix

spatial_variable(symbol)
Creates a discretised spatial variable compatible with the FiniteElement method.

Parameters symbol (pybamm.SpatialVariable) – The spatial variable to be discretised.

Returns Contains the discretised spatial variable

Return type pybamm.Vector

stiffness_matrix(symbol, boundary_conditions)
Laplacian (stiffness) matrix for finite elements in the appropriate domain.

Parameters

• symbol (pybamm.Symbol) – The symbol for which we want to calculate the laplacian
matrix

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns The (sparse) finite element stiffness matrix for the domain

Return type pybamm.Matrix

1.6. Discretisation and spatial methods 83

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

1.6.5 Zero Dimensional Spatial Method

class pybamm.ZeroDimensionalMethod(mesh=None)
A discretisation class for the zero dimensional mesh

Parameters

• mesh – Contains all the submeshes for discretisation

• **Extends** (pybamm.SpatialMethod) –

mass_matrix(symbol, boundary_conditions)
Calculates the mass matrix for a spatial method. Since the spatial method is zero dimensional, this is
simply the number 1.

1.7 Solvers

1.7.1 Algebraic Solvers

class pybamm.AlgebraicSolver(method=’lm’, tol=1e-06)
Solve a discretised model which contains only (time independent) algebraic equations using a root finding
algorithm. Note: this solver could be extended for quasi-static models, or models in which the time derivative
is manually discretised and results in a (possibly nonlinear) algebaric system at each time level.

Parameters

• method (str, optional) – The method to use to solve the system (default is “lm”)

• tolerance (float, optional) – The tolerance for the solver (default is 1e-6).

root(algebraic, y0_guess, jacobian=None)
Calculate the solution of the algebraic equations through root-finding

Parameters

• algebraic (method) – Function that takes in y and returns the value of the algebraic
equations

• y0_guess (array-like) – Array of the user’s guess for the solution, used to initialise
the root finding algorithm

• jacobian (method, optional) – A function that takes in t and y and returns the
Jacobian. If None, the solver will approximate the Jacobian if required.

set_up(model)
Unpack model, perform checks, simplify and calculate jacobian.

Parameters model (pybamm.BaseModel) – The model whose solution to calculate. Must
have attributes rhs and initial_conditions

Returns

• concatenated_algebraic (pybamm.Concatenation) – Algebraic equations, which
should evaluate to zero

• jac (pybamm.SparseStack) – Jacobian matrix for the differential and algebraic equa-
tions

Raises pybamm.SolverError – If the model contains any time derivatives, i.e. rhs equations
(in which case an ODE or DAE solver should be used instead)

84 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

PyBaMM Documentation

solve(model)
Calculate the solution of the model.

Parameters model (pybamm.BaseModel) – The model whose solution to calculate. Must
only contain algebraic equations.

1.7.2 Base Solvers

class pybamm.BaseSolver(method=None, tol=1e-08)
Solve a discretised model.

Parameters tolerance (float, optional) – The tolerance for the solver (default is 1e-8).

compute_solution(model, t_eval)
Calculate the solution of the model at specified times. Note: this does not execute the solver setup.

Parameters

• model (pybamm.BaseModel) – The model whose solution to calculate. Must have
attributes rhs and initial_conditions

• t_eval (numeric type) – The times at which to compute the solution

get_termination_reason(solution, events)
Identify the cause for termination. In particular, if the solver terminated due to an event, (try to) pinpoint
which event was responsible. Note that the current approach (evaluating all the events and then finding
which one is smallest at the final timestep) is pretty crude, but is the easiest one that works for all the
different solvers.

Parameters

• solution (pybamm.Solution) – The solution object

• events (dict) – Dictionary of events

set_up(model)
Unpack model, perform checks, simplify and calculate jacobian.

Parameters model (pybamm.BaseModel) – The model whose solution to calculate. Must
have attributes rhs and initial_conditions

Raises pybamm.SolverError – If the model contains any algebraic equations (in which
case a DAE solver should be used instead)

solve(model, t_eval)
Execute the solver setup and calculate the solution of the model at specified times.

Parameters

• model (pybamm.BaseModel) – The model whose solution to calculate. Must have
attributes rhs and initial_conditions

• t_eval (numeric type) – The times at which to compute the solution

Raises pybamm.ModelError – If an empty model is passed (model.rhs = {} and
model.algebraic={})

step(model, dt, npts=2)
Step the solution of the model forward by a given time increment. The first time this method is called it
executes the necessary setup by calling self.set_up(model).

Parameters

1.7. Solvers 85

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

• model (pybamm.BaseModel) – The model whose solution to calculate. Must have
attributes rhs and initial_conditions

• dt (numeric type) – The timestep over which to step the solution

• npts (int, optional) – The number of points at which the solution will be returned
during the step dt. default is 2 (returns the solution at t0 and t0 + dt).

Raises pybamm.ModelError – If an empty model is passed (model.rhs = {} and
model.algebraic={})

class pybamm.OdeSolver(method=None, tol=1e-08)
Solve a discretised model.

Parameters tolerance (float, optional) – The tolerance for the solver (default is 1e-8).

compute_solution(model, t_eval)
Calculate the solution of the model at specified times.

Parameters

• model (pybamm.BaseModel) – The model whose solution to calculate. Must have
attributes rhs and initial_conditions

• t_eval (numeric type) – The times at which to compute the solution

integrate(derivs, y0, t_eval, events=None, mass_matrix=None, jacobian=None)
Solve a model defined by dydt with initial conditions y0.

Parameters

• derivs (method) – A function that takes in t and y and returns the time-derivative dydt

• y0 (numeric type) – The initial conditions

• t_eval (numeric type) – The times at which to compute the solution

• events (method, optional) – A function that takes in t and y and returns condi-
tions for the solver to stop

• mass_matrix (array_like, optional) – The (sparse) mass matrix for the cho-
sen spatial method.

• jacobian (method, optional) – A function that takes in t and y and returns the
Jacobian

set_up(model)
Unpack model, perform checks, simplify and calculate jacobian.

Parameters model (pybamm.BaseModel) – The model whose solution to calculate. Must
have attributes rhs and initial_conditions

Raises pybamm.SolverError – If the model contains any algebraic equations (in which
case a DAE solver should be used instead)

class pybamm.DaeSolver(method=None, tol=1e-08, root_method=’lm’, root_tol=1e-06,
max_steps=1000)

Solve a discretised model.

Parameters

• tolerance (float, optional) – The tolerance for the solver (default is 1e-8).

• root_method (str, optional) – The method to use to find initial conditions (default
is “lm”)

• tolerance – The tolerance for the initial-condition solver (default is 1e-8).

86 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

• max_steps (int, optional) – The maximum number of steps the solver will take
before terminating (default is 1000).

calculate_consistent_initial_conditions(rhs, algebraic, y0_guess, jac=None)
Calculate consistent initial conditions for the algebraic equations through root-finding

Parameters

• rhs (method) – Function that takes in t and y and returns the value of the differential
equations

• algebraic (method) – Function that takes in t and y and returns the value of the
algebraic equations

• y0_guess (array-like) – Array of the user’s guess for the initial conditions, used to
initialise the root finding algorithm

• jac (method) – Function that takes in t and y and returns the value of the jacobian for
the algebraic equations

Returns y0_consistent – Initial conditions that are consistent with the algebraic equations (roots
of the algebraic equations)

Return type array-like, same shape as y0_guess

compute_solution(model, t_eval)
Calculate the solution of the model at specified times.

Parameters

• model (pybamm.BaseModel) – The model whose solution to calculate. Must have
attributes rhs and initial_conditions

• t_eval (numeric type) – The times at which to compute the solution

integrate(residuals, y0, t_eval, events=None, mass_matrix=None, jacobian=None)
Solve a DAE model defined by residuals with initial conditions y0.

Parameters

• residuals (method) – A function that takes in t, y and ydot and returns the residuals
of the equations

• y0 (numeric type) – The initial conditions

• t_eval (numeric type) – The times at which to compute the solution

• events (method, optional) – A function that takes in t and y and returns condi-
tions for the solver to stop

• mass_matrix (array_like, optional) – The (sparse) mass matrix for the cho-
sen spatial method.

• jacobian (method, optional) – A function that takes in t, y and ydot and returns
the Jacobian

set_up(model)
Unpack model, perform checks, simplify and calculate jacobian.

Parameters model (pybamm.BaseModel) – The model whose solution to calculate. Must
have attributes rhs and initial_conditions

Raises pybamm.SolverError – If the model contains any algebraic equations (in which
case a DAE solver should be used instead)

1.7. Solvers 87

https://docs.python.org/3/library/functions.html#int

PyBaMM Documentation

1.7.3 Scipy Solver

class pybamm.ScipySolver(method=’BDF’, tol=1e-08)
Solve a discretised model, using scipy.integrate.solve_ivp.

Parameters

• method (str, optional) – The method to use in solve_ivp (default is “BDF”)

• tolerance (float, optional) – The tolerance for the solver (default is 1e-8). Set
as the both reltol and abstol in solve_ivp.

integrate(derivs, y0, t_eval, events=None, mass_matrix=None, jacobian=None)
Solve a model defined by dydt with initial conditions y0.

Parameters

• derivs (method) – A function that takes in t (size (1,)), y (size (n,)) and returns the
time-derivative dydt (size (n,))

• y0 (numpy.array, size (n,)) – The initial conditions

• t_eval (numpy.array, size (k,)) – The times at which to compute the solution

• events (method, optional) – A function that takes in t and y and returns condi-
tions for the solver to stop

• mass_matrix (array_like, optional) – The (sparse) mass matrix for the cho-
sen spatial method.

• jacobian (method, optional) – A function that takes in t and y and returns the
Jacobian. If None, the solver will approximate the Jacobian.

Returns An object containing the times and values of the solution, as well as various diagnostic
messages.

Return type object

1.7.4 Scikits.odes Solvers

class pybamm.ScikitsOdeSolver(method=’cvode’, tol=1e-08, linsolver=’dense’)
Solve a discretised model, using scikits.odes.

Parameters

• method (str, optional) – The method to use in solve_ivp (default is “BDF”)

• tolerance (float, optional) – The tolerance for the solver (default is 1e-8). Set
as the both reltol and abstol in solve_ivp.

• linsolver (str, optional) – Can be ‘dense’ (= default), ‘lapackdense’, ‘spgmr’,
‘spbcgs’, ‘sptfqmr’

integrate(derivs, y0, t_eval, events=None, mass_matrix=None, jacobian=None)
Solve a model defined by dydt with initial conditions y0.

Parameters

• derivs (method) – A function that takes in t and y and returns the time-derivative dydt

• y0 (numeric type) – The initial conditions

• t_eval (numeric type) – The times at which to compute the solution

88 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

• events (method, optional) – A function that takes in t and y and returns condi-
tions for the solver to stop

• mass_matrix (array_like, optional) – The (sparse) mass matrix for the cho-
sen spatial method.

• jacobian (method, optional) – A function that takes in t and y and returns the
Jacobian. If None, the solver will approximate the Jacobian. (see SUNDIALS docs.
<https://computation.llnl.gov/projects/sundials>).

class pybamm.ScikitsDaeSolver(method=’ida’, tol=1e-08, root_method=’lm’, root_tol=1e-06,
max_steps=1000)

Solve a discretised model, using scikits.odes.

Parameters

• method (str, optional) – The method to use in solve_ivp (default is “BDF”)

• tolerance (float, optional) – The tolerance for the solver (default is 1e-8). Set
as the both reltol and abstol in solve_ivp.

• root_method (str, optional) – The method to use to find initial conditions (default
is “lm”)

• tolerance – The tolerance for the initial-condition solver (default is 1e-8).

• max_steps (int, optional) – The maximum number of steps the solver will take
before terminating (default is 1000).

integrate(residuals, y0, t_eval, events=None, mass_matrix=None, jacobian=None)
Solve a DAE model defined by residuals with initial conditions y0.

Parameters

• residuals (method) – A function that takes in t, y and ydot and returns the residuals
of the equations

• y0 (numeric type) – The initial conditions

• t_eval (numeric type) – The times at which to compute the solution

• events (method, optional) – A function that takes in t and y and returns condi-
tions for the solver to stop

• mass_matrix (array_like, optional) – The (sparse) mass matrix for the cho-
sen spatial method.

• jacobian (method, optional) – A function that takes in t and y and returns the
Jacobian. If None, the solver will approximate the Jacobian. (see SUNDIALS docs.
<https://computation.llnl.gov/projects/sundials>).

1.7.5 Solution

class pybamm.Solution(t, y, t_event, y_event, termination)
Class containing the solution of, and various attributes associated with, a PyBaMM model.

Parameters

• t (numpy.array, size (n,)) – A one-dimensional array containing the times at which the
solution is evaluated

• y (numpy.array, size (m, n)) – A two-dimensional array containing the values of the
solution. y[i, :] is the vector of solutions at time t[i].

1.7. Solvers 89

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PyBaMM Documentation

• t_event (numpy.array, size (1,)) – A zero-dimensional array containing the time at
which the event happens.

• y_event (numpy.array, size (m,)) – A one-dimensional array containing the value of
the solution at the time when the event happens.

• termination (str) – String to indicate why the solution terminated

append(solution)
Appends solution.t and solution.y onto self.t and self.y. Note: this process removes the initial time and
state of solution to avoid duplicate times and states being stored (self.t[-1] is equal to solution.t[0], and
self.y[:, -1] is equal to solution.y[:, 0]).

t
Times at which the solution is evaluated

t_event
Time at which the event happens

termination
Reason for termination

y
Values of the solution

y_event
Value of the solution at the time of the event

1.8 Post-Process Variables

pybamm.post_process_variables(variables, t_sol, u_sol, mesh=None, interp_kind=’linear’)
Post-process all variables in a model

Parameters

• variables (dict) – Dictionary of variables

• t_sol (array_like, size (m,)) – The time vector returned by the solver

• u_sol (array_like, size (m, k)) – The solution vector returned by the solver.
Can include solution values that other than those that get read by base_variable.evaluate()
(i.e. k>=n)

• mesh (pybamm.Mesh) – The mesh used to solve, used here to calculate the reference x
values for interpolation

• interp_kind (str) – The method to use for interpolation

Returns Dictionary of processed variables

Return type dict

class pybamm.ProcessedVariable(base_variable, t_sol, u_sol, mesh=None, interp_kind=’linear’,
known_evals=None)

An object that can be evaluated at arbitrary (scalars or vectors) t and x, and returns the (interpolated) value of
the base variable at that t and x.

Parameters

• base_variable (pybamm.Symbol) – A base variable with a method evaluate(t,y) that
returns the value of that variable. Note that this can be any kind of node in the expression
tree, not just a pybamm.Variable. When evaluated, returns an array of size (m,n)

90 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation

• t_sol (array_like, size (m,)) – The time vector returned by the solver

• u_sol (array_like, size (m, k)) – The solution vector returned by the solver.
Can include solution values that other than those that get read by base_variable.evaluate()
(i.e. k>=n)

• mesh (pybamm.Mesh) – The mesh used to solve, used here to calculate the reference x
values for interpolation

• interp_kind (str) – The method to use for interpolation

call_2D(t, x, r, z)
Evaluate a 2D variable

call_3D(t, x, r, y, z)
Evaluate a 3D variable

initialise_3D()
Initialise a 3D object that depends on x and r. Needs to be generalised to deal with other domains

1.9 Utility functions

pybamm.get_infinite_nested_dict()
Return a dictionary that allows infinite nesting without having to define level by level.

See: https://stackoverflow.com/questions/651794/whats-the-best-way-to-initialize-a-dict-of-dicts-in-python/
652226#652226

Example

>>> import pybamm
>>> d = pybamm.get_infinite_nested_dict()
>>> d["a"] = 1
>>> d["a"]
1
>>> d["b"]["c"]["d"] = 2
>>> d["b"]["c"] == {"d": 2}
True

pybamm.load_function(filename)
Load a python function from a file “function_name.py” called “function_name”. The filename might either be
an absolute path, in which case that specific file will be used, or the file will be searched for relative to PyBaMM
root.

Parameters filename (str) – The name of the file containing the function of the same name.

Returns The python function loaded from the file.

Return type function

pybamm.rmse(x, y)
Calculate the root-mean-square-error between two vectors x and y, ignoring NaNs

pybamm.root_dir()
return the root directory of the PyBaMM install directory

class pybamm.Timer
Provides accurate timing.

1.9. Utility functions 91

https://docs.python.org/3/library/stdtypes.html#str
https://stackoverflow.com/questions/651794/whats-the-best-way-to-initialize-a-dict-of-dicts-in-python/652226#652226
https://stackoverflow.com/questions/651794/whats-the-best-way-to-initialize-a-dict-of-dicts-in-python/652226#652226
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation

Example

timer = pybamm.Timer() print(timer.format(timer.time()))

format(time=None)
Formats a (non-integer) number of seconds, returns a string like “5 weeks, 3 days, 1 hour, 4 minutes, 9
seconds”, or “0.0019 seconds”.

Parameters time (float, optional) – The time to be formatted.

Returns The string representation of time in human-readable form.

Return type string

reset()
Resets this timer’s start time.

time()
Returns the time (float, in seconds) since this timer was created, or since meth:reset() was last called.

92 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float

CHAPTER 2

Examples

Detailed examples can be viewed on the GitHub examples page, and run locally using jupyter notebook, or
online through Binder.

93

https://github.com/pybamm-team/PyBaMM/tree/master/examples/notebooks
https://mybinder.org/v2/gh/pybamm-team/PyBaMM/master?filepath=examples%2Fnotebooks

PyBaMM Documentation

94 Chapter 2. Examples

CHAPTER 3

Contributing

There are many ways to contribute to PyBaMM:

3.1 Adding Parameter Values

As with any contribution to PyBaMM, please follow the workflow in CONTRIBUTING.md. In particular, start by
creating an issue to discuss what you want to do - this is a good way to avoid wasted coding hours!

3.1.1 The role of parameter values

All models in PyBaMM are implemented as expression trees. At the stage of creating a model, we use pybamm.
Parameter and pybamm.FunctionParameter objects to represent parameters and functions respectively.

We then create a ParameterValues class, using a specific set of parameters, to iterate through the model and
replace any pybamm.Parameter objects with a pybamm.Scalar and any pybamm.FunctionParameter
objects with a pybamm.Function.

For an example of how the parameter values work, see the parameter values notebook.

3.1.2 Adding a set of parameters values

Parameter sets should be added as csv files in the appropriate chemistry folder in input/parameters/ (add a new
folder if no parameters exist for that chemistry yet). The expected structure of the csv file is

Name Value Units Reference Notes
Example 13 m.s-2 bloggs2019 an example

Empty lines, and lines starting with #, will be ignored.

95

https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression-tree.ipynb
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/spatial_methods/finite-volumes.ipynb

PyBaMM Documentation

3.1.3 Adding a function

Functions should be added as Python functions under a file with the same name in the appropriate chemistry folder in
input/parameters/. These Python functions should be documented with references explaining where they were
obtained. For example, we would put the following Python function in a file input/parameters/lead-acid/
electrolyte_diffusivity_Bloggs2019.py

def electrolyte_diffusivity_Bloggs2019(c_e):
"""
Dimensional Fickian diffusivity in the electrolyte [m2.s-1], from [1]_, as a
function of the electrolyte concentration c_e [mol.m-3].

References

.. [1] J Bloggs, AN Other. A set of parameters. A Chemistry Journal,

123(4):567-573, 2019.

"""
return (1.75 + 260e-6 * c_e) * 1e-9

3.1.4 Unit tests for the new class

You might want to add some unit tests to show that the parameters combine as expected (see e.g. lithium-ion parameter
tests), but this is not crucial.

3.1.5 Test on the models

In theory, any existing model can now be solved using the new parameters instead of their default parameters, with no
extra work from here. To test this, add something like the following test to one of the model test files (e.g. DFN):

def test_my_new_parameters(self):
model = pybamm.lithium_ion.DFN()
input_path = os.path.join(os.getcwd(), "path", "to", "functions")
parameter_values = pybamm.ParameterValues(

"path/to/parameter/file.csv",
{

"Typical current [A]": 1,
"Current function": os.path.join(

os.getcwd(),
"pybamm",
"parameters",
"standard_current_functions",
"constant_current.py",

),
"First function": os.path.join(input_path, "first_function.py"),
"Second function": os.path.join(input_path, "second_function.py"),

},
)

modeltest = tests.StandardModelTest(model, parameter_values=parameter_values)
modeltest.test_all()

This will check that the model can run with the new parameters (but not that it gives a sensible answer!).

Once you have performed the above checks, you are almost ready to merge your code into the core PyBaMM - see
CONTRIBUTING.md workflow for how to do this.

96 Chapter 3. Contributing

https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_parameters/test_dimensionless_parameter_values_lithium_ion.py
https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_parameters/test_dimensionless_parameter_values_lithium_ion.py
https://github.com/pybamm-team/PyBaMM/blob/master/tests/test_models/test_lithium_ion/test_lithium_ion_dfn.py
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md#c-merging-your-changes-with-pybamm

PyBaMM Documentation

3.2 Adding a Model

As with any contribution to PyBaMM, please follow the workflow in CONTRIBUTING.md. In particular, start by
creating an issue to discuss what you want to do - this is a good way to avoid wasted coding hours!

We aim here to provide an overview of how a new model is entered into PyBaMM in a form which can be eventually
merged into the master branch of the PyBaMM project. However, we recommend that you first read through the
notebook: create a model, which goes step-by-step through the procedure for creating a model. Once you understand
that procedure, you can then formalise your model following the outline provided here.

3.2.1 The role of models

One of the main motivations for PyBaMM is to allow for new models of batteries to be easily be added, solved, tested,
and compared without requiring a detailed knowledge of sophisticated numerical methods. It has therefore been our
focus to make the process of adding a new model as simple as possible. To achieve this, all models in PyBaMM are
implemented as expression trees, which abstract away the details of computation.

The fundamental building blocks of a PyBaMM expression tree are pybamm.Symbol. There are different
types of pybamm.Symbol: pybamm.Variable, pybamm.Parameter, pybamm.Addition, pybamm.
Multiplication, pybamm.Gradient etc which have been created so that each component of a model written
out in PyBaMM mirrors exactly the written mathematics. For example, the expression:

∇ · (𝐷(𝑐)∇𝑐) + 𝑎𝐹𝑗

is simply written as

div(D(c) * grad(c)) + a * F * j

within PyBaMM. A model in PyBaMM is essentially an organised collection of expression trees.

3.2.2 Implementing a new model

To add a new model (e.g. My New Model), first create a new file (my_new_model.py) in pybamm/models (or
the relevant subdirectory). In this file create a new class which inherits from pybamm.BaseModel (or pybamm.
LithiumIonBaseModel if you are modelling a full lithium-ion battery or pybamm.LeadAcidBaseModel if
you are modelling a full lead acid battery):

class MyNewModel(pybamm.BaseModel):
def

and add the class to pybamm/__init__.py:

from .models.my_new_model import MyNewModel

(this line will be slightly different if you created your model in a subdirectory of models). Within your new class
MyNewModel, first create an initialisation function which calls the initialisation function of the parent class

def __init__(self):
super().__init__()

Within the initialisation function of MyNewModel you must then define the following attributes:

• self.rhs

• self.algebraic

3.2. Adding a Model 97

https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/create-model.ipynb
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression-tree.ipynb

PyBaMM Documentation

• self.boundary_conditions

• self.initial_conditions

• self.variables

You may also optionally also provide:

• self.events

• self.default_geometry

• self.default_solver

• self.default_spatial_methods

• self.default_submesh_types

• self.default_var_pts

• self.default_parameter_values

We will go through each of these attributes in turn here for completeness but refer the user to the API documentation
or example notebooks (create-model.ipnb) if further details are required.

Governing equations

The governing equations which can either be parabolic or elliptic are entered into the self.rhs and self.
algebraic dictionaries, respectively. We associate each governing equation with a subject variable, which is the
variable that is found when the equation is solved. We use this subject variable as the key of the dictionary. For
parabolic equations, we rearrange the equation so that the time derivative of the subject variable is the only term on the
left hand side of the equation. We then simply write the resulting right hand side into the self.rhs dictionary with
the subject variable as the key. For elliptic equations, we rearrange so that the left hand side of the equation if zero
and then write the right hand side into the self.algebraic dictionary in the same way. The resulting dictionary
should look like:

self.rhs = {parabolic_var1: parabolic_rhs1, parabolic_var2: parabolic_rhs2, ...}
self.algebraic = {elliptic_var1: elliptic_rhs1, elliptic_var2: elliptic_rhs2, ...}

Boundary conditions

Boundary conditions on a variable can either be Dirichlet or Neumann (support for mixed boundary conditions will
be added at a later date). For a variable 𝑐 on a one dimensional domain with a Dirichlet condition of 𝑐 = 1 on the left
boundary and a Neumann condition of ∇𝑐 = 2 on the right boundary, we then have:

self.boundary_conditions = {c: {"left": (1, "Dirichlet"), "right": (2, "Neumann")}}

Initial conditions

For a variable 𝑐 that is initially at a value of 𝑐 = 1, the initial condition is included written into the model as

self.initial_conditions = {c: 1}

98 Chapter 3. Contributing

PyBaMM Documentation

Output variables

PyBaMM allows users to create combinations of symbols to output from their model. For example, we might wish to
output the terminal voltage which is given by 𝑉 = 𝜑𝑠,𝑝|𝑥=1 − 𝜑𝑠,𝑛|𝑥=0. We would first define the voltage symbol 𝑉
and then include it into the output variables dictionary in the form:

self.variables = {"Terminal voltage [V]": V}

Note that we indicate that the quanitity is dimensional by including the dimensions, Volts in square brackets. We do
this to distinguish between dimensional and dimensionless outputs which may otherwise share the same name.

Note that if your model inherits from pybamm.StandardBatteryBaseModel, then there is a standard set of
output parameters which is enforced to ensure consistency across models so that they can be easily tested and com-
pared.

Events

Events can be added to stop computation when the event occurs. For example, we may wish to terminate our compu-
tation when the terminal voltage 𝑉 reaches some minimum voltage during a discharge 𝑉𝑚𝑖𝑛. We do this by adding
the following to the events dictionary:

self.events["Minimum voltage cut-off"] = V - V_min

Events will stop the solver whenever they return 0.

Setting defaults

It can be useful for testing, and quickly running a model to have a default setup. Each of the defaults listed
above should adhere to the API requirements but in short, we require self.default_geometry to be an in-
stance of pybamm.Geometry , self.default_solver to be an instance of pybamm.BaseSolver, and
self.default_parameter_values to be an instance of pybamm.ParameterValues. We also require
that self.default_submesh_types is a dictionary with keys which are strings corresponding to the re-
gions of the battery (e.g. “negative electrode”) and values which are an instance of pybamm.SubMesh1D.
The self.default_spatial_methods attribute is also required to be a dictionary with keys correspond-
ing to the regions of the battery but with values which are an instance of pybamm.SpatialMethod. Fi-
nally, self.default_var_pts is required to be a dictionary with keys which are an instance of pybamm.
SpatialVariable and values which are integers.

Using submodels

The inbuilt models in PyBaMM do not add all the model attributes within their own file. Instead, they make use of
inbuilt submodel (a particle model, an electrolyte model, etc). There are two main reasons for this. First, the code in
the submodels can then be used by multiple models cutting down on repeated code. This makes it easier to maintain the
codebase because fixing an issue in a submodel fixes that issue everywhere the submodel is called (instead of having
to track down the issue in every model). Secondly, it allows for the user to easily switch a submodel out for another
and study the effect. For example, we may be using standard diffusion in the particles but decide that we would like
to switch in particles which are phase separating. With submodels all we need to do is switch the submodel instead of
re-writing the whole sections of the model. Submodel contributions are highly encouraged so where possible, try to
divide your model into submodels.

In addition to calling submodels, common sets of variables and parameters found in lithium-ion and lead acid batter-
ies are provided in standard_variables.py, standard_parameters_lithium_ion.py, standard_parameters_lead_acid.py,
electrical_parameters.py, geometric_parameters.py, and standard_spatial_vars.py which we encourage use of to save
redefining the same parameters and variables in every model and submodel.

3.2. Adding a Model 99

PyBaMM Documentation

3.2.3 Unit tests for a MyNewModel

We strongly recommend testing your model to ensure that it is behaving correctly. To do this, first create a new file
test_my_new_model.py within tests/integration/test_models (or the appropriate subdirectory).
Within this file, add the following code

import pybamm
import unittest

class TestMyNewModel(unittest.TestCase):
def my_first_test(self):

add test here

if __name__ == "__main__":
print("Add -v for more debug output")
import sys

if "-v" in sys.argv:
debug = True

unittest.main()

We can now add functions such as my_first_test() to TestMyNewModel which run specific tests. As a first
test, we recommend you make use of tests.StandardModelTest which runs a suite of basic tests. If your
new model is a full model of a battery and therefore inherits from pybamm.StandardBatteryBaseModel then
tests.StandardBatteryTest will also check the set of outputs are producing reasonable behaviour.

Please see the tests of the inbuilt models to get a further idea of how to test the your model.

3.3 Adding a Spatial Method

As with any contribution to PyBaMM, please follow the workflow in CONTRIBUTING.md. In particular, start by
creating an issue to discuss what you want to do - this is a good way to avoid wasted coding hours!

3.3.1 The role of spatial methods

All models in PyBaMM are implemented as expression trees. After it has been created and parameters have been
set, the model is passed to the pybamm.Discretisation class, which converts it into a linear algebra form. For
example, the object:

grad(u)

might get converted to a Matrix-Vector multiplication:

Matrix(100,100) @ y[0:100]

(in Python 3.5+, @ means matrix multiplication, while * is elementwise product). The pybamm.Discretisation
class is a wrapper that iterates through the different parts of the model, performing the trivial conversions (e.g. Addition
–> Addition), and calls upon spatial methods to perform the harder conversions (e.g. grad(u) –> Matrix * StateVector,
SpatialVariable –> Vector, etc).

Hence SpatialMethod classes only need to worry about the specific conversions, and pybamm.Discretisation
deals with the rest.

100 Chapter 3. Contributing

https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression-tree.ipynb

PyBaMM Documentation

3.3.2 Implementing a new spatial method

To add a new spatial method (e.g. My Fast Method), first create a new file (my_fast_method.py) in pybamm/
spatial_methods/, with a single class that inherits from pybamm.SpatialMethod, such as:

class MyFastMethod(pybamm.SpatialMethod):

and add the class to pybamm/__init__.py:

from .spatial_methods.my_fast_method import MyFastMethod

You can then start implementing the spatial method by adding functions to the class. In particular, any spatial method
must have the following functions (from the base class pybamm.SpatialMethod):

• pybamm.SpatialMethod.gradient()

• pybamm.SpatialMethod.divergence()

• pybamm.SpatialMethod.integral()

• pybamm.SpatialMethod.indefinite integral()

• pybamm.SpatialMethod.boundary_value_or_flux()

Optionally, a new spatial method can also overwrite the default behaviour for the following functions:

• pybamm.SpatialMethod.spatial_variable()

• pybamm.SpatialMethod.broadcast()

• pybamm.SpatialMethod.mass_matrix()

• pybamm.SpatialMethod.process_binary_operators()

• pybamm.SpatialMethod.concatenation()

For an example of an existing spatial method implementation, see the Finite Volume API docs and notebook.

3.3.3 Unit tests for the new class

For the new spatial method to be added to PyBaMM, you must add unit tests to demonstrate that it behaves as
expected (see, for example, the Finite Volume unit tests). The best way to get started would be to create a file
test_my_fast_method.py in tests/unit/test_spatial_methods/ that performs at least the follow-
ing checks:

• Operations return objects that have the expected shape

• Standard operations behave as expected, e.g. (in 1D) grad(x^2) = 2*x, integral(sin(x), 0, pi) = 2

• (more advanced) make sure that the operations converge at the correct rate to known analytical solutions as you
decrease the grid size

3.3.4 Test on the models

In theory, any existing model can now be discretised using MyFastMethod instead of their default spatial methods,
with no extra work from here. To test this, add something like the following test to one of the model test files (e.g.
DFN):

3.3. Adding a Spatial Method 101

https://pybamm.readthedocs.io/en/latest/source/spatial_methods/finite_volume.html
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/spatial_methods/finite-volumes.ipynb
https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_spatial_methods/test_finite_volume.py
https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_models/test_lithium_ion/test_lithium_ion_dfn.py

PyBaMM Documentation

def test_my_fast_method(self):
model = pybamm.lithium_ion.DFN()
spatial_methods = {

"macroscale": pybamm.MyFastMethod,
"negative particle": pybamm.MyFastMethod,
"positive particle": pybamm.MyFastMethod,

}
modeltest = tests.StandardModelTest(model, spatial_methods=spatial_methods)
modeltest.test_all()

This will check that the model can run with the new spatial method (but not that it gives a sensible answer!).

Once you have performed the above checks, you are almost ready to merge your code into the core PyBaMM - see
CONTRIBUTING.md workflow for how to do this.

3.4 Adding a Solver

As with any contribution to PyBaMM, please follow the workflow in CONTRIBUTING.md. In particular, start by
creating an issue to discuss what you want to do - this is a good way to avoid wasted coding hours!

3.4.1 The role of solvers

All models in PyBaMM are implemented as expression trees. After the model has been created, parameters have been
set, and the model has been discretised, the model is now a linear algebra object with the following attributes:

model.concatenated_rhs A pybamm.Symbol node that can be evaluated at a state (t, y) and returns the value of
all the differential equations at that state, concatenated into a single vector

model.concatenated_algebraic A pybamm.Symbol node that can be evaluated at a state (t, y) and returns the
value of all the algebraic equations at that state, concatenated into a single vector

model.concatenated_initial_conditions A numpy array of initial conditions for all the differential and algebraic
equations, concatenated into a single vector

model.events A dictionary of pybamm.Symbol nodes representing events at which the solver should terminate.
Specifically, the solver should terminate when any of the events in model.events.values() evaluate to
zero

The role of solvers is to solve a model at a given set of time points, returning a vector of times t and a matrix of states
y.

3.4.2 Base solver classes vs specific solver classes

There is one general base solver class, pybamm.BaseSolver, and two specialised base classes, pybamm.
OdeSolver and pybamm.DaeSolver. The general base class simply sets up some useful solver properties such
as tolerances. The specialised base classes implement a method self.solve() that solves a model at a given set
of time points.

The solve method unpacks the model, simplifies it by removing extraneous operations, (optionally) creates or calls
the mass matrix and/or jacobian, and passes the appropriate attributes to another method, called integrate, which
does the time-stepping. The role of specific solver classes is simply to implement this integrate method for an
arbitrary set of derivative function, initial conditions etc.

The base DAE solver class also computes a consistent set of initial conditions for the algebraic equations, using
model.concatenated_initial_conditions as an initial guess.

102 Chapter 3. Contributing

https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md#c-merging-your-changes-with-pybamm
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression-tree.ipynb

PyBaMM Documentation

3.4.3 Implementing a new solver

To add a new solver (e.g. My Fast DAE Solver), first create a new file (my_fast_dae_solver.py) in pybamm/
solvers/, with a single class that inherits from either pybamm.OdeSolver or pybamm.DaeSolver, depend-
ing on whether the new solver can solve DAE systems. For example:

def MyFastDaeSolver(pybamm.DaeSolver):

Also add the class to pybamm/__init__.py:

from .solvers.my_fast_dae_solver import MyFastDaeSolver

You can then start implementing the solver by adding the integrate function to the class (the interfaces are
slightly different for an ODE Solver and a DAE Solver, see pybamm.OdeSolver.integrate() vs pybamm.
DaeSolver.integrate())

For an example of an existing solver implementation, see the Scikits DAE solver API docs and notebook.

3.4.4 Unit tests for the new class

For the new solver to be added to PyBaMM, you must add unit tests to demonstrate that it behaves as expected (see, for
example, the Scikits solver tests). The best way to get started would be to create a file test_my_fast_solver.py
in tests/unit/test_solvers/ that performs at least the following checks:

• The integratemethod works on a simple ODE/DAE model with/without jacobian, mass matrix and/or events
as appropriate

• The solve method works on a simple model (in theory, if the integrate method works then the solve
method should always work)

If the solver is expected to converge in a certain way as the time step is changed, you could also add a convergence
test in tests/convergence/solvers/.

3.4.5 Test on the models

In theory, any existing model can now be solved using MyFastDaeSolver instead of their default solvers, with no extra
work from here. To test this, add something like the following test to one of the model test files (e.g. DFN):

def test_my_fast_solver(self):
model = pybamm.lithium_ion.DFN()
solver = pybamm.MyFastDaeSolver()
modeltest = tests.StandardModelTest(model, solver=solver)
modeltest.test_all()

This will check that the model can run with the new solver (but not that it gives a sensible answer!).

Once you have performed the above checks, you are almost ready to merge your code into the core PyBaMM - see
CONTRIBUTING.md workflow for how to do this.

Before contributing, please read the Contribution Guidelines.

3.4. Adding a Solver 103

https://pybamm.readthedocs.io/en/latest/source/solvers/scikits_solvers.html
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/solvers/scikits-dae-solver.ipynb
https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_solvers/test_scikits_solvers.py
https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_models/test_lithium_ion/test_lithium_ion_dfn.py
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md#c-merging-your-changes-with-pybamm
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md

PyBaMM Documentation

104 Chapter 3. Contributing

Python Module Index

p
pybamm, 3
pybamm.parameters.electrical_parameters,

67
pybamm.parameters.geometric_parameters,

67
pybamm.parameters.standard_parameters_lead_acid,

67
pybamm.parameters.standard_parameters_lithium_ion,

67
pybamm.parameters.thermal_parameters,

67

105

PyBaMM Documentation

106 Python Module Index

Index

Symbols
__abs__() (pybamm.Symbol method), 3
__add__() (pybamm.Symbol method), 3
__getitem__() (pybamm.Symbol method), 3
__init__() (pybamm.Symbol method), 3
__matmul__() (pybamm.Symbol method), 3
__mul__() (pybamm.Symbol method), 3
__neg__() (pybamm.Symbol method), 3
__pow__() (pybamm.Symbol method), 4
__radd__() (pybamm.Symbol method), 4
__repr__() (pybamm.Symbol method), 4
__rmatmul__() (pybamm.Symbol method), 4
__rmul__() (pybamm.Symbol method), 4
__rpow__() (pybamm.Symbol method), 4
__rsub__() (pybamm.Symbol method), 4
__rtruediv__() (pybamm.Symbol method), 4
__str__() (pybamm.Symbol method), 4
__sub__() (pybamm.Symbol method), 4
__truediv__() (pybamm.Symbol method), 4

A
AbsoluteValue (class in pybamm), 13
add_domain() (pybamm.Geometry method), 68
add_ghost_meshes() (pybamm.Mesh method), 70
add_ghost_nodes() (pybamm.FiniteVolume

method), 77
Addition (class in pybamm), 11
algebraic (pybamm.BaseModel attribute), 23
algebraic (pybamm.BaseSubModel attribute), 29
AlgebraicSolver (class in pybamm), 84
append() (pybamm.Solution method), 90
assemble_mass_form() (py-

bamm.ScikitFiniteElement method), 81

B
BackwardTafel (class in pybamm.interface.kinetics),

51
BaseBatteryModel (class in pybamm), 25

BaseCompositePotentialPair (class in py-
bamm.current_collector), 31

BaseElectrode (class in pybamm.electrode), 36
BaseElectrolyteConductivity (class in py-

bamm.electrolyte), 39
BaseElectrolyteDiffusion (class in py-

bamm.electrolyte), 39
BaseFirstOrderKinetics (class in py-

bamm.interface.kinetics), 50
BaseHigherOrderModel (class in py-

bamm.lead_acid), 27
BaseInterface (class in pybamm.interface), 47
BaseInverseFirstOrderKinetics (class in py-

bamm.interface.inverse_kinetics), 48
BaseInverseKinetics (class in py-

bamm.interface.inverse_kinetics), 48
BaseModel (class in pybamm), 23
BaseModel (class in pybamm.convection), 34
BaseModel (class in pybamm.current_collector), 30
BaseModel (class in pybamm.electrode.ohm), 36
BaseModel (class in py-

bamm.electrolyte.stefan_maxwell.conductivity),
40

BaseModel (class in py-
bamm.electrolyte.stefan_maxwell.diffusion),
44

BaseModel (class in py-
bamm.interface.diffusion_limited), 47

BaseModel (class in pybamm.interface.kinetics), 49
BaseModel (class in pybamm.lead_acid), 27
BaseModel (class in pybamm.lithium_ion), 26
BaseModel (class in pybamm.oxygen_diffusion), 52
BaseModel (class in pybamm.particle.fast), 57
BaseModel (class in pybamm.particle.fickian), 55
BaseModel (class in pybamm.porosity), 58
BaseModel (class in pybamm.thermal.x_full), 61
BaseModel (class in pybamm.thermal.x_lumped), 62
BaseModel (class in pybamm.thermal.xyz_lumped), 64
BaseParticle (class in pybamm.particle), 55
BasePotentialPair (class in py-

107

PyBaMM Documentation

bamm.current_collector), 32
BaseQuiteConductivePotentialPair (class in

pybamm.current_collector), 33
BaseSolver (class in pybamm), 85
BaseSubModel (class in pybamm), 29
BaseThermal (class in pybamm.thermal), 65
bc_apply() (pybamm.ScikitFiniteElement method), 81
BinaryOperator (class in pybamm), 10
boundary_conditions (pybamm.BaseModel

attribute), 23
boundary_conditions (pybamm.BaseSubModel at-

tribute), 29
boundary_integral() (py-

bamm.ScikitFiniteElement method), 81
boundary_integral() (pybamm.SpatialMethod

method), 74
boundary_integral_vector() (py-

bamm.ScikitFiniteElement method), 81
boundary_mass_matrix() (py-

bamm.ScikitFiniteElement method), 82
boundary_value() (in module pybamm), 18
boundary_value_or_flux() (py-

bamm.FiniteVolume method), 78
boundary_value_or_flux() (py-

bamm.ScikitFiniteElement method), 82
boundary_value_or_flux() (py-

bamm.SpatialMethod method), 74
BoundaryGradient (class in pybamm), 17
BoundaryIntegral (class in pybamm), 15
BoundaryOperator (class in pybamm), 16
BoundaryValue (class in pybamm), 16
Broadcast (class in pybamm), 19
broadcast() (pybamm.SpatialMethod method), 74
ButlerVolmer (class in pybamm.interface.kinetics),

50
ButlerVolmer (class in pybamm.interface.lead_acid),

51
ButlerVolmer (class in py-

bamm.interface.lithium_ion), 51

C
calculate_consistent_initial_conditions()

(pybamm.DaeSolver method), 87
call_2D() (pybamm.ProcessedVariable method), 91
call_3D() (pybamm.ProcessedVariable method), 91
check_algebraic_equations() (py-

bamm.BaseModel method), 24
check_and_set_domain_and_broadcast_type()

(pybamm.Broadcast method), 19
check_default_variables_dictionaries()

(pybamm.BaseModel method), 24
check_ics_bcs() (pybamm.BaseModel method), 24
check_initial_conditions() (py-

bamm.Discretisation method), 72

check_initial_conditions_rhs() (py-
bamm.Discretisation method), 72

check_model() (pybamm.Discretisation method), 72
check_tab_conditions() (py-

bamm.Discretisation method), 72
check_variables() (pybamm.Discretisation

method), 72
check_well_determined() (pybamm.BaseModel

method), 24
check_well_posedness() (pybamm.BaseModel

method), 24
children (pybamm.Symbol attribute), 4
combine_submeshes() (pybamm.Mesh method), 70
Composite (class in pybamm.convection), 35
Composite (class in pybamm.electrode.ohm), 37
Composite (class in py-

bamm.electrolyte.stefan_maxwell.conductivity),
41

Composite (class in py-
bamm.electrolyte.stefan_maxwell.diffusion),
45

Composite (class in pybamm.lead_acid), 28
Composite (class in pybamm.oxygen_diffusion), 52
CompositeExtended (class in pybamm.lead_acid),

28
CompositePotentialPair1plus1D (class in py-

bamm.current_collector), 31
CompositePotentialPair2plus1D (class in py-

bamm.current_collector), 31
compute_solution() (pybamm.BaseSolver

method), 85
compute_solution() (pybamm.DaeSolver method),

87
compute_solution() (pybamm.OdeSolver method),

86
concatenated_algebraic (pybamm.BaseModel

attribute), 24
concatenated_initial_conditions (py-

bamm.BaseModel attribute), 24
concatenated_rhs (pybamm.BaseModel attribute),

23
Concatenation (class in pybamm), 18
concatenation() (pybamm.FiniteVolume method),

78
concatenation() (pybamm.SpatialMethod method),

75
Constant (class in pybamm.porosity), 59
ConstantConcentration (class in py-

bamm.electrolyte.stefan_maxwell.diffusion),
44

Cos (class in pybamm), 22
cos() (in module pybamm), 22
Cosh (class in pybamm), 22
cosh() (in module pybamm), 22

108 Index

PyBaMM Documentation

create_mass_matrix() (pybamm.Discretisation
method), 72

CurrentCollector0D (class in py-
bamm.thermal.x_lumped), 63

CurrentCollector1D (class in py-
bamm.thermal.x_lumped), 63

CurrentCollector1D (class in py-
bamm.thermal.xyz_lumped), 65

CurrentCollector2D (class in py-
bamm.thermal.x_lumped), 64

CurrentCollector2D (class in py-
bamm.thermal.xyz_lumped), 65

D
DaeSolver (class in pybamm), 86
default_solver (pybamm.BaseBatteryModel at-

tribute), 25
default_solver (pybamm.electrode.BaseElectrode

attribute), 36
default_solver (pybamm.electrode.ohm.BaseModel

attribute), 36
default_solver (pybamm.electrode.ohm.Composite

attribute), 37
default_solver (pybamm.electrode.ohm.Full

attribute), 38
default_solver (py-

bamm.electrode.ohm.LeadingOrder attribute),
37

default_solver (py-
bamm.electrode.ohm.SurfaceForm attribute),
39

default_solver (py-
bamm.electrolyte.stefan_maxwell.conductivity.Full
attribute), 41

default_solver (py-
bamm.lead_acid.BaseHigherOrderModel
attribute), 28

default_solver (pybamm.lead_acid.Full attribute),
28

default_solver (pybamm.lead_acid.LOQS at-
tribute), 27

default_solver (pybamm.lithium_ion.DFN at-
tribute), 27

default_solver (pybamm.lithium_ion.SPM at-
tribute), 26

default_solver (pybamm.lithium_ion.SPMe at-
tribute), 26

definite_integral_matrix() (py-
bamm.FiniteVolume method), 78

definite_integral_matrix() (py-
bamm.ScikitFiniteElement method), 82

DefiniteIntegralVector (class in pybamm), 15
delta_function() (pybamm.FiniteVolume method),

78

delta_function() (pybamm.SpatialMethod
method), 75

DeltaFunction (class in pybamm), 16
DFN (class in pybamm.lithium_ion), 27
diff() (pybamm.AbsoluteValue method), 13
diff() (pybamm.Function method), 21
diff() (pybamm.FunctionParameter method), 7
diff() (pybamm.Kron method), 12
diff() (pybamm.MatrixMultiplication method), 11
diff() (pybamm.Outer method), 12
diff() (pybamm.SpatialOperator method), 14
diff() (pybamm.Symbol method), 4
Discretisation (class in pybamm), 71
div() (in module pybamm), 17
Divergence (class in pybamm), 14
divergence() (pybamm.FiniteVolume method), 78
divergence() (pybamm.ScikitFiniteElement method),

82
divergence() (pybamm.SpatialMethod method), 75
divergence_matrix() (pybamm.FiniteVolume

method), 78
Division (class in pybamm), 11
domain (pybamm.Symbol attribute), 4
DomainConcatenation (class in pybamm), 18

E
edge_to_node() (pybamm.FiniteVolume method), 79
EffectiveResistance2D (class in py-

bamm.current_collector), 31
evaluate() (pybamm.BinaryOperator method), 11
evaluate() (pybamm.Concatenation method), 18
evaluate() (pybamm.EvaluatorPython method), 22
evaluate() (pybamm.Function method), 21
evaluate() (pybamm.Symbol method), 4
evaluate() (pybamm.UnaryOperator method), 13
evaluate_for_shape() (pybamm.BinaryOperator

method), 11
evaluate_for_shape() (py-

bamm.BoundaryIntegral method), 16
evaluate_for_shape() (py-

bamm.BoundaryOperator method), 16
evaluate_for_shape() (pybamm.Broadcast

method), 19
evaluate_for_shape() (pybamm.Concatenation

method), 18
evaluate_for_shape() (py-

bamm.DefiniteIntegralVector method), 15
evaluate_for_shape() (pybamm.FullBroadcast

method), 19
evaluate_for_shape() (pybamm.Function

method), 21
evaluate_for_shape() (py-

bamm.FunctionParameter method), 7

Index 109

PyBaMM Documentation

evaluate_for_shape() (py-
bamm.IndefiniteIntegral method), 15

evaluate_for_shape() (py-
bamm.IndependentVariable method), 8

evaluate_for_shape() (pybamm.Index method),
13

evaluate_for_shape() (pybamm.Integral
method), 15

evaluate_for_shape() (pybamm.Mass method),
14

evaluate_for_shape() (pybamm.Parameter
method), 7

evaluate_for_shape() (py-
bamm.PrimaryBroadcast method), 20

evaluate_for_shape() (pybamm.StateVector
method), 10

evaluate_for_shape() (pybamm.Symbol method),
5

evaluate_for_shape() (pybamm.Time method), 8
evaluate_for_shape() (pybamm.UnaryOperator

method), 13
evaluate_for_shape() (pybamm.Variable

method), 8
evaluate_ignoring_errors() (pybamm.Symbol

method), 5
evaluates_on_edges() (pybamm.BinaryOperator

method), 11
evaluates_on_edges() (py-

bamm.BoundaryIntegral method), 16
evaluates_on_edges() (pybamm.DeltaFunction

method), 16
evaluates_on_edges() (pybamm.Divergence

method), 14
evaluates_on_edges() (pybamm.Gradient

method), 14
evaluates_on_edges() (py-

bamm.Gradient_Squared method), 14
evaluates_on_edges() (pybamm.Index method),

13
evaluates_on_edges() (pybamm.Inner method),

12
evaluates_on_edges() (pybamm.Integral

method), 15
evaluates_on_edges() (pybamm.Laplacian

method), 14
evaluates_on_edges() (pybamm.Symbol method),

5
evaluates_on_edges() (pybamm.UnaryOperator

method), 13
evaluates_to_number() (pybamm.Symbol

method), 5
evaluation_array (pybamm.StateVector attribute),

10
EvaluatorPython (class in pybamm), 22

events (pybamm.BaseModel attribute), 23
events (pybamm.BaseSubModel attribute), 29
exp() (in module pybamm), 22
Exponential (class in pybamm), 22

F
FiniteVolume (class in pybamm), 77
FirstOrder (class in pybamm.oxygen_diffusion), 52
FirstOrderButlerVolmer (class in py-

bamm.interface.kinetics), 50
FirstOrderButlerVolmer (class in py-

bamm.interface.lead_acid), 51
FirstOrderForwardTafel (class in py-

bamm.interface.kinetics), 51
FOQS (class in pybamm.lead_acid), 28
format() (pybamm.Timer method), 92
ForwardTafel (class in pybamm.interface.kinetics),

51
Full (class in pybamm.convection), 35
Full (class in pybamm.electrode.ohm), 38
Full (class in pybamm.electrolyte.stefan_maxwell.conductivity),

41
Full (class in pybamm.electrolyte.stefan_maxwell.diffusion),

45
Full (class in pybamm.lead_acid), 28
Full (class in pybamm.oxygen_diffusion), 53
Full (class in pybamm.porosity), 60
FullAlgebraic (class in py-

bamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form),
43

FullBroadcast (class in pybamm), 19
FullDifferential (class in py-

bamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form),
42

FullDiffusionLimited (class in py-
bamm.interface.diffusion_limited), 47

Function (class in pybamm), 21
FunctionParameter (class in pybamm), 7

G
Geometry (class in pybamm), 68
Geometry1DMacro (class in pybamm), 69
Geometry1DMicro (class in pybamm), 69
Geometry1p1DMicro (class in pybamm), 69
Geometry2DCurrentCollector (class in py-

bamm), 70
Geometry3DMacro (class in pybamm), 69
Geometryxp0p1DMicro (class in pybamm), 69
Geometryxp1DMacro (class in pybamm), 69
Geometryxp1p1DMicro (class in pybamm), 70
get_children_auxiliary_domains() (py-

bamm.BinaryOperator method), 11
get_children_auxiliary_domains() (py-

bamm.Concatenation method), 18

110 Index

PyBaMM Documentation

get_children_domains() (py-
bamm.BinaryOperator method), 11

get_children_domains() (pybamm.Function
method), 21

get_children_domains() (py-
bamm.FunctionParameter method), 7

get_coupled_variables() (py-
bamm.BaseSubModel method), 29

get_coupled_variables() (py-
bamm.convection.Composite method), 35

get_coupled_variables() (py-
bamm.convection.Full method), 35

get_coupled_variables() (py-
bamm.convection.LeadingOrder method),
34

get_coupled_variables() (py-
bamm.current_collector.BaseModel method),
30

get_coupled_variables() (py-
bamm.current_collector.SingleParticlePotentialPair
method), 33

get_coupled_variables() (py-
bamm.electrode.ohm.Composite method),
37

get_coupled_variables() (py-
bamm.electrode.ohm.Full method), 38

get_coupled_variables() (py-
bamm.electrode.ohm.LeadingOrder method),
37

get_coupled_variables() (py-
bamm.electrode.ohm.SurfaceForm method),
39

get_coupled_variables() (py-
bamm.electrolyte.stefan_maxwell.conductivity.Full
method), 41

get_coupled_variables() (py-
bamm.electrolyte.stefan_maxwell.conductivity.LeadingOrder
method), 40

get_coupled_variables() (py-
bamm.electrolyte.stefan_maxwell.diffusion.Composite
method), 45

get_coupled_variables() (py-
bamm.electrolyte.stefan_maxwell.diffusion.Full
method), 45

get_coupled_variables() (py-
bamm.electrolyte.stefan_maxwell.diffusion.LeadingOrder
method), 46

get_coupled_variables() (py-
bamm.interface.diffusion_limited.BaseModel
method), 47

get_coupled_variables() (py-
bamm.interface.inverse_kinetics.BaseInverseFirstOrderKinetics
method), 48

get_coupled_variables() (py-

bamm.interface.inverse_kinetics.BaseInverseKinetics
method), 49

get_coupled_variables() (py-
bamm.interface.kinetics.BaseFirstOrderKinetics
method), 50

get_coupled_variables() (py-
bamm.interface.kinetics.BaseModel method),
49

get_coupled_variables() (py-
bamm.oxygen_diffusion.Composite method),
52

get_coupled_variables() (py-
bamm.oxygen_diffusion.FirstOrder method),
53

get_coupled_variables() (py-
bamm.oxygen_diffusion.Full method), 53

get_coupled_variables() (py-
bamm.oxygen_diffusion.LeadingOrder
method), 54

get_coupled_variables() (py-
bamm.particle.fickian.ManyParticles method),
56

get_coupled_variables() (py-
bamm.particle.fickian.SingleParticle method),
57

get_coupled_variables() (py-
bamm.porosity.Full method), 60

get_coupled_variables() (py-
bamm.porosity.LeadingOrder method), 59

get_coupled_variables() (py-
bamm.thermal.isothermal.Isothermal method),
61

get_coupled_variables() (py-
bamm.thermal.x_full.BaseModel method),
61

get_coupled_variables() (py-
bamm.thermal.x_lumped.BaseModel method),
62

get_coupled_variables() (py-
bamm.thermal.xyz_lumped.BaseModel
method), 64

get_fundamental_variables() (py-
bamm.BaseSubModel method), 29

get_fundamental_variables() (py-
bamm.convection.Full method), 35

get_fundamental_variables() (py-
bamm.convection.NoConvection method),
34

get_fundamental_variables() (py-
bamm.current_collector.BaseCompositePotentialPair
method), 31

get_fundamental_variables() (py-
bamm.current_collector.BasePotentialPair
method), 32

Index 111

PyBaMM Documentation

get_fundamental_variables() (py-
bamm.current_collector.BaseQuiteConductivePotentialPair
method), 33

get_fundamental_variables() (py-
bamm.current_collector.Uniform method),
31

get_fundamental_variables() (py-
bamm.electrode.ohm.Full method), 38

get_fundamental_variables() (py-
bamm.electrolyte.stefan_maxwell.conductivity.Full
method), 41

get_fundamental_variables() (py-
bamm.electrolyte.stefan_maxwell.diffusion.ConstantConcentration
method), 44

get_fundamental_variables() (py-
bamm.electrolyte.stefan_maxwell.diffusion.Full
method), 45

get_fundamental_variables() (py-
bamm.electrolyte.stefan_maxwell.diffusion.LeadingOrder
method), 46

get_fundamental_variables() (py-
bamm.oxygen_diffusion.Full method), 53

get_fundamental_variables() (py-
bamm.oxygen_diffusion.LeadingOrder
method), 54

get_fundamental_variables() (py-
bamm.oxygen_diffusion.NoOxygen method),
55

get_fundamental_variables() (py-
bamm.particle.fast.ManyParticles method),
58

get_fundamental_variables() (py-
bamm.particle.fast.SingleParticle method),
58

get_fundamental_variables() (py-
bamm.particle.fickian.ManyParticles method),
56

get_fundamental_variables() (py-
bamm.particle.fickian.SingleParticle method),
57

get_fundamental_variables() (py-
bamm.porosity.Constant method), 59

get_fundamental_variables() (py-
bamm.porosity.Full method), 60

get_fundamental_variables() (py-
bamm.porosity.LeadingOrder method), 59

get_fundamental_variables() (py-
bamm.thermal.isothermal.Isothermal method),
61

get_fundamental_variables() (py-
bamm.thermal.x_full.BaseModel method),
61

get_fundamental_variables() (py-
bamm.thermal.x_lumped.BaseModel method),

62
get_fundamental_variables() (py-

bamm.thermal.xyz_lumped.BaseModel
method), 64

get_infinite_nested_dict() (in module py-
bamm), 91

get_processed_potentials() (py-
bamm.current_collector.EffectiveResistance2D
method), 31

get_termination_reason() (py-
bamm.BaseSolver method), 85

grad() (in module pybamm), 17
grad_squared() (in module pybamm), 17
Gradient (class in pybamm), 14
gradient() (pybamm.FiniteVolume method), 79
gradient() (pybamm.ScikitFiniteElement method), 82
gradient() (pybamm.SpatialMethod method), 75
gradient_matrix() (pybamm.FiniteVolume

method), 79
Gradient_Squared (class in pybamm), 14
gradient_squared() (pybamm.ScikitFiniteElement

method), 82
gradient_squared() (pybamm.SpatialMethod

method), 75

H
has_symbol_of_classes() (pybamm.Symbol

method), 5

I
indefinite_integral() (pybamm.FiniteVolume

method), 79
indefinite_integral() (py-

bamm.ScikitFiniteElement method), 82
indefinite_integral() (pybamm.SpatialMethod

method), 76
indefinite_integral_matrix_edges()

(pybamm.FiniteVolume method), 79
indefinite_integral_matrix_nodes()

(pybamm.FiniteVolume method), 79
IndefiniteIntegral (class in pybamm), 15
IndependentVariable (class in pybamm), 8
Index (class in pybamm), 13
initial_conditions (pybamm.BaseModel at-

tribute), 23
initial_conditions (pybamm.BaseSubModel at-

tribute), 29
initialise_3D() (pybamm.ProcessedVariable

method), 91
Inner (class in pybamm), 11
Integral (class in pybamm), 14
integral() (pybamm.FiniteVolume method), 79
integral() (pybamm.ScikitFiniteElement method), 83
integral() (pybamm.SpatialMethod method), 76

112 Index

PyBaMM Documentation

integrate() (pybamm.DaeSolver method), 87
integrate() (pybamm.OdeSolver method), 86
integrate() (pybamm.ScikitsDaeSolver method), 89
integrate() (pybamm.ScikitsOdeSolver method), 88
integrate() (pybamm.ScipySolver method), 88
internal_neumann_condition() (py-

bamm.FiniteVolume method), 80
internal_neumann_condition() (py-

bamm.SpatialMethod method), 76
InverseButlerVolmer (class in py-

bamm.interface.inverse_kinetics), 49
InverseButlerVolmer (class in py-

bamm.interface.lead_acid), 51
InverseButlerVolmer (class in py-

bamm.interface.lithium_ion), 51
InverseFirstOrderKinetics (class in py-

bamm.interface.lead_acid), 51
is_constant() (pybamm.Symbol method), 5
Isothermal (class in pybamm.thermal.isothermal), 60

J
jac() (pybamm.AbsoluteValue method), 13
jac() (pybamm.Kron method), 12
jac() (pybamm.Scalar method), 9
jac() (pybamm.SpatialOperator method), 14
jac() (pybamm.StateVector method), 10
jac() (pybamm.Symbol method), 5
jacobian (pybamm.BaseModel attribute), 24

K
Kron (class in pybamm), 12

L
Laplacian (class in pybamm), 14
laplacian() (in module pybamm), 17
laplacian() (pybamm.FiniteVolume method), 80
laplacian() (pybamm.ScikitFiniteElement method),

83
laplacian() (pybamm.SpatialMethod method), 76
LeadingOrder (class in pybamm.convection), 34
LeadingOrder (class in pybamm.electrode.ohm), 37
LeadingOrder (class in py-

bamm.electrolyte.stefan_maxwell.conductivity),
40

LeadingOrder (class in py-
bamm.electrolyte.stefan_maxwell.diffusion),
46

LeadingOrder (class in pybamm.oxygen_diffusion),
54

LeadingOrder (class in pybamm.porosity), 59
LeadingOrderAlgebraic (class in py-

bamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form),
43

LeadingOrderDifferential (class in py-
bamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form),
43

LeadingOrderDiffusionLimited (class in py-
bamm.interface.diffusion_limited), 48

load_function() (in module pybamm), 91
Log (class in pybamm), 22
log() (in module pybamm), 22
LOQS (class in pybamm.lead_acid), 27

M
ManyParticles (class in pybamm.particle.fast), 58
ManyParticles (class in pybamm.particle.fickian), 56
Mass (class in pybamm), 14
mass_matrix (pybamm.BaseModel attribute), 24
mass_matrix() (pybamm.ScikitFiniteElement

method), 83
mass_matrix() (pybamm.SpatialMethod method), 76
mass_matrix() (pybamm.ZeroDimensionalMethod

method), 84
Matrix (class in pybamm), 9
MatrixMultiplication (class in pybamm), 11
max() (in module pybamm), 22
Mesh (class in pybamm), 70
min() (in module pybamm), 22
Multiplication (class in pybamm), 11

N
name (pybamm.BaseModel attribute), 23
name (pybamm.Symbol attribute), 5
Negate (class in pybamm), 13
new_copy() (pybamm.BinaryOperator method), 11
new_copy() (pybamm.Concatenation method), 18
new_copy() (pybamm.Function method), 21
new_copy() (pybamm.FunctionParameter method), 7
new_copy() (pybamm.Parameter method), 7
new_copy() (pybamm.Scalar method), 9
new_copy() (pybamm.SpatialVariable method), 8
new_copy() (pybamm.StateVector method), 10
new_copy() (pybamm.Symbol method), 5
new_copy() (pybamm.Time method), 8
new_copy() (pybamm.UnaryOperator method), 13
new_copy() (pybamm.Variable method), 8
NoConvection (class in pybamm.convection), 34
NoCurrentCollector (class in py-

bamm.thermal.x_full), 62
NoCurrentCollector (class in py-

bamm.thermal.x_lumped), 63
node_to_edge() (pybamm.FiniteVolume method), 80
NoOxygen (class in pybamm.oxygen_diffusion), 55
NoReaction (class in pybamm.interface.kinetics), 50
NumpyConcatenation (class in pybamm), 18

Index 113

PyBaMM Documentation

O
OdeSolver (class in pybamm), 86
on_boundary() (pybamm.Scikit2DSubMesh method),

71
options (pybamm.BaseBatteryModel attribute), 25
options (pybamm.BaseModel attribute), 23
orphans (pybamm.Symbol attribute), 6
Outer (class in pybamm), 12
outer() (in module pybamm), 12

P
param (pybamm.BaseSubModel attribute), 29
Parameter (class in pybamm), 7
ParameterValues (class in pybamm), 65
post_process_variables() (in module py-

bamm), 90
PotentialPair1plus1D (class in py-

bamm.current_collector), 32
PotentialPair2plus1D (class in py-

bamm.current_collector), 32
Power (class in pybamm), 11
pre_order() (pybamm.Symbol method), 6
PrimaryBroadcast (class in pybamm), 19
print_evaluated_parameters() (in module py-

bamm), 67
print_parameters() (in module pybamm), 67
process_binary_operators() (py-

bamm.FiniteVolume method), 80
process_binary_operators() (py-

bamm.SpatialMethod method), 77
process_boundary_conditions() (py-

bamm.Discretisation method), 72
process_dict() (pybamm.Discretisation method),

72
process_geometry() (pybamm.ParameterValues

method), 65
process_initial_conditions() (py-

bamm.Discretisation method), 73
process_model() (pybamm.Discretisation method),

73
process_model() (pybamm.ParameterValues

method), 66
process_parameters_and_discretise() (py-

bamm.BaseBatteryModel method), 25
process_rhs_and_algebraic() (py-

bamm.Discretisation method), 73
process_symbol() (pybamm.Discretisation

method), 73
process_symbol() (pybamm.ParameterValues

method), 66
ProcessedVariable (class in pybamm), 90
pybamm (module), 3
pybamm.parameters.electrical_parameters

(module), 67

pybamm.parameters.geometric_parameters
(module), 67

pybamm.parameters.standard_parameters_lead_acid
(module), 67

pybamm.parameters.standard_parameters_lithium_ion
(module), 67

pybamm.parameters.thermal_parameters
(module), 67

Q
QuiteConductivePotentialPair1plus1D

(class in pybamm.current_collector), 33
QuiteConductivePotentialPair2plus1D

(class in pybamm.current_collector), 33

R
read_parameters_csv() (py-

bamm.ParameterValues method), 66
relabel_tree() (pybamm.Symbol method), 6
render() (pybamm.Symbol method), 6
reset() (pybamm.Timer method), 92
rhs (pybamm.BaseModel attribute), 23
rhs (pybamm.BaseSubModel attribute), 29
rmse() (in module pybamm), 91
root() (pybamm.AlgebraicSolver method), 84
root_dir() (in module pybamm), 91

S
Scalar (class in pybamm), 9
Scikit2DSubMesh (class in pybamm), 71
ScikitFiniteElement (class in pybamm), 81
ScikitsDaeSolver (class in pybamm), 89
ScikitsOdeSolver (class in pybamm), 88
ScipySolver (class in pybamm), 88
set_algebraic() (pybamm.BaseSubModel method),

30
set_algebraic() (pybamm.convection.Full

method), 35
set_algebraic() (py-

bamm.current_collector.BasePotentialPair
method), 32

set_algebraic() (py-
bamm.current_collector.BaseQuiteConductivePotentialPair
method), 33

set_algebraic() (pybamm.electrode.ohm.Full
method), 38

set_algebraic() (py-
bamm.electrolyte.stefan_maxwell.conductivity.Full
method), 42

set_algebraic() (py-
bamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.FullAlgebraic
method), 43

114 Index

PyBaMM Documentation

set_algebraic() (py-
bamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.LeadingOrderAlgebraic
method), 43

set_boundary_conditions() (py-
bamm.BaseSubModel method), 30

set_boundary_conditions() (py-
bamm.convection.Full method), 35

set_boundary_conditions() (py-
bamm.current_collector.PotentialPair1plus1D
method), 32

set_boundary_conditions() (py-
bamm.current_collector.PotentialPair2plus1D
method), 32

set_boundary_conditions() (py-
bamm.electrode.ohm.BaseModel method),
36

set_boundary_conditions() (py-
bamm.electrode.ohm.Composite method),
37

set_boundary_conditions() (py-
bamm.electrode.ohm.Full method), 38

set_boundary_conditions() (py-
bamm.electrode.ohm.LeadingOrder method),
37

set_boundary_conditions() (py-
bamm.electrolyte.stefan_maxwell.conductivity.BaseModel
method), 40

set_boundary_conditions() (py-
bamm.electrolyte.stefan_maxwell.conductivity.Full
method), 42

set_boundary_conditions() (py-
bamm.electrolyte.stefan_maxwell.diffusion.BaseModel
method), 44

set_boundary_conditions() (py-
bamm.electrolyte.stefan_maxwell.diffusion.ConstantConcentration
method), 44

set_boundary_conditions() (py-
bamm.oxygen_diffusion.Full method), 53

set_boundary_conditions() (py-
bamm.particle.fickian.BaseModel method),
56

set_boundary_conditions() (py-
bamm.thermal.x_full.NoCurrentCollector
method), 62

set_boundary_conditions() (py-
bamm.thermal.x_lumped.CurrentCollector1D
method), 63

set_boundary_conditions() (py-
bamm.thermal.x_lumped.CurrentCollector2D
method), 64

set_evaluation_array() (pybamm.StateVector
method), 10

set_events() (pybamm.BaseSubModel method), 30
set_events() (pybamm.electrolyte.BaseElectrolyteDiffusion

method), 39
set_events() (pybamm.electrolyte.stefan_maxwell.conductivity.Full

method), 42
set_events() (pybamm.particle.BaseParticle

method), 55
set_full_convection_submodel() (py-

bamm.lead_acid.BaseHigherOrderModel
method), 28

set_full_interface_submodel() (py-
bamm.lead_acid.BaseHigherOrderModel
method), 28

set_full_porosity_submodel() (py-
bamm.lead_acid.BaseHigherOrderModel
method), 28

set_full_porosity_submodel() (py-
bamm.lead_acid.Composite method), 28

set_full_porosity_submodel() (py-
bamm.lead_acid.CompositeExtended method),
28

set_full_porosity_submodel() (py-
bamm.lead_acid.FOQS method), 28

set_id() (pybamm.BoundaryIntegral method), 16
set_id() (pybamm.BoundaryOperator method), 16
set_id() (pybamm.DefiniteIntegralVector method), 15
set_id() (pybamm.DeltaFunction method), 16
set_id() (pybamm.FunctionParameter method), 7
set_id() (pybamm.Index method), 13
set_id() (pybamm.Integral method), 15
set_id() (pybamm.Scalar method), 9
set_id() (pybamm.StateVector method), 10
set_id() (pybamm.Symbol method), 6
set_initial_conditions() (py-

bamm.BaseSubModel method), 30
set_initial_conditions() (py-

bamm.convection.Full method), 36
set_initial_conditions() (py-

bamm.current_collector.BasePotentialPair
method), 32

set_initial_conditions() (py-
bamm.current_collector.BaseQuiteConductivePotentialPair
method), 33

set_initial_conditions() (py-
bamm.electrode.ohm.Full method), 38

set_initial_conditions() (py-
bamm.electrolyte.stefan_maxwell.conductivity.Full
method), 42

set_initial_conditions() (py-
bamm.electrolyte.stefan_maxwell.diffusion.Full
method), 46

set_initial_conditions() (py-
bamm.electrolyte.stefan_maxwell.diffusion.LeadingOrder
method), 46

set_initial_conditions() (py-
bamm.oxygen_diffusion.Full method), 53

Index 115

PyBaMM Documentation

set_initial_conditions() (py-
bamm.oxygen_diffusion.LeadingOrder
method), 54

set_initial_conditions() (py-
bamm.particle.BaseParticle method), 55

set_initial_conditions() (py-
bamm.porosity.Full method), 60

set_initial_conditions() (py-
bamm.porosity.LeadingOrder method), 59

set_initial_conditions() (py-
bamm.thermal.x_full.BaseModel method),
61

set_initial_conditions() (py-
bamm.thermal.x_lumped.BaseModel method),
63

set_initial_conditions() (py-
bamm.thermal.xyz_lumped.BaseModel
method), 64

set_internal_boundary_conditions()
(pybamm.Discretisation method), 73

set_rhs() (pybamm.BaseSubModel method), 30
set_rhs() (pybamm.electrolyte.stefan_maxwell.conductivity.Full

method), 42
set_rhs() (pybamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.FullDifferential

method), 42
set_rhs() (pybamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.LeadingOrderDifferential

method), 43
set_rhs() (pybamm.electrolyte.stefan_maxwell.diffusion.Composite

method), 45
set_rhs() (pybamm.electrolyte.stefan_maxwell.diffusion.Full

method), 46
set_rhs() (pybamm.electrolyte.stefan_maxwell.diffusion.LeadingOrder

method), 47
set_rhs() (pybamm.oxygen_diffusion.Composite

method), 52
set_rhs() (pybamm.oxygen_diffusion.Full method),

54
set_rhs() (pybamm.oxygen_diffusion.LeadingOrder

method), 54
set_rhs() (pybamm.particle.fast.BaseModel method),

57
set_rhs() (pybamm.particle.fickian.BaseModel

method), 56
set_rhs() (pybamm.porosity.Full method), 60
set_rhs() (pybamm.porosity.LeadingOrder method),

59
set_rhs() (pybamm.thermal.x_full.NoCurrentCollector

method), 62
set_rhs() (pybamm.thermal.x_lumped.CurrentCollector0D

method), 63
set_rhs() (pybamm.thermal.x_lumped.CurrentCollector1D

method), 63
set_rhs() (pybamm.thermal.x_lumped.CurrentCollector2D

method), 64

set_rhs() (pybamm.thermal.x_lumped.NoCurrentCollector
method), 63

set_rhs() (pybamm.thermal.xyz_lumped.BaseModel
method), 65

set_soc_variables() (py-
bamm.BaseBatteryModel method), 26

set_soc_variables() (py-
bamm.lead_acid.BaseModel method), 27

set_up() (pybamm.AlgebraicSolver method), 84
set_up() (pybamm.BaseSolver method), 85
set_up() (pybamm.DaeSolver method), 87
set_up() (pybamm.OdeSolver method), 86
set_variable_slices() (pybamm.Discretisation

method), 73
shape (pybamm.Symbol attribute), 6
shape_for_testing (pybamm.Symbol attribute), 6
shift() (pybamm.FiniteVolume method), 80
Simplification (class in pybamm), 20
simplify() (pybamm.Simplification method), 20
simplify() (pybamm.Symbol method), 6
simplify_addition_subtraction() (in mod-

ule pybamm), 20
simplify_if_constant() (in module pybamm),

20
simplify_multiplication_division() (in

module pybamm), 20
Sin (class in pybamm), 22
sin() (in module pybamm), 22
SingleParticle (class in pybamm.particle.fast), 58
SingleParticle (class in pybamm.particle.fickian),

57
SingleParticlePotentialPair (class in py-

bamm.current_collector), 33
Sinh (class in pybamm), 22
sinh() (in module pybamm), 22
size (pybamm.StateVector attribute), 10
size (pybamm.Symbol attribute), 6
size_for_testing (pybamm.Symbol attribute), 6
Solution (class in pybamm), 89
solve() (pybamm.AlgebraicSolver method), 84
solve() (pybamm.BaseSolver method), 85
source() (in module pybamm), 12
SparseStack (class in pybamm), 19
spatial_variable() (pybamm.FiniteVolume

method), 80
spatial_variable() (pybamm.ScikitFiniteElement

method), 83
spatial_variable() (pybamm.SpatialMethod

method), 77
SpatialMethod (class in pybamm), 74
SpatialOperator (class in pybamm), 13
SpatialVariable (class in pybamm), 8
SpecificFunction (class in pybamm), 21
SPM (class in pybamm.lithium_ion), 26

116 Index

PyBaMM Documentation

SPMe (class in pybamm.lithium_ion), 26
StateVector (class in pybamm), 10
step() (pybamm.BaseSolver method), 85
stiffness_matrix() (pybamm.ScikitFiniteElement

method), 83
SubMesh0D (class in pybamm), 71
SubMesh1D (class in pybamm), 71
Subtraction (class in pybamm), 11
surf() (in module pybamm), 17
SurfaceForm (class in pybamm.electrode.ohm), 39
Symbol (class in pybamm), 3

T
t (in module pybamm), 8
t (pybamm.Solution attribute), 90
t_event (pybamm.Solution attribute), 90
termination (pybamm.Solution attribute), 90
test_shape() (pybamm.Symbol method), 6
Time (class in pybamm), 8
time() (pybamm.Timer method), 92
Timer (class in pybamm), 91

U
UnaryOperator (class in pybamm), 12
Uniform (class in pybamm.current_collector), 31
Uniform1DSubMesh (class in pybamm), 71
unpack() (pybamm.electrolyte.stefan_maxwell.conductivity.Composite

method), 41
update() (pybamm.BaseModel method), 25
update() (pybamm.ParameterValues method), 66
update_model() (pybamm.ParameterValues

method), 66
update_scalars() (pybamm.ParameterValues

method), 66
use_jacobian (pybamm.BaseModel attribute), 24
use_simplify (pybamm.BaseModel attribute), 24
use_to_python (pybamm.BaseModel attribute), 24

V
value (pybamm.Scalar attribute), 9
Variable (class in pybamm), 7
variables (pybamm.BaseModel attribute), 23
variables (pybamm.BaseSubModel attribute), 29
Vector (class in pybamm), 9
visualise() (pybamm.Symbol method), 6

X
x_average() (in module pybamm), 17

Y
y (pybamm.Solution attribute), 90
y_event (pybamm.Solution attribute), 90

Z
ZeroDimensionalMethod (class in pybamm), 84

Index 117

	Contents
	Expression Tree
	Models
	Parameters
	Geometry
	Meshes
	Discretisation and spatial methods
	Solvers
	Post-Process Variables
	Utility functions

	Examples
	Contributing
	Adding Parameter Values
	Adding a Model
	Adding a Spatial Method
	Adding a Solver

	Python Module Index
	Index

