
PyBaMM Documentation
Release 0.2.0

Valentin Sulzer

Mar 12, 2021

Contents

1 Contents 3
1.1 Expression Tree . 3
1.2 Models . 24
1.3 Parameters . 72
1.4 Geometry . 75
1.5 Meshes . 78
1.6 Discretisation and spatial methods . 83
1.7 Solvers . 97
1.8 Experiments . 102
1.9 Post-Process Variables . 103
1.10 Utility functions . 103
1.11 Simulation . 104
1.12 Citations . 107
1.13 Parameters command line interface . 107

2 Examples 109

3 Contributing 111
3.1 Adding Parameter Values . 111
3.2 Adding a Model . 114
3.3 Adding a Spatial Method . 118
3.4 Adding a Solver . 119

Python Module Index 123

Index 125

i

ii

PyBaMM Documentation, Release 0.2.0

Python Battery Mathematical Modelling (PyBAMM) solves continuum models for batteries, using both numerical
methods and asymptotic analysis.

PyBaMM is hosted on GitHub. This page provides the API, or developer documentation for pybamm.

• genindex

• modindex

• search

Contents 1

https://github.com/pybamm-team/PyBaMM

PyBaMM Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Contents

1.1 Expression Tree

1.1.1 Symbol

class pybamm.Symbol(name, children=None, domain=None, auxiliary_domains=None)
Base node class for the expression tree

Parameters

• name (str) – name for the node

• children (iterable Symbol, optional) – children to attach to this node, default to an
empty list

• domain (iterable of str, or str) – list of domains over which the node is valid
(empty list indicates the symbol is valid over all domains)

• auxiliary_domains (dict of str) – dictionary of auxiliary domains over which
the node is valid (empty dictionary indicates no auxiliary domains). Keys can be
“secondary” or “tertiary”. The symbol is broadcast over its auxiliary domains. For
example, a symbol might have domain “negative particle”, secondary domain “sep-
arator” and tertiary domain “current collector” (domain=”negative particle”, auxil-
iary_domains={“secondary”: “separator”, “tertiary”: “current collector”}).

__abs__()
return an AbsoluteValue object

__add__(other)
return an Addition object

__ge__(other)
return a Heaviside object

__getitem__(key)
return a Index object

3

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

__gt__(other)
return a Heaviside object

__init__(name, children=None, domain=None, auxiliary_domains=None)
Initialize self. See help(type(self)) for accurate signature.

__le__(other)
return a Heaviside object

__lt__(other)
return a Heaviside object

__matmul__(other)
return a MatrixMultiplication object

__mul__(other)
return a Multiplication object

__neg__()
return a Negate object

__pow__(other)
return a Power object

__radd__(other)
return an Addition object

__repr__()
returns the string __class__(id, name, children, domain)

__rmatmul__(other)
return a MatrixMultiplication object

__rmul__(other)
return a Multiplication object

__rpow__(other)
return a Power object

__rsub__(other)
return a Subtraction object

__rtruediv__(other)
return a Division object

__str__()
return a string representation of the node and its children

__sub__(other)
return a Subtraction object

__truediv__(other)
return a Division object

children
returns the cached children of this node.

Note: it is assumed that children of a node are not modified after initial creation

clear_domains()
Clear domains, bypassing checks

copy_domains(symbol)
Copy the domains from a given symbol, bypassing checks

4 Chapter 1. Contents

PyBaMM Documentation, Release 0.2.0

diff(variable)
Differentiate a symbol with respect to a variable. For any symbol that can be differentiated, return 1
if differentiating with respect to yourself, self._diff(variable) if variable is in the expression tree of the
symbol, and zero otherwise.

Parameters variable (pybamm.Symbol) – The variable with respect to which to differen-
tiate

domain
list of applicable domains

Returns

Return type iterable of str

evaluate(t=None, y=None, u=None, known_evals=None)
Evaluate expression tree (wrapper to allow using dict of known values). If the dict ‘known_evals’ is
provided, the dict is searched for self.id; if self.id is in the keys, return that value; otherwise, evaluate
using _base_evaluate() and add that value to known_evals

Parameters

• t (float or numeric type, optional) – time at which to evaluate (default
None)

• y (numpy.array, optional) – array to evaluate when solving (default None)

• u (dict, optional) – dictionary of inputs to use when solving (default None)

• known_evals (dict, optional) – dictionary containing known values (default
None)

Returns

• number or array – the node evaluated at (t,y)

• known_evals (if known_evals input is not None) (dict) – the dictionary of known values

evaluate_for_shape()
Evaluate expression tree to find its shape. For symbols that cannot be evaluated directly (e.g. Variable
or Parameter), a vector of the appropriate shape is returned instead, using the symbol’s domain. See
pybamm.Symbol.evaluate()

evaluate_ignoring_errors()
Evaluates the expression. If a node exists in the tree that cannot be evaluated as a scalar or vector (e.g.
Parameter, Variable, StateVector, InputParameter), then None is returned. Otherwise the result of the
evaluation is given

See also:

evaluate() evaluate the expression

evaluates_on_edges()
Returns True if a symbol evaluates on an edge, i.e. symbol contains a gradient operator, but not a diver-
gence operator, and is not an IndefiniteIntegral.

evaluates_to_number()
Returns True if evaluating the expression returns a number. Returns False otherwise, including if NotIm-
plementedError or TyperError is raised. !Not to be confused with isinstance(self, pybamm.Scalar)!

See also:

evaluate() evaluate the expression

1.1. Expression Tree 5

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

get_children_auxiliary_domains(children)
Combine auxiliary domains from children, at all levels

has_symbol_of_classes(symbol_classes)
Returns True if equation has a term of the class(es) symbol_class.

Parameters symbol_classes (pybamm class or iterable of classes) – The
classes to test the symbol against

is_constant()
returns true if evaluating the expression is not dependent on t or y or u

See also:

evaluate() evaluate the expression

jac(variable, known_jacs=None)
Differentiate a symbol with respect to a (slice of) a State Vector. See pybamm.Jacobian.

name
name of the node

new_copy()
Make a new copy of a symbol, to avoid Tree corruption errors while bypassing copy.deepcopy(), which is
slow.

orphans
Returning new copies of the children, with parents removed to avoid corrupting the expression tree internal
data

pre_order()
returns an iterable that steps through the tree in pre-order fashion

Examples

>>> import pybamm
>>> a = pybamm.Symbol('a')
>>> b = pybamm.Symbol('b')
>>> for node in (a*b).pre_order():
... print(node.name)

*
a
b

relabel_tree(symbol, counter)
Finds all children of a symbol and assigns them a new id so that they can be visualised properly using the
graphviz output

render()
print out a visual representation of the tree (this node and its children)

secondary_domain
Helper function to get the secondary domain of a symbol

set_id()
Set the immutable “identity” of a variable (e.g. for identifying y_slices).

This is identical to what we’d put in a __hash__ function However, implementing __hash__ requires also
implementing __eq__, which would then mess with loop-checking in the anytree module.

6 Chapter 1. Contents

PyBaMM Documentation, Release 0.2.0

Hashing can be slow, so we set the id when we create the node, and hence only need to hash once.

shape
Shape of an object, found by evaluating it with appropriate t and y.

shape_for_testing
Shape of an object for cases where it cannot be evaluated directly. If a symbol cannot be evaluated directly
(e.g. it is a Variable or Parameter), it is instead given an arbitrary domain-dependent shape.

simplify(simplified_symbols=None)
Simplify the expression tree. See pybamm.Simplification.

size
Size of an object, found by evaluating it with appropriate t and y

size_for_testing
Size of an object, based on shape for testing

test_shape()
Check that the discretised self has a pybamm shape, i.e. can be evaluated

Raises pybamm.ShapeError – If the shape of the object cannot be found

to_casadi(t=None, y=None, u=None, casadi_symbols=None)
Convert the expression tree to a CasADi expression tree. See pybamm.CasadiConverter.

visualise(filename)
Produces a .png file of the tree (this node and its children) with the name filename

Parameters filename (str) – filename to output, must end in “.png”

1.1.2 Parameter

class pybamm.Parameter(name, domain=[])
A node in the expression tree representing a parameter

This node will be replaced by a Scalar node by :class‘.Parameter‘

Parameters

• name (str) – name of the node

• domain (iterable of str, optional) – list of domains the parameter is valid
over, defaults to empty list

new_copy()
See pybamm.Symbol.new_copy().

class pybamm.FunctionParameter(name, *children, diff_variable=None)
A node in the expression tree representing a function parameter

This node will be replaced by a pybamm.Function node if a callable function is passed to the parameter
values, and otherwise (in some rarer cases, such as constant current) a pybamm.Scalar node.

Parameters

• name (str) – name of the node

• child (Symbol) – child node

• diff_variable (pybamm.Symbol, optional) – if diff_variable is specified, the Func-
tionParameter node will be replaced by a pybamm.Function and then differentiated with
respect to diff_variable. Default is None.

1.1. Expression Tree 7

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

diff(variable)
See pybamm.Symbol.diff().

get_children_domains(children_list)
Obtains the unique domain of the children. If the children have different domains then raise an error

new_copy()
See pybamm.Symbol.new_copy().

set_id()
See pybamm.Symbol.set_id()

1.1.3 Variable

class pybamm.Variable(name, domain=None, auxiliary_domains=None)
A node in the expression tree represending a dependent variable

This node will be discretised by Discretisation and converted to a pybamm.StateVector node.

Parameters

• name (str) – name of the node

• domain (iterable of str) – list of domains that this variable is valid over

• auxiliary_domains (dict) – dictionary of auxiliary domains ({‘secondary’: . . . , ‘ter-
tiary’: . . . }). For example, for the single particle model, the particle concentration would
be a Variable with domain ‘negative particle’ and secondary auxiliary domain ‘current col-
lector’. For the DFN, the particle concentration would be a Variable with domain ‘negative
particle’, secondary domain ‘negative electrode’ and tertiary domain ‘current collector’

• *Extends –

new_copy()
See pybamm.Symbol.new_copy().

class pybamm.ExternalVariable(name, size, domain=None, auxiliary_domains=None)
A node in the expression tree represending an external variable variable

This node will be discretised by Discretisation and converted to a Vector node.

Parameters

• name (str) – name of the node

• domain (iterable of str) – list of domains that this variable is valid over

• auxiliary_domains (dict) – dictionary of auxiliary domains ({‘secondary’: . . . , ‘ter-
tiary’: . . . }). For example, for the single particle model, the particle concentration would
be a Variable with domain ‘negative particle’ and secondary auxiliary domain ‘current col-
lector’. For the DFN, the particle concentration would be a Variable with domain ‘negative
particle’, secondary domain ‘negative electrode’ and tertiary domain ‘current collector’

• *Extends –

size
Size of an object, found by evaluating it with appropriate t and y

8 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

1.1.4 Independent Variable

class pybamm.IndependentVariable(name, domain=None, auxiliary_domains=None)
A node in the expression tree representing an independent variable

Used for expressing functions depending on a spatial variable or time

Parameters

• name (str) – name of the node

• domain (iterable of str) – list of domains that this variable is valid over

• *Extends –

class pybamm.Time
A node in the expression tree representing time

Extends: Symbol

new_copy()
See pybamm.Symbol.new_copy().

class pybamm.SpatialVariable(name, domain=None, auxiliary_domains=None, coord_sys=None)
A node in the expression tree representing a spatial variable

Parameters

• name (str) – name of the node (e.g. “x”, “y”, “z”, “r”, “x_n”, “x_s”, “x_p”, “r_n”, “r_p”)

• domain (iterable of str) – list of domains that this variable is valid over (e.g.
“cartesian”, “spherical polar”)

• *Extends –

new_copy()
See pybamm.Symbol.new_copy().

pybamm.t = the independent variable time
A node in the expression tree representing time

Extends: Symbol

1.1.5 Scalar

class pybamm.Scalar(value, name=None, domain=[])
A node in the expression tree representing a scalar value

Extends: Symbol

Parameters

• value (numeric) – the value returned by the node when evaluated

• name (str, optional) – the name of the node. Defaulted to str(value) if not
provided

• domain (iterable of str, optional) – list of domains the parameter is valid
over, defaults to empty list

new_copy()
See pybamm.Symbol.new_copy().

1.1. Expression Tree 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

set_id()
See pybamm.Symbol.set_id().

value
the value returned by the node when evaluated

1.1.6 Matrix

class pybamm.Matrix(entries, name=None, domain=None, auxiliary_domains=None, en-
tries_string=None)

node in the expression tree that holds a matrix type (e.g. numpy.array)

Extends: Array

1.1.7 Vector

class pybamm.Vector(entries, name=None, domain=None, auxiliary_domains=None, en-
tries_string=None)

node in the expression tree that holds a vector type (e.g. numpy.array)

Extends: Array

1.1.8 State Vector

class pybamm.StateVector(*y_slices, name=None, domain=None, auxiliary_domains=None, evalu-
ation_array=None)

node in the expression tree that holds a slice to read from an external vector type

Parameters

• y_slice (slice) – the slice of an external y to read

• name (str, optional) – the name of the node

• domain (iterable of str, optional) – list of domains the parameter is valid
over, defaults to empty list

• auxiliary_domains (dict of str, optional) – dictionary of auxiliary do-
mains

• evaluation_array (list, optional) – List of boolean arrays representing slices.
Default is None, in which case the evaluation_array is computed from y_slices.

• *Extends –

evaluation_array
Array to use for evaluating

new_copy()
See pybamm.Symbol.new_copy().

set_evaluation_array(y_slices, evaluation_array)
Set evaluation array using slices

set_id()
See pybamm.Symbol.set_id()

size
Size of an object, found by evaluating it with appropriate t and y

10 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 0.2.0

1.1.9 Binary Operators

class pybamm.BinaryOperator(name, left, right)
A node in the expression tree representing a binary operator (e.g. +, *)

Derived classes will specify the particular operator

Extends: Symbol

Parameters

• name (str) – name of the node

• left (Symbol or Number) – lhs child node (converted to Scalar if Number)

• right (Symbol or Number) – rhs child node (converted to Scalar if Number)

evaluate(t=None, y=None, u=None, known_evals=None)
See pybamm.Symbol.evaluate().

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

format(left, right)
Format children left and right into compatible form

get_children_domains(ldomain, rdomain)
Combine domains from children in appropriate way

new_copy()
See pybamm.Symbol.new_copy().

class pybamm.Power(left, right)
A node in the expression tree representing a ** power operator

Extends: BinaryOperator

class pybamm.Addition(left, right)
A node in the expression tree representing an addition operator

Extends: BinaryOperator

class pybamm.Subtraction(left, right)
A node in the expression tree representing a subtraction operator

Extends: BinaryOperator

class pybamm.Multiplication(left, right)
A node in the expression tree representing a multiplication operator (Hadamard product). Overloads cases where
the “*” operator would usually return a matrix multiplication (e.g. scipy.sparse.coo.coo_matrix)

Extends: BinaryOperator

class pybamm.MatrixMultiplication(left, right)
A node in the expression tree representing a matrix multiplication operator

Extends: BinaryOperator

diff(variable)
See pybamm.Symbol.diff().

class pybamm.Division(left, right)
A node in the expression tree representing a division operator

Extends: BinaryOperator

1.1. Expression Tree 11

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

class pybamm.Inner(left, right)
A node in the expression tree which represents the inner (or dot) product. This operator should be used to
take the inner product of two mathematical vectors (as opposed to the computational vectors arrived at post-
discretisation) of the form v = v_x e_x + v_y e_y + v_z e_z where v_x, v_y, v_z are scalars and e_x, e_y, e_z are
x-y-z-directional unit vectors. For v and w mathematical vectors, inner product returns v_x * w_x + v_y * w_y
+ v_z * w_z. In addition, for some spatial discretisations mathematical vector quantities (such as i = grad(phi))
are evaluated on a different part of the grid to mathematical scalars (e.g. for finite volume mathematical scalars
are evaluated on the nodes but mathematical vectors are evaluated on cell edges). Therefore, inner also transfers
the inner product of the vector onto the scalar part of the grid if required by a particular discretisation.

Extends: BinaryOperator

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

class pybamm.Heaviside(left, right, equal)
A node in the expression tree representing a heaviside step function.

Adding this operation to the rhs or algebraic equations in a model can often cause a discontinuity in the solution.
For the specific cases listed below, this will be automatically handled by the solver. In the general case, you can
explicitly tell the solver of discontinuities by adding a Event object with EventType DISCONTINUITY to
the model’s list of events.

In the case where the Heaviside function is of the form pybamm.t < x, pybamm.t <= x, x < pybamm.t, or x <=
pybamm.t, where x is any constant equation, this DISCONTINUITY event will automatically be added by the
solver.

Extends: BinaryOperator

diff(variable)
See pybamm.Symbol.diff().

pybamm.source(left, right, boundary=False)
A convinience function for creating (part of) an expression tree representing a source term. This is necessary for
spatial methods where the mass matrix is not the identity (e.g. finite element formulation with piecwise linear
basis functions). The left child is the symbol representing the source term and the right child is the symbol of the
equation variable (currently, the finite element formulation in PyBaMM assumes all functions are constructed
using the same basis, and the matrix here is constructed accoutning for the boundary conditions of the right
child). The method returns the matrix-vector product of the mass matrix (adjusted to account for any Dirichlet
boundary conditions imposed the the right symbol) and the discretised left symbol.

Parameters

• left (Symbol) – The left child node, which represents the expression for the source term.

• right (Symbol) – The right child node. This is the symbol whose boundary conditions
are accounted for in the construction of the mass matrix.

• boundary (bool, optional) – If True, then the mass matrix should is assembled
over the boundary, corresponding to a source term which only acts on the boundary of the
domain. If False (default), the matrix is assembled over the entire domain, corresponding to
a source term in the bulk.

1.1.10 Unary Operators

class pybamm.UnaryOperator(name, child, domain=None, auxiliary_domains=None)
A node in the expression tree representing a unary operator (e.g. ‘-‘, grad, div)

Derived classes will specify the particular operator

12 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.0

Extends: Symbol

Parameters

• name (str) – name of the node

• child (Symbol) – child node

evaluate(t=None, y=None, u=None, known_evals=None)
See pybamm.Symbol.evaluate().

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

new_copy()
See pybamm.Symbol.new_copy().

class pybamm.Negate(child)
A node in the expression tree representing a - negation operator

Extends: UnaryOperator

class pybamm.AbsoluteValue(child)
A node in the expression tree representing an abs operator

Extends: UnaryOperator

diff(variable)
See pybamm.Symbol.diff().

class pybamm.Index(child, index, name=None, check_size=True)
A node in the expression tree, which stores the index that should be extracted from its child after the child has
been evaluated.

Parameters

• child (pybamm.Symbol) – The symbol of which to take the index

• index (int or slice) – The index (if int) or indices (if slice) to extract from the
symbol

• name (str, optional) – The name of the symbol

• check_size (bool, optional) – Whether to check if the slice size exceeds the child
size. Default is True. This should always be True when creating a new symbol so that
the appropriate check is performed, but should be False for creating a new copy to avoid
unnecessarily repeating the check.

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

set_id()
See pybamm.Symbol.set_id()

class pybamm.SpatialOperator(name, child, domain=None, auxiliary_domains=None)
A node in the expression tree representing a unary spatial operator (e.g. grad, div)

Derived classes will specify the particular operator

This type of node will be replaced by the Discretisation class with a Matrix

Extends: UnaryOperator

Parameters

• name (str) – name of the node

1.1. Expression Tree 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

• child (Symbol) – child node

diff(variable)
See pybamm.Symbol.diff().

class pybamm.Gradient(child)
A node in the expression tree representing a grad operator

Extends: SpatialOperator

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

class pybamm.Divergence(child)
A node in the expression tree representing a div operator

Extends: SpatialOperator

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

class pybamm.Laplacian(child)
A node in the expression tree representing a laplacian operator. This is currently only implemeted in the weak
form for finite element formulations.

Extends: SpatialOperator

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

class pybamm.Gradient_Squared(child)
A node in the expression tree representing a the inner product of the grad operator with itself. In particular, this
is useful in the finite element formualtion where we only require the (sclar valued) square of the gradient, and
not the gradient itself. Extends: SpatialOperator

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

class pybamm.Mass(child)
Returns the mass matrix for a given symbol, accounting for Dirchlet boundary conditions where necessary (e.g.
in the finite element formualtion) Extends: SpatialOperator

class pybamm.Integral(child, integration_variable)
A node in the expression tree representing an integral operator

𝐼 =

∫︁ 𝑏

𝑎

𝑓(𝑢) 𝑑𝑢,

where 𝑎 and 𝑏 are the left-hand and right-hand boundaries of the domain respectively, and 𝑢 ∈ domain. Can be
integration with respect to time or space.

Parameters

• function (pybamm.Symbol) – The function to be integrated (will become
self.children[0])

• integration_variable (pybamm.IndependentVariable) – The variable over
which to integrate

• **Extends (** SpatialOperator) –

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

14 Chapter 1. Contents

PyBaMM Documentation, Release 0.2.0

set_id()
See pybamm.Symbol.set_id()

class pybamm.IndefiniteIntegral(child, integration_variable)
A node in the expression tree representing an indefinite integral operator

𝐼 =

∫︁ 𝑥

𝑥𝑒𝑥𝑡𝑚𝑖𝑛

𝑓(𝑢) 𝑑𝑢

where 𝑢 ∈ domain which can represent either a spatial or temporal variable.

Parameters

• function (pybamm.Symbol) – The function to be integrated (will become
self.children[0])

• integration_variable (pybamm.IndependentVariable) – The variable over
which to integrate

• **Extends (** Integral) –

class pybamm.DefiniteIntegralVector(child, vector_type=’row’)
A node in the expression tree representing an integral of the basis used for discretisation

𝐼 =

∫︁ 𝑏

𝑎

𝜓(𝑥) 𝑑𝑥,

where 𝑎 and 𝑏 are the left-hand and right-hand boundaries of the domain respectively and 𝜓 is the basis function.

Parameters

• variable (pybamm.Symbol) – The variable whose basis will be integrated over the
entire domain

• vector_type (str, optional) – Whether to return a row or column vector (default
is row)

• **Extends (** SpatialOperator) –

set_id()
See pybamm.Symbol.set_id()

class pybamm.BoundaryIntegral(child, region=’entire’)
A node in the expression tree representing an integral operator over the boundary of a domain

𝐼 =

∫︁
𝜕𝑎

𝑓(𝑢) 𝑑𝑢,

where 𝜕𝑎 is the boundary of the domain, and 𝑢 ∈ domain boundary.

Parameters

• function (pybamm.Symbol) – The function to be integrated (will become
self.children[0])

• region (str, optional) – The region of the boundary over which to integrate. If
region is entire (default) the integration is carried out over the entire boundary. If region is
negative tab or positive tab then the integration is only carried out over the appropriate part
of the boundary corresponding to the tab.

• **Extends (** SpatialOperator) –

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

1.1. Expression Tree 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

set_id()
See pybamm.Symbol.set_id()

class pybamm.DeltaFunction(child, side, domain)
Delta function. Currently can only be implemented at the edge of a domain

Parameters

• child (pybamm.Symbol) – The variable that sets the strength of the delta function

• side (str) – Which side of the domain to implement the delta function on

• **Extends (** SpatialOperator) –

evaluates_on_edges()
See pybamm.Symbol.evaluates_on_edges().

set_id()
See pybamm.Symbol.set_id()

class pybamm.BoundaryOperator(name, child, side)
A node in the expression tree which gets the boundary value of a variable.

Parameters

• name (str) – The name of the symbol

• child (pybamm.Symbol) – The variable whose boundary value to take

• side (str) – Which side to take the boundary value on (“left” or “right”)

• **Extends (** SpatialOperator) –

set_id()
See pybamm.Symbol.set_id()

class pybamm.BoundaryValue(child, side)
A node in the expression tree which gets the boundary value of a variable.

Parameters

• child (pybamm.Symbol) – The variable whose boundary value to take

• side (str) – Which side to take the boundary value on (“left” or “right”)

• **Extends (** BoundaryOperator) –

class pybamm.BoundaryGradient(child, side)
A node in the expression tree which gets the boundary flux of a variable.

Parameters

• child (pybamm.Symbol) – The variable whose boundary flux to take

• side (str) – Which side to take the boundary flux on (“left” or “right”)

• **Extends (** BoundaryOperator) –

pybamm.grad(expression)
convenience function for creating a Gradient

Parameters expression (Symbol) – the gradient will be performed on this sub-expression

Returns the gradient of expression

Return type Gradient

16 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

pybamm.div(expression)
convenience function for creating a Divergence

Parameters expression (Symbol) – the divergence will be performed on this sub-expression

Returns the divergence of expression

Return type Divergence

pybamm.laplacian(expression)
convenience function for creating a Laplacian

Parameters expression (Symbol) – the laplacian will be performed on this sub-expression

Returns the laplacian of expression

Return type Laplacian

pybamm.grad_squared(expression)
convenience function for creating a Gradient_Squared

Parameters expression (Symbol) – the inner product of the gradient with itself will be per-
formed on this sub-expression

Returns inner product of the gradient of expression with itself

Return type Gradient_Squared

pybamm.surf(symbol)
convenience function for creating a right BoundaryValue, usually in the spherical geometry

Parameters symbol (pybamm.Symbol) – the surface value of this symbol will be returned

Returns the surface value of symbol

Return type pybamm.BoundaryValue

pybamm.x_average(symbol)
convenience function for creating an average in the x-direction

Parameters symbol (pybamm.Symbol) – The function to be averaged

Returns the new averaged symbol

Return type Symbol

pybamm.boundary_value(symbol, side)
convenience function for creating a pybamm.BoundaryValue

Parameters

• symbol (pybamm.Symbol) – The symbol whose boundary value to take

• side (str) – Which side to take the boundary value on (“left” or “right”)

Returns the new integrated expression tree

Return type BoundaryValue

1.1.11 Concatenations

class pybamm.Concatenation(*children, name=None, check_domain=True, concat_fun=None)
A node in the expression tree representing a concatenation of symbols

Extends: pybamm.Symbol

Parameters children (iterable of pybamm.Symbol) – The symbols to concatenate

1.1. Expression Tree 17

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

evaluate(t=None, y=None, u=None, known_evals=None)
See pybamm.Symbol.evaluate().

new_copy()
See pybamm.Symbol.new_copy().

class pybamm.NumpyConcatenation(*children)
A node in the expression tree representing a concatenation of equations, when we don’t care about domains.
The class pybamm.DomainConcatenation, which is careful about domains and uses broadcasting where
appropriate, should be used whenever possible instead.

Upon evaluation, equations are concatenated using numpy concatenation.

Extends: Concatenation

Parameters children (iterable of pybamm.Symbol) – The equations to concatenate

class pybamm.DomainConcatenation(children, full_mesh, copy_this=None)
A node in the expression tree representing a concatenation of symbols, being careful about domains.

It is assumed that each child has a domain, and the final concatenated vector will respect the sizes and ordering
of domains established in mesh keys

Extends: pybamm.Concatenation

Parameters

• children (iterable of pybamm.Symbol) – The symbols to concatenate

• full_mesh (pybamm.BaseMesh) – The underlying mesh for discretisation, used to
obtain the number of mesh points in each domain.

• copy_this (pybamm.DomainConcatenation (optional)) – if provided, this class is
initialised by copying everything except the children from copy_this. mesh is not used in
this case

class pybamm.SparseStack(*children)
A node in the expression tree representing a concatenation of sparse matrices. As with NumpyConcatenation,
we don’t care about domains. The class pybamm.DomainConcatenation, which is careful about domains
and uses broadcasting where appropriate, should be used whenever possible instead.

Extends: Concatenation

Parameters children (iterable of Concatenation) – The equations to concatenate

1.1.12 Broadcasting Operators

class pybamm.Broadcast(child, broadcast_domain, broadcast_auxiliary_domains=None, broad-
cast_type=’full’, name=None)

A node in the expression tree representing a broadcasting operator. Broadcasts a child to a specified domain.
After discretisation, this will evaluate to an array of the right shape for the specified domain.

For an example of broadcasts in action, see this example notebook

Parameters

• child (Symbol) – child node

• broadcast_domain (iterable of str) – Primary domain for broadcast. This will
become the domain of the symbol

• broadcast_auxiliary_domains (dict of str) – Auxiliary domains for broad-
cast.

18 Chapter 1. Contents

https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression_tree/broadcasts.ipynb

PyBaMM Documentation, Release 0.2.0

• broadcast_type (str, optional) – Whether to broadcast to the full domain (pri-
mary and secondary) or only in the primary direction. Default is “full”.

• name (str) – name of the node

• **Extends (** SpatialOperator) –

class pybamm.FullBroadcast(child, broadcast_domain, auxiliary_domains, name=None)
A class for full broadcasts

check_and_set_domains(child, broadcast_type, broadcast_domain, broad-
cast_auxiliary_domains)

See Broadcast.check_and_set_domains()

class pybamm.PrimaryBroadcast(child, broadcast_domain, name=None)
A node in the expression tree representing a primary broadcasting operator. Broadcasts in a primary dimension
only. That is, makes explicit copies of the symbol in the domain specified by broadcast_domain. This should
be used for broadcasting from a “larger” scale to a “smaller” scale, for example broadcasting temperature T(x)
from the electrode to the particles, or broadcasting current collector current i(y, z) from the current collector to
the electrodes.

Parameters

• child (Symbol) – child node

• broadcast_domain (iterable of str) – Primary domain for broadcast. This will
become the domain of the symbol

• name (str) – name of the node

• **Extends (** SpatialOperator) –

check_and_set_domains(child, broadcast_type, broadcast_domain, broad-
cast_auxiliary_domains)

See Broadcast.check_and_set_domains()

class pybamm.SecondaryBroadcast(child, broadcast_domain, name=None)
A node in the expression tree representing a primary broadcasting operator. Broadcasts in a secondary dimension
only. That is, makes explicit copies of the symbol in the domain specified by broadcast_domain. This should
be used for broadcasting from a “smaller” scale to a “larger” scale, for example broadcasting SPM particle
concentrations c_s(r) from the particles to the electrodes. Note that this wouldn’t be used to broadcast particle
concentrations in the DFN, since these already depend on both x and r.

Parameters

• child (Symbol) – child node

• broadcast_domain (iterable of str) – Primary domain for broadcast. This will
become the domain of the symbol

• name (str) – name of the node

• **Extends (** SpatialOperator) –

check_and_set_domains(child, broadcast_type, broadcast_domain, broad-
cast_auxiliary_domains)

See Broadcast.check_and_set_domains()

1.1.13 Functions

class pybamm.Function(function, *children, name=None, derivative=’autograd’, differenti-
ated_function=None)

A node in the expression tree representing an arbitrary function

1.1. Expression Tree 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

Parameters

• function (method) – A function can have 0 or many inputs. If no inputs are
given, self.evaluate() simply returns func(). Otherwise, self.evaluate(t, y, u) returns
func(child0.evaluate(t, y, u), child1.evaluate(t, y, u), etc).

• children (pybamm.Symbol) – The children nodes to apply the function to

• derivative (str, optional) – Which derivative to use when differentiating (“auto-
grad” or “derivative”). Default is “autograd”.

• differentiated_function (method, optional) – The function which was dif-
ferentiated to obtain this one. Default is None.

• **Extends (** pybamm.Symbol) –

diff(variable)
See pybamm.Symbol.diff().

evaluate(t=None, y=None, u=None, known_evals=None)
See pybamm.Symbol.evaluate().

get_children_domains(children_list)
Obtains the unique domain of the children. If the children have different domains then raise an error

new_copy()
See pybamm.Symbol.new_copy().

class pybamm.SpecificFunction(function, child)
Parent class for the specific functions, which implement their own diff operators directly.

Parameters

• function (method) – Function to be applied to child

• child (pybamm.Symbol) – The child to apply the function to

class pybamm.Cos(child)
Cosine function

pybamm.cos(child)
Returns cosine function of child.

class pybamm.Cosh(child)
Hyberbolic cosine function

pybamm.cosh(child)
Returns hyperbolic cosine function of child.

class pybamm.Exponential(child)
Exponential function

pybamm.exp(child)
Returns exponential function of child.

class pybamm.Log(child)
Logarithmic function

pybamm.log(child, base=’e’)
Returns logarithmic function of child (any base, default ‘e’).

pybamm.max(child)
Returns max function of child.

20 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

pybamm.min(child)
Returns min function of child.

class pybamm.Sin(child)
Sine function

pybamm.sin(child)
Returns sine function of child.

class pybamm.Sinh(child)
Hyperbolic sine function

pybamm.sinh(child)
Returns hyperbolic sine function of child.

1.1.14 Input Parameter

class pybamm.InputParameter(name)
A node in the expression tree representing an input parameter

This node’s value can be set at the point of solving, allowing parameter estimation and control

Parameters name (str) – name of the node

new_copy()
See pybamm.Symbol.new_copy().

1.1.15 Interpolant

class pybamm.Interpolant(data, child, name=None, interpolator=’cubic spline’, extrapolate=True)
Interpolate data in 1D.

Parameters

• data (numpy.ndarray) – Numpy array of data to use for interpolation. Must have
exactly two columns (x and y data)

• child (pybamm.Symbol) – Node to use when evaluating the interpolant

• name (str, optional) – Name of the interpolant. Default is None, in which case the
name “interpolating function” is given.

• interpolator (str, optional) – Which interpolator to use (“pchip” or “cu-
bic spline”). Note that whichever interpolator is used must be differentiable (for
Interpolator._diff). Default is “cubic spline”. Note that “pchip” may give slow
results.

• extrapolate (bool, optional) – Whether to extrapolate for points that are out-
side of the parametrisation range, or return NaN (following default behaviour from scipy).
Default is True.

• **Extends** (pybamm.Function) –

1.1.16 Operations on expression trees

Classes and functions that operate on the expression tree

1.1. Expression Tree 21

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.0

Simplify

class pybamm.Simplification(simplified_symbols=None)

simplify(symbol)
This function recurses down the tree, applying any simplifications defined in classes derived from py-
bamm.Symbol. E.g. any expression multiplied by a pybamm.Scalar(0) will be simplified to a py-
bamm.Scalar(0). If a symbol has already been simplified, the stored value is returned.

Parameters

• symbol (pybamm.Symbol) –

• symbol to simplify (The) –

Returns

• pybamm.Symbol

• Simplified symbol

pybamm.simplify_if_constant(symbol, keep_domains=False)
Utility function to simplify an expression tree if it evalutes to a constant scalar, vector or matrix

pybamm.simplify_addition_subtraction(myclass, left, right)
if children are associative (addition, subtraction, etc) then try to find groups of constant children (that produce a
value) and simplify them to a single term

The purpose of this function is to simplify expressions like (1 + (1 + p)), which should be simplified to (2 +
p). The former expression consists of an Addition, with a left child of Scalar type, and a right child of another
Addition containing a Scalar and a Parameter. For this case, this function will first flatten the expression to
a list of the bottom level children (i.e. [Scalar(1), Scalar(2), Parameter(p)]), and their operators (i.e. [None,
Addition, Addition]), and then combine all the constant children (i.e. Scalar(1) and Scalar(1)) to a single child
(i.e. Scalar(2))

Note that this function will flatten the expression tree until a symbol is found that is not either an Addition or a
Subtraction, so this function would simplify (3 - (2 + a*b*c)) to (1 + a*b*c)

This function is useful if different children expressions contain non-constant terms that prevent them from being
simplified, so for example (1 + a) + (b - 2) - (6 + c) will be simplified to (-7 + a + b - c)

Parameters

• myclass (class) – the binary operator class (pybamm.Addition or pybamm.Subtraction)
operating on children left and right

• left (derived from pybamm.Symbol) – the left child of the binary operator

• right (derived from pybamm.Symbol) – the right child of the binary operator

pybamm.simplify_multiplication_division(myclass, left, right)
if children are associative (multiply, division, etc) then try to find groups of constant children (that produce a
value) and simplify them

The purpose of this function is to simplify expressions of the type (1 * c / 2), which should simplify to (0.5 *
c). The former expression consists of a Division, with a left child of a Multiplication containing a Scalar and
a Parameter, and a right child consisting of a Scalar. For this case, this function will first flatten the expression
to a list of the bottom level children on the numerator (i.e. [Scalar(1), Parameter(c)]) and their operators (i.e.
[None, Multiplication]), as well as those children on the denominator (i.e. [Scalar(2)]. After this, all the constant
children on the numerator and denominator (i.e. Scalar(1) and Scalar(2)) will be combined appropriately, in this
case to Scalar(0.5), and combined with the nonconstant children (i.e. Parameter(c))

22 Chapter 1. Contents

PyBaMM Documentation, Release 0.2.0

Note that this function will flatten the expression tree until a symbol is found that is not either an Multiplication,
Division or MatrixMultiplication, so this function would simplify (3*(1 + d)*2) to (6 * (1 + d))

As well as Multiplication and Division, this function can handle MatrixMultiplication. If any MatrixMultipli-
cations are found on the numerator/denominator, no reordering of children is done to find groups of constant
children. In this case only neighbouring constant children on the numerator are simplified

Parameters

• myclass (class) – the binary operator class (pybamm.Addition or pybamm.Subtraction)
operating on children left and right

• left (derived from pybamm.Symbol) – the left child of the binary operator

• right (derived from pybamm.Symbol) – the right child of the binary operator

EvaluatorPython

class pybamm.EvaluatorPython(symbol)
Converts a pybamm expression tree into pure python code that will calculate the result of calling evaluate(t, y)
on the given expression tree.

Parameters symbol (pybamm.Symbol) – The symbol to convert to python code

evaluate(t=None, y=None, u=None, known_evals=None)
Acts as a drop-in replacement for pybamm.Symbol.evaluate()

Jacobian

class pybamm.Jacobian(known_jacs=None)

jac(symbol, variable)
This function recurses down the tree, computing the Jacobian using the Jacobians defined in classes derived
from pybamm.Symbol. E.g. the Jacobian of a ‘pybamm.Multiplication’ is computed via the product rule.
If the Jacobian of a symbol has already been calculated, the stored value is returned. Note: The Jacobian
is the derivative of a symbol with respect to a (slice of) a State Vector.

Parameters

• symbol (pybamm.Symbol) – The symbol to calculate the Jacobian of

• variable (pybamm.Symbol) – The variable with respect to which to differentiate

Returns Symbol representing the Jacobian

Return type pybamm.Symbol

Convert to CasADi

class pybamm.CasadiConverter(casadi_symbols=None)

convert(symbol, t=None, y=None, u=None)
This function recurses down the tree, converting the PyBaMM expression tree to a CasADi expression tree

Parameters

• symbol (pybamm.Symbol) – The symbol to convert

1.1. Expression Tree 23

PyBaMM Documentation, Release 0.2.0

• t (casadi.MX) – A casadi symbol representing time

• y (casadi.MX) – A casadi symbol representing state vectors

• u (dict) – A dictionary of casadi symbols representing inputs

Returns The converted symbol

Return type casadi.MX

1.2 Models

Below is an overview of all the battery models included in PyBaMM. Each of the pre-built models contains a reference
to the paper in which it is derived.

The models can be customised using the options dictionary defined in the pybamm.BaseBatteryModel (which
also provides information on which options and models are compatible) Visit our examples page to see how these
models can be solved, and compared, using PyBaMM.

1.2.1 Base Models

Base Model

class pybamm.BaseModel(name=’Unnamed model’)
Base model class for other models to extend.

name
A string giving the name of the model

Type str

options
A dictionary of options to be passed to the model

Type dict

rhs
A dictionary that maps expressions (variables) to expressions that represent the rhs

Type dict

algebraic
A dictionary that maps expressions (variables) to expressions that represent the algebraic equations. The
algebraic expressions are assumed to equate to zero. Note that all the variables in the model must exist in
the keys of rhs or algebraic.

Type dict

initial_conditions
A dictionary that maps expressions (variables) to expressions that represent the initial conditions for the
state variables y. The initial conditions for algebraic variables are provided as initial guesses to a root
finding algorithm that calculates consistent initial conditions.

Type dict

boundary_conditions
A dictionary that maps expressions (variables) to expressions that represent the boundary conditions

Type dict

24 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/pybamm-team/PyBaMM/tree/master/examples/notebooks/models
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

variables
A dictionary that maps strings to expressions that represent the useful variables

Type dict

events
A list of events. Each event can either cause the solver to terminate (e.g. concentration goes negative), or
be used to inform the solver of the existance of a discontinuity (e.g. discontinuity in the input current)

Type list of pybamm.Event

concatenated_rhs
After discretisation, contains the expressions representing the rhs equations concatenated into a single
expression

Type pybamm.Concatenation

concatenated_algebraic
After discretisation, contains the expressions representing the algebraic equations concatenated into a sin-
gle expression

Type pybamm.Concatenation

concatenated_initial_conditions
After discretisation, contains the vector of initial conditions

Type numpy.array

mass_matrix
After discretisation, contains the mass matrix for the model. This is computed automatically

Type pybamm.Matrix

mass_matrix_inv
After discretisation, contains the inverse mass matrix for the differential (rhs) part of model. This is
computed automatically

Type pybamm.Matrix

jacobian
Contains the Jacobian for the model. If model.use_jacobian is True, the Jacobian is computed automati-
cally during solver set up

Type pybamm.Concatenation

jacobian_rhs
Contains the Jacobian for the part of the model which contains time derivatives. If model.use_jacobian is
True, the Jacobian is computed automatically during solver set up

Type pybamm.Concatenation

jacobian_algebraic
Contains the Jacobian for the algebraic part of the model. This may be used by the solver when calculating
consistent initial conditions. If model.use_jacobian is True, the Jacobian is computed automatically during
solver set up

Type pybamm.Concatenation

use_jacobian
Whether to use the Jacobian when solving the model (default is True)

Type bool

1.2. Models 25

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.0

use_simplify
Whether to simplify the expression tress representing the rhs and algebraic equations, Jacobain (if using)
and events, before solving the model (default is True)

Type bool

convert_to_format
Whether to convert the expression trees representing the rhs and algebraic equations, Jacobain (if using)
and events into a different format:

• None: keep PyBaMM expression tree structure.

• “python”: convert into pure python code that will calculate the result of calling evaluate(t, y) on the
given expression treeself.

• “casadi”: convert into CasADi expression tree, which then uses CasADi’s algorithm to calculate the
Jacobian.

Default is “casadi”.

Type str

check_algebraic_equations(post_discretisation)
Check that the algebraic equations are well-posed. Before discretisation, each algebraic equation key must
appear in the equation After discretisation, there must be at least one StateVector in each algebraic equation

check_default_variables_dictionaries()
Chec that the right variables are provided.

check_ics_bcs()
Check that the initial and boundary conditions are well-posed.

check_well_determined(post_discretisation)
Check that the model is not under- or over-determined.

check_well_posedness(post_discretisation=False)
Check that the model is well-posed by executing the following tests: - Model is not over- or underde-
termined, by comparing keys and equations in rhs and algebraic. Overdetermined if more equations
than variables, underdetermined if more variables than equations. - There is an initial condition in
self.initial_conditions for each variable/equation pair in self.rhs - There are appropriate boundary con-
ditions in self.boundary_conditions for each variable/equation pair in self.rhs and self.algebraic

Parameters post_discretisation (boolean) – A flag indicating tests to be skipped
after discretisation

default_solver
Return default solver based on whether model is ODE model or DAE model

new_copy(options=None)
Create an empty copy with identical options, or new options if specified

timescale
Timescale of model, to be used for non-dimensionalising time when solving

update(*submodels)
Update model to add new physics from submodels

Parameters submodel (iterable of pybamm.BaseModel) – The submodels from which to
create new model

26 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

Base Battery Model

class pybamm.BaseBatteryModel(options=None, name=’Unnamed battery model’)
Base model class with some default settings and required variables

options
A dictionary of options to be passed to the model. The options that can be set are listed below. Note that
not all of the options are compatible with each other and with all of the models implemented in PyBaMM.

• “dimensionality” [int, optional] Sets the dimension of the current collector problem. Can be 0 (de-
fault), 1 or 2.

• “surface form” [bool or str, optional] Whether to use the surface formulation of the problem. Can
be False (default), “differential” or “algebraic”. Must be ‘False’ for lithium-ion models.

• “convection” [bool or str, optional] Whether to include the effects of convection in the model. Can
be False (default), “differential” or “algebraic”. Must be ‘False’ for lithium-ion models.

• “side reactions” [list, optional] Contains a list of any side reactions to include. Default is []. If this
list is not empty (i.e. side reactions are included in the model), then “surface form” cannot be
‘False’.

• “interfacial surface area” [str, optional] Sets the model for the interfacial surface area. Can be
“constant” (default) or “varying”. Not currently implemented in any of the models.

• “current collector” [str, optional] Sets the current collector model to use. Can be “uniform” (de-
fault), “potential pair”, “potential pair quite conductive”, or “set external potential”. The sub-
model “set external potential” can only be used with the SPM.

• “particle” [str, optional] Sets the submodel to use to describe behaviour within the particle. Can be
“Fickian diffusion” (default) or “fast diffusion”.

• “thermal” [str, optional] Sets the thermal model to use. Can be “isothermal” (default), “x-full”,
“x-lumped”, “xyz-lumped”, “lumped” or “set external temperature”. Must be “isothermal” for
lead-acid models. If the option “set external temperature” is selected then “dimensionality” must
be 1.

• “thermal current collector” [bool, optional] Whether to include thermal effects in the current col-
lector in one-dimensional models (default is False). Note that this option only takes effect if
“dimensionality” is 0. If “dimensionality” is 1 or 2 current collector effects are always included.
Must be ‘False’ for lead-acid models.

• “external submodels” [list] A list of the submodels that you would like to supply an external variable
for instead of solving in PyBaMM. The entries of the lists are strings that correspond to the
submodel names in the keys of self.submodels.

Type dict

Extends: pybamm.BaseModel

process_parameters_and_discretise(symbol, parameter_values, disc)
Process parameters and discretise a symbol using supplied parameter values and discretisation. Note: care
should be taken if using spatial operators on dimensional symbols. Operators in pybamm are written in
non-dimensional form, so may need to be scaled by the appropriate length scale. It is recommended to use
this method on non-dimensional symbols.

Parameters

• symbol (pybamm.Symbol) – Symbol to be processed

1.2. Models 27

https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

• parameter_values (pybamm.ParameterValues) – The parameter values to use
during processing

• disc (pybamm.Discretisation) – The discrisation to use

Returns Processed symbol

Return type pybamm.Symbol

set_external_circuit_submodel()
Define how the external circuit defines the boundary conditions for the model, e.g. (not necessarily
constant-) current, voltage, etc

set_soc_variables()
Set variables relating to the state of charge. This function is overriden by the base battery models

Event

class pybamm.Event(name, expression, event_type=<EventType.TERMINATION: 0>)
Defines an event for use within a pybamm model

name
A string giving the name of the event

Type str

event_type
An enum defining the type of event

Type pybamm.EventType

expression
An expression that defines when the event occurs

Type pybamm.Symbol

evaluate(t=None, y=None, u=None, known_evals=None)
Acts as a drop-in replacement for pybamm.Symbol.evaluate()

class pybamm.EventType
Defines the type of event, see pybamm.Event

TERMINATION indicates an event that will terminate the solver, the expression should return 0 when the event
is triggered

DISCONTINUITY indicates an expected discontinuity in the solution, the expression should return the time
that the discontinuity occurs. The solver will integrate up to the discontinuity and then restart just after the
discontinuity.

1.2.2 Lithium-ion Models

Base Lithium-ion Model

class pybamm.lithium_ion.BaseModel(options=None, name=’Unnamed lithium-ion model’)
Overwrites default parameters from Base Model with default parameters for lithium-ion models

Extends: pybamm.BaseBatteryModel

28 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

Single Particle Model (SPM)

class pybamm.lithium_ion.SPM(options=None, name=’Single Particle Model’, build=True)
Single Particle Model (SPM) of a lithium-ion battery, from1.

Parameters

• options (dict, optional) – A dictionary of options to be passed to the model.

• name (str, optional) – The name of the model.

• build (bool, optional) – Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

References

Extends: pybamm.lithium_ion.BaseModel

class pybamm.lithium_ion.BasicSPM(name=’Single Particle Model’)
Single Particle Model (SPM) model of a lithium-ion battery, from2.

This class differs from the pybamm.lithium_ion.SPM model class in that it shows the whole model in a
single class. This comes at the cost of flexibility in combining different physical effects, and in general the main
SPM class should be used instead.

Parameters name (str, optional) – The name of the model.

References

Extends: pybamm.lithium_ion.BaseModel

Single Particle Model with Electrolyte (SPMe)

class pybamm.lithium_ion.SPMe(options=None, name=’Single Particle Model with electrolyte’,
build=True)

Single Particle Model with Electrolyte (SPMe) of a lithium-ion battery, from1.

Parameters

• options (dict, optional) – A dictionary of options to be passed to the model.

• name (str, optional) – The name of the model.

• build (bool, optional) – Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

References

Extends: pybamm.lithium_ion.BaseModel
1 SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. In: arXiv

preprint arXiv:1905.12553 (2019).
2 SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. In: arXiv

preprint arXiv:1905.12553 (2019).
1 SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. In: arXiv

preprint arXiv:1905.12553 (2019).

1.2. Models 29

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.0

Doyle-Fuller-Newman (DFN)

class pybamm.lithium_ion.DFN(options=None, name=’Doyle-Fuller-Newman model’, build=True)
Doyle-Fuller-Newman (DFN) model of a lithium-ion battery, from1.

Parameters

• options (dict, optional) – A dictionary of options to be passed to the model.

• name (str, optional) – The name of the model.

• build (bool, optional) – Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

References

Extends: pybamm.lithium_ion.BaseModel

class pybamm.lithium_ion.BasicDFN(name=’Doyle-Fuller-Newman model’)
Doyle-Fuller-Newman (DFN) model of a lithium-ion battery, from2.

This class differs from the pybamm.lithium_ion.DFN model class in that it shows the whole model in a
single class. This comes at the cost of flexibility in comparing different physical effects, and in general the main
DFN class should be used instead.

Parameters name (str, optional) – The name of the model.

References

Extends: pybamm.lithium_ion.BaseModel

1.2.3 Lead Acid Models

Base Model

class pybamm.lead_acid.BaseModel(options=None, name=’Unnamed lead-acid model’)
Overwrites default parameters from Base Model with default parameters for lead-acid models

Extends: pybamm.BaseBatteryModel

default_solver
Return default solver based on whether model is ODE model or DAE model. There are bugs with KLU on
the lead-acid models.

set_soc_variables()
Set variables relating to the state of charge.

1 SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. In: arXiv
preprint arXiv:1905.12553 (2019).

2 SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. In: arXiv
preprint arXiv:1905.12553 (2019).

30 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

Leading-Order Quasi-Static Model

class pybamm.lead_acid.LOQS(options=None, name=’LOQS model’, build=True)
Leading-Order Quasi-Static model for lead-acid, from1.

Parameters

• options (dict, optional) – A dictionary of options to be passed to the model.

• name (str, optional) – The name of the model.

• build (bool, optional) – Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

References

Extends: pybamm.lead_acid.BaseModel

set_external_circuit_submodel()
Define how the external circuit defines the boundary conditions for the model, e.g. (not necessarily
constant-) current, voltage, etc

Higher-Order Models

class pybamm.lead_acid.BaseHigherOrderModel(options=None, name=’Composite model’,
build=True)

Base model for higher-order models for lead-acid, from1. Uses leading-order model from pybamm.
lead_acid.LOQS

Parameters

• options (dict, optional) – A dictionary of options to be passed to the model.

• name (str, optional) – The name of the model.

• build (bool, optional) – Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

References

Extends: pybamm.lead_acid.BaseModel

set_full_convection_submodel()
Update convection submodel, now that we have the spatially heterogeneous interfacial current densities

set_full_interface_submodel()
Set full interface submodel, to get spatially heterogeneous interfacial current densities

set_full_porosity_submodel()
Update porosity submodel, now that we have the spatially heterogeneous interfacial current densities

1 V Sulzer, SJ Chapman, CP Please, DA Howey, and CW Monroe. Faster lead-acid battery simulations from porous-electrode theory: Part II.
Asymptotic analysis. Journal of The Electrochemical Society 166.12 (2019), A2372–A2382.

1 V Sulzer, SJ Chapman, CP Please, DA Howey, and CW Monroe. Faster lead-acid battery simulations from porous-electrode theory: Part II.
Asymptotic analysis. Journal of The Electrochemical Society 166.12 (2019), A2372–A2382.

1.2. Models 31

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.0

class pybamm.lead_acid.FOQS(options=None, name=’FOQS model’, build=True)
First-order quasi-static model for lead-acid, from1. Uses leading-order model from pybamm.lead_acid.
LOQS

Parameters

• options (dict, optional) – A dictionary of options to be passed to the model.

• name (str, optional) – The name of the model.

• build (bool, optional) – Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

• **Extends (** pybamm.lead_acid.BaseHigherOrderModel) –

set_full_porosity_submodel()
Update porosity submodel, now that we have the spatially heterogeneous interfacial current densities

class pybamm.lead_acid.Composite(options=None, name=’Composite model’, build=True)
Composite model for lead-acid, from1. Uses leading-order model from pybamm.lead_acid.LOQS

Extends: pybamm.lead_acid.BaseHigherOrderModel

set_full_porosity_submodel()
Update porosity submodel, now that we have the spatially heterogeneous interfacial current densities

class pybamm.lead_acid.CompositeExtended(options=None, name=’Extended composite
model’, build=True)

Extended composite model for lead-acid, from2. Uses leading-order model from pybamm.lead_acid.
LOQS

Parameters

• options (dict, optional) – A dictionary of options to be passed to the model.

• name (str, optional) – The name of the model.

• build (bool, optional) – Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

References

Extends: pybamm.lead_acid.BaseHigherOrderModel

set_full_porosity_submodel()
Update porosity submodel, now that we have the spatially heterogeneous interfacial current densities

Full Model

class pybamm.lead_acid.Full(options=None, name=’Full model’, build=True)
Porous electrode model for lead-acid, from1, based on the Full model.

Parameters

• options (dict, optional) – A dictionary of options to be passed to the model.

2 V Sulzer. Mathematical modelling of lead-acid batteries. PhD thesis, University of Oxford, 2019.
1 V Sulzer, SJ Chapman, CP Please, DA Howey, and CW Monroe. Faster lead-acid battery simulations from porous-electrode theory: Part II.

Asymptotic analysis. Journal of The Electrochemical Society 166.12 (2019), A2372–A2382.

32 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

• name (str, optional) – The name of the model.

• build (bool, optional) – Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

References

Extends: pybamm.lead_acid.BaseModel

1.2.4 Submodels

Base Submodel

class pybamm.BaseSubModel(param, domain=None, reactions=None, name=’Unnamed submodel’,
external=False)

The base class for all submodels. All submodels inherit from this class and must only provide public methods
which overwrite those in this base class. Any methods added to a submodel that do not overwrite those in this
bass class are made private with the prefix ‘_’, providing a consistent public interface for all submodels.

Parameters param (parameter class) – The model parameter symbols

param
The model parameter symbols

Type parameter class

rhs
A dictionary that maps expressions (variables) to expressions that represent the rhs

Type dict

algebraic
A dictionary that maps expressions (variables) to expressions that represent the algebraic equations. The
algebraic expressions are assumed to equate to zero. Note that all the variables in the model must exist in
the keys of rhs or algebraic.

Type dict

initial_conditions
A dictionary that maps expressions (variables) to expressions that represent the initial conditions for the
state variables y. The initial conditions for algebraic variables are provided as initial guesses to a root
finding algorithm that calculates consistent initial conditions.

Type dict

boundary_conditions
A dictionary that maps expressions (variables) to expressions that represent the boundary conditions

Type dict

variables
A dictionary that maps strings to expressions that represent the useful variables

Type dict

events
A list of events. Each event can either cause the solver to terminate (e.g. concentration goes negative), or
be used to inform the solver of the existance of a discontinuity (e.g. discontinuity in the input current)

1.2. Models 33

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Type list

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_external_variables()
A public method that returns the variables in a submodel which are supplied by an external source.

Returns A list of the external variables in the model.

Return type list

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this

34 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Current Collector

Base Model

class pybamm.current_collector.BaseModel(param)
Base class for current collector submodels

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.BaseSubModel

Composite Potential Pair models

class pybamm.current_collector.BaseCompositePotentialPair(param)
Composite potential pair model for the current collectors. This is identical to the BasePotentialPair model,
except the name of the fundamental variables are changed to avoid clashes with leading order.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.current_collector.BasePotentialPair

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

class pybamm.current_collector.CompositePotentialPair2plus1D(param)

class pybamm.current_collector.CompositePotentialPair1plus1D(param)

Effective Current collector Resistance models

class pybamm.current_collector.EffectiveResistance2D
A model which calculates the effective Ohmic resistance of the current collectors in the limit of large electrical
conductivity. Note: This submodel should be solved before a one-dimensional model to calculate and return the
effective current collector resistance.

Extends: pybamm.BaseModel

default_solver
Return default solver based on whether model is ODE model or DAE model

get_processed_potentials(solution, param_values, V_av, I_av)
Calculates the potentials in the current collector given the average voltage and current. Note: This takes in
the processed V_av and I_av from a 1D simulation representing the average cell behaviour and returns a
dictionary of processed potentials.

1.2. Models 35

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Uniform

class pybamm.current_collector.Uniform(param)
A submodel for uniform potential in the current collectors which is valid in the limit of fast conductivity in the
current collectors.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.current_collector.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Potential Pair models

class pybamm.current_collector.BasePotentialPair(param)
A submodel for Ohm’s law plus conservation of current in the current collectors.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.current_collector.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

class pybamm.current_collector.PotentialPair2plus1D(param)
Base class for a 2+1D potential pair model

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of

36 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

class pybamm.current_collector.PotentialPair1plus1D(param)
Base class for a 1+1D potential pair model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Quite Conductive Potential Pair models

class pybamm.current_collector.BaseQuiteConductivePotentialPair(param)
A submodel for Ohm’s law plus conservation of current in the current collectors, in the limit of quite conductive
electrodes.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.current_collector.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

class pybamm.current_collector.QuiteConductivePotentialPair1plus1D(param)

class pybamm.current_collector.QuiteConductivePotentialPair2plus1D(param)

Set Potential Single Particle Models

class pybamm.current_collector.BaseSetPotentialSingleParticle(param)
A submodel for current collectors which doesn’t update the potentials during solve. This class uses the current-

1.2. Models 37

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

voltage relationship from the SPM(e) (see1) to calculate the current.

Parameters param (parameter class) – The parameters to use for this submodel

References

Extends: pybamm.current_collector.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

class pybamm.current_collector.SetPotentialSingleParticle1plus1D(param)
Class for 1+1D set potential model

class pybamm.current_collector.SetPotentialSingleParticle2plus1D(param)
Class for 1+1D set potential model

Convection

Base Model

class pybamm.convection.BaseModel(param)
Base class for convection submodels.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.BaseSubModel
1 SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. In: arXiv

preprint arXiv:1905.12553 (2019).

38 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

No Convection

class pybamm.convection.NoConvection(param)
A submodel for case where there is no convection.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.convection.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Leading-Order Model

class pybamm.convection.LeadingOrder(param)
A submodel for the leading-order approximation of pressure-driven convection

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.convection.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Composite Model

class pybamm.convection.Composite(param)
Class for composite pressure-driven convection

Parameters

• param (parameter class) – The parameters to use for this submodel

• *Extends –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

1.2. Models 39

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Full Model

class pybamm.convection.Full(param)
Submodel for the full model of pressure-driven convection

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.convection.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Electrode

40 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Electrode Base Model

class pybamm.electrode.BaseElectrode(param, domain, reactions=None,
set_positive_potential=True)

Base class for electrode submodels.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘Negative’ or ‘Positive’

• set_positive_potential (bool, optional) – If True the battery model sets the
positve potential based on the current. If False, the potential is specified by the user. Default
is True.

• **Extends (** pybamm.BaseSubModel) –

Ohmic

Base Model

class pybamm.electrode.ohm.BaseModel(param, domain, reactions=None,
set_positive_potential=True)

A base class for electrode submodels that employ Ohm’s law.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘Negative’ or ‘Positive’

Extends: pybamm.electrode.BaseElectrode

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Leading Order Model

class pybamm.electrode.ohm.LeadingOrder(param, domain, set_positive_potential=True)
An electrode submodel that employs Ohm’s law the leading-order approximation to governing equations.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘Negative’ or ‘Positive’

• set_positive_potential (bool, optional) – If True the battery model sets the
positve potential based on the current. If False, the potential is specified by the user. Default
is True.

• **Extends (** pybamm.electrode.ohm.BaseModel) –

get_coupled_variables(variables)
Returns variables which are derived from the fundamental variables in the model.

1.2. Models 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.0

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Composite Model

class pybamm.electrode.ohm.Composite(param, domain)
An explicit composite leading and first order solution to solid phase current conservation with ohm’s law. Note
that the returned current density is only the leading order approximation.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘Negative electrode’ or ‘Positive electrode’

• **Extends (** pybamm.BaseOhm) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Full Model

class pybamm.electrode.ohm.Full(param, domain, reactions)
Full model of electrode employing Ohm’s law.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘Negative’ or ‘Positive’

Extends: pybamm.electrode.ohm.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

42 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Surface Form

class pybamm.electrode.ohm.SurfaceForm(param, domain)
A submodel for the electrode with Ohm’s law in the surface potential formulation.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – Either ‘Negative’ or ‘Positive’

Extends: pybamm.electrode.ohm.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

1.2. Models 43

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Electrolyte

Base Electrolyte Conductivity Submodel

class pybamm.electrolyte.BaseElectrolyteConductivity(param, domain=None, reac-
tions=None)

Base class for conservation of charge in the electrolyte.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str, optional) – The domain in which the model holds

• reactions (dict, optional) – Dictionary of reaction terms

• **Extends (** pybamm.BaseSubModel) –

Base Electrolyte Diffusion Submodel

class pybamm.electrolyte.BaseElectrolyteDiffusion(param, reactions=None)
Base class for conservation of mass in the electrolyte.

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict, optional) – Dictionary of reaction terms

• **Extends (** pybamm.BaseSubModel) –

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Stefan-Maxwell

Conductivity

Base Model

class pybamm.electrolyte.stefan_maxwell.conductivity.BaseModel(param, do-
main=None, re-
actions=None)

Base class for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str, optional) – The domain in which the model holds

• reactions (dict, optional) – Dictionary of reaction terms

• **Extends (** pybamm.electrolyte.BaseElectrolyteConductivity) –

44 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Leading Order Model

class pybamm.electrolyte.stefan_maxwell.conductivity.LeadingOrder(param, do-
main=None,
reac-
tions=None)

Leading-order model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive
equations. (Leading refers to leading-order in the asymptotic reduction)

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str, optional) – The domain in which the model holds

• reactions (dict, optional) – Dictionary of reaction terms

• **Extends (** pybamm.BaseStefanMaxwellConductivity) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Composite Model

class pybamm.electrolyte.stefan_maxwell.conductivity.Composite(param, do-
main=None)

Class for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations. (Com-
posite refers to a composite leading and first-order expression from the asymptotic reduction)

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str, optional) – The domain in which the model holds

• **Extends (** pybamm.electrolyte.stefan_maxwell.conductivity.
BaseHigerOrder) –

unpack(variables)
Unpack variables and return average values

1.2. Models 45

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

Full Model

class pybamm.electrolyte.stefan_maxwell.conductivity.Full(param, reactions)
Full model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations.
(Full refers to unreduced by asymptotic methods)

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• **Extends (** pybamm.BaseStefanMaxwellConductivity) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_external_variables()
A public method that returns the variables in a submodel which are supplied by an external source.

Returns A list of the external variables in the model.

Return type list

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

46 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Surface Form

Full Model

class pybamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.FullDifferential(param,
do-
main,
re-
ac-
tions)

Full model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations
and where capacitance is present. (Full refers to unreduced by asymptotic methods)

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.electrolyte.stefan_maxwell.conductivity.
surface_potential_form.BaseFull

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

class pybamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.FullAlgebraic(param,
do-
main,
re-
ac-
tions)

Full model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations.
(Full refers to unreduced by asymptotic methods)

Parameters param – The parameters to use for this submodel

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

1.2. Models 47

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Leading Order Model

class pybamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.LeadingOrderDifferential(param,
do-
main,
re-
ac-
tions)

Leading-order model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive
equations employing the surface potential difference formulation and where capacitance is present.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: BaseLeadingOrderSurfaceForm

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

class pybamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.LeadingOrderAlgebraic(param,
do-
main,
re-
ac-
tions)

Leading-order model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive
equations employing the surface potential difference formulation.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: BaseLeadingOrderSurfaceForm

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Diffusion

Base Model

class pybamm.electrolyte.stefan_maxwell.diffusion.BaseModel(param, reac-
tions=None)

Base class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations.

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict, optional) – Dictionary of reaction terms

• **Extends (** pybamm.electrolyte.BaseElectrolyteDiffusion) –

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of

48 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Constant Concentration

class pybamm.electrolyte.stefan_maxwell.diffusion.ConstantConcentration(param)
Class for constant concentration of electrolyte

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.electrolyte.stefan_maxwell.diffusion.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Composite Model

class pybamm.electrolyte.stefan_maxwell.diffusion.Composite(param, reactions, ex-
tended=False)

Class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations. (Com-
posite refers to composite model by asymptotic methods)

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• extended (bool) – Whether to include feedback from the first-order terms

• **Extends (** pybamm.electrolyte.stefan_maxwell.diffusion.Full)
–

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

1.2. Models 49

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

set_rhs(variables)
Composite reaction-diffusion with source terms from leading order

Full Model

class pybamm.electrolyte.stefan_maxwell.diffusion.Full(param, reactions)
Class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations. (Full
refers to unreduced by asymptotic methods)

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• **Extends (** pybamm.electrolyte.stefan_maxwell.diffusion.
BaseModel) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Leading Order Model

class pybamm.electrolyte.stefan_maxwell.diffusion.LeadingOrder(param, reac-
tions)

Class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations. (Leading

50 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

refers to leading order of asymptotic reduction)

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• **Extends (** pybamm.electrolyte.stefan_maxwell.diffusion.
BaseModel) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

External circuit

Models to enforce different boundary conditions (as imposed by an imaginary external circuit) such as constant current,
constant voltage, constant power, or any other relationship between the current and voltage. “Current control” enforces
these directly through boundary conditions, while “Function control” submodels add an algebraic equation (for the
current) and hence can be used to set any variable to be constant.

Current control external circuit

class pybamm.external_circuit.CurrentControl(param)
External circuit with current control.

1.2. Models 51

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Function control external circuit

class pybamm.external_circuit.FunctionControl(param, external_circuit_function)
External circuit with an arbitrary function.

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic(variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

class pybamm.external_circuit.VoltageFunctionControl(param)
External circuit with voltage control, implemented as an extra algebraic equation.

class pybamm.external_circuit.PowerFunctionControl(param)
External circuit with power control.

Interface

Interface Base Model

class pybamm.interface.BaseInterface(param, domain)
Base class for interfacial currents

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.BaseSubModel

52 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Diffusion-limited Kinetics

Base Model

class pybamm.interface.diffusion_limited.BaseModel(param, domain)
Leading-order submodel for diffusion-limited kinetics

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.BaseInterface

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Full Model

class pybamm.interface.diffusion_limited.FullDiffusionLimited(param, domain)
Full submodel for diffusion-limited kinetics

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.diffusion_limited.BaseModel

Leading-order Model

class pybamm.interface.diffusion_limited.LeadingOrderDiffusionLimited(param,
do-
main)

Leading-order submodel for diffusion-limited kinetics

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.diffusion_limited.BaseModel

1.2. Models 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

Inverse Interface Kinetics

Base Inverse First-order Kinetics

class pybamm.interface.inverse_kinetics.BaseInverseFirstOrderKinetics(param,
do-
main)

Base inverse first-order kinetics

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.kinetics.BaseFirstOrderKinetics

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Base Inverse Kinetics

class pybamm.interface.inverse_kinetics.BaseInverseKinetics(param, domain)
A base submodel that implements the inverted form of the Butler-Volmer relation to solve for the reaction
overpotential.

Parameters

• param – Model parameters

• domain (iter of str, optional) – The domain(s) in which to compute the inter-
facial current. Default is None, in which case j.domain is used.

• **Extends (** pybamm.interface.kinetics.ButlerVolmer) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

54 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Inverse Butler-Volmer

class pybamm.interface.inverse_kinetics.InverseButlerVolmer(param, domain)
A base submodel that implements the inverted form of the Butler-Volmer relation to solve for the reaction
overpotential.

Parameters

• param – Model parameters

• domain (iter of str, optional) – The domain(s) in which to compute the inter-
facial current. Default is None, in which case j.domain is used.

• **Extends (** pybamm.interface.kinetics.ButlerVolmer) –

Interface Kinetics

Base Kinetics

class pybamm.interface.kinetics.BaseModel(param, domain)
Base submodel for kinetics

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.BaseInterface

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Base First-order Kinetics

class pybamm.interface.kinetics.BaseFirstOrderKinetics(param, domain)
Base first-order kinetics

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.BaseInterface

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

1.2. Models 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Butler-Volmer

class pybamm.interface.kinetics.ButlerVolmer(param, domain)
Base submodel which implements the forward Butler-Volmer equation:

𝑗 = 2 * 𝑗0(𝑐) * sinh((𝑛𝑒/(2 * (1 + Θ𝑇)) * 𝜂𝑟(𝑐))

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.kinetics.BaseModel

class pybamm.interface.kinetics.FirstOrderButlerVolmer(param, domain)

No Reaction

class pybamm.interface.kinetics.NoReaction(param, domain)
Base submodel for when no reaction occurs

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.kinetics.BaseModel

Tafel

class pybamm.interface.kinetics.ForwardTafel(param, domain)
Base submodel which implements the forward Tafel equation:

𝑗 = 𝑗0(𝑐) * exp((𝑛𝑒/(2 * (1 + Θ𝑇)) * 𝜂𝑟(𝑐))

Parameters

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.kinetics.BaseModel

class pybamm.interface.kinetics.FirstOrderForwardTafel(param, domain)

class pybamm.interface.kinetics.BackwardTafel(param, domain)
Base submodel which implements the backward Tafel equation:

𝑗 = −𝑗0(𝑐) * exp(−𝜂𝑟(𝑐))

Parameters

56 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

• param – model parameters

• domain (str) – The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.kinetics.BaseModel

Lead Acid

class pybamm.interface.lead_acid.ButlerVolmer(param, domain)
Extends BaseInterfaceLeadAcid (for exchange-current density, etc) and kinetics.ButlerVolmer
(for kinetics)

class pybamm.interface.lead_acid.InverseButlerVolmer(param, domain)
Extends BaseInterfaceLeadAcid (for exchange-current density, etc) and inverse_kinetics.
InverseButlerVolmer (for kinetics)

class pybamm.interface.lead_acid.FirstOrderButlerVolmer(param, domain)
Extends BaseInterfaceLeadAcid (for exchange-current density, etc) and kinetics.
FirstOrderButlerVolmer (for kinetics)

class pybamm.interface.lead_acid.InverseFirstOrderKinetics(param, domain)
Extends BaseInterfaceLeadAcid (for exchange-current density, etc) and kinetics.
BaseInverseFirstOrderKinetics (for kinetics)

Lithium-Ion

class pybamm.interface.lithium_ion.ButlerVolmer(param, domain)
Extends BaseInterfaceLithiumIon (for exchange-current density, etc) and kinetics.
ButlerVolmer (for kinetics)

class pybamm.interface.lithium_ion.InverseButlerVolmer(param, domain)
Extends BaseInterfaceLithiumIon (for exchange-current density, etc) and inverse_kinetics.
InverseButlerVolmer (for kinetics)

Oxygen Diffusion

Base Model

class pybamm.oxygen_diffusion.BaseModel(param, reactions=None)
Base class for conservation of mass of oxygen.

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict, optional) – Dictionary of reaction terms

• **Extends (** pybamm.BaseSubModel) –

Composite Model

class pybamm.oxygen_diffusion.Composite(param, reactions, extended=False)
Class for conservation of mass of oxygen. (Composite refers to composite expansion in asymptotic methods) In
this model, extremely fast oxygen kinetics in the negative electrode imposes zero oxygen concentration there,

1.2. Models 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

and so the oxygen variable only lives in the separator and positive electrode. The boundary condition at the
negative electrode/ separator interface is homogeneous Dirichlet.

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• extended (bool) – Whether to include feedback from the first-order terms

• **Extends (** pybamm.oxygen_diffusion.Full) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

set_rhs(variables)
Composite reaction-diffusion with source terms from leading order

First-Order Model

class pybamm.oxygen_diffusion.FirstOrder(param, reactions)
Class for conservation of mass of oxygen. (First-order refers to first-order expansion in asymptotic methods) In
this model, extremely fast oxygen kinetics in the negative electrode imposes zero oxygen concentration there,
and so the oxygen variable only lives in the separator and positive electrode. The boundary condition at the
negative electrode/ separator interface is homogeneous Dirichlet.

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• **Extends (** pybamm.oxygen_diffusion.BaseModel) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Full Model

class pybamm.oxygen_diffusion.Full(param, reactions)
Class for conservation of mass of oxygen. (Full refers to unreduced by asymptotic methods) In this model,
extremely fast oxygen kinetics in the negative electrode imposes zero oxygen concentration there, and so the

58 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

oxygen variable only lives in the separator and positive electrode. The boundary condition at the negative
electrode/ separator interface is homogeneous Dirichlet.

Parameters

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• **Extends (** pybamm.oxygen_diffusion.BaseModel) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Leading Order Model

class pybamm.oxygen_diffusion.LeadingOrder(param, reactions)
Class for conservation of mass of oxygen. (Leading refers to leading order of asymptotic reduction)

Parameters

1.2. Models 59

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

• param (parameter class) – The parameters to use for this submodel

• reactions (dict) – Dictionary of reaction terms

• **Extends (** pybamm.oxgen_diffusion.BaseModel) –

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

No Oxygen

class pybamm.oxygen_diffusion.NoOxygen(param)
Class for when there is no oxygen

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.oxygen_diffusion.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

60 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Particle

Particle Base Model

class pybamm.particle.BaseParticle(param, domain)
Base class for molar conservation in particles.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.BaseSubModel

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Fickian

Many Particle

class pybamm.particle.fickian.ManyParticles(param, domain)
Base class for molar conservation in many particles which employs Fick’s law.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.particle.BaseParticle

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

1.2. Models 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Single Particle

class pybamm.particle.fickian.SingleParticle(param, domain)
Base class for molar conservation in a single x-averaged particle which employs Fick’s law.

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.particle.BaseParticle

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

62 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Parameters variables (dict) – The variables in the whole model.

set_initial_conditions(variables)
For single particle models, initial conditions can’t depend on x so we arbitrarily set the initial values of the
single particles to be given by the values at x=0 in the negative electrode and x=1 in the positive electrode.
Typically, supplied initial conditions are uniform x.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Fast

Base Model

class pybamm.particle.fast.BaseModel(param, domain)
Base class for molar conservation in particles with uniform concentration in r (i.e. infinitely fast diffusion within
particles).

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.particle.BaseParticle

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Many Particle

class pybamm.particle.fast.ManyParticles(param, domain)
Base class for molar conservation in many particles with uniform concentration in r (i.e. infinitely fast diffusion
within particles).

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.particle.fast.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

1.2. Models 63

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Single Particle

class pybamm.particle.fast.SingleParticle(param, domain)
Base class for molar conservation in a single x-averaged particle with uniform concentration in r (i.e. infinitely
fast diffusion within particles).

Parameters

• param (parameter class) – The parameters to use for this submodel

• domain (str) – The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.particle.fast.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
For single particle models, initial conditions can’t depend on x so we arbitrarily evaluate them at x=0 in
the negative electrode and x=1 in the positive electrode (they will usually be constant)

Porosity

Base Model

class pybamm.porosity.BaseModel(param)
Base class for porosity

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.BaseSubModel

set_events(variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

64 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Constant Porosity

class pybamm.porosity.Constant(param)
Submodel for constant porosity

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.porosity.BaseModel

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Leading-Order Model

class pybamm.porosity.LeadingOrder(param)
Leading-order model for reaction-driven porosity changes

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.porosity.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this

1.2. Models 65

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Full Model

class pybamm.porosity.Full(param)
Full model for reaction-driven porosity changes

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.porosity.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Thermal

Isothermal

Isothermal Model

class pybamm.thermal.isothermal.Isothermal(param)
Class for isothermal submodel.

66 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseThermal

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

X-full

Base Model

class pybamm.thermal.x_full.BaseModel(param)
Base class for full x-direction thermal submodels.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

1.2. Models 67

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

No current collector

class pybamm.thermal.x_full.NoCurrentCollector(param)
Class for full x-direction thermal submodel without current collectors

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.x_full.BaseModel

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

X-lumped

Base Model

class pybamm.thermal.x_lumped.BaseModel(param)
Base class for x-lumped thermal submodel

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

68 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

No current collector

class pybamm.thermal.x_lumped.NoCurrentCollector(param)
Class for x-lumped thermal submodel without current collectors. Note: since there are no current collectors in
this model, the electrochemical model must be 1D (x-direction only).

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseModel

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

0D current collector

class pybamm.thermal.x_lumped.CurrentCollector0D(param)
Class for x-lumped thermal model with 0D current collectors

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

1D current collector

class pybamm.thermal.x_lumped.CurrentCollector1D(param)
Class for x-lumped thermal model with 1D current collectors

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

1.2. Models 69

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Parameters variables (dict) – The variables in the whole model.

2D current collector

class pybamm.thermal.x_lumped.CurrentCollector2D(param)
Class for x-lumped thermal submodel with 2D current collectors

set_boundary_conditions(variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

Set Temperature 1D current collector

class pybamm.thermal.x_lumped.SetTemperature1D(param)
Class for x-lumped thermal submodel which doesn’t update the temperature. Instead, the temperature can be
set (as a function of space) externally. Note, this model computes the heat generation terms for inspection after
solve.

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseModel

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

XYZ-lumped

Base Model

class pybamm.thermal.xyz_lumped.BaseModel(param)
Base class for xyz-lumped thermal submodel

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

70 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

get_fundamental_variables()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions(variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

set_rhs(variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm.BaseSubModel.

Parameters variables (dict) – The variables in the whole model.

1D current collector

class pybamm.thermal.xyz_lumped.CurrentCollector1D(param)
Class for xyz-lumped thermal submodel with 1D current collectors

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseModel

2D current collector

class pybamm.thermal.xyz_lumped.CurrentCollector2D(param)
Class for xyz-lumped thermal submodel with 2D current collectors

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.thermal.BaseModel

Base Thermal

class pybamm.thermal.BaseThermal(param)
Base class for thermal effects

Parameters param (parameter class) – The parameters to use for this submodel

Extends: pybamm.BaseSubModel

1.2. Models 71

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Tortuosity

Base Model

class pybamm.tortuosity.BaseModel(param, phase)
Base class for tortuosity

Parameters

• param (parameter class) – The parameters to use for this submodel

• phase (str) – The material for the model (‘electrolyte’ or ‘electrode’).

• **Extends (** pybamm.BaseSubModel) –

Bruggeman Model

class pybamm.tortuosity.Bruggeman(param, phase, set_leading_order=False)
Submodel for Bruggeman tortuosity

Extends: pybamm.tortuosity.BaseModel

get_coupled_variables(variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) – The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

1.3 Parameters

1.3.1 Base Parameter Values

class pybamm.ParameterValues(values=None, chemistry=None)
The parameter values for a simulation.

Note that this class does not inherit directly from the python dictionary class as this causes issues with saving
and loading simulations.

Parameters

• values (dict or string) – Explicit set of parameters, or reference to a file of pa-
rameters If string, gets passed to read_parameters_csv to read a file.

• chemistry (dict) – Dict of strings for default chemistries. Must be of the form:
{“base chemistry”: base_chemistry, “cell”: cell_properties_authorYear, “anode”: an-
ode_chemistry_authorYear, “separator”: separator_chemistry_authorYear, “cathode”: cath-
ode_chemistry_authorYear, “electrolyte”: electrolyte_chemistry_authorYear, “experiment”:
experimental_conditions_authorYear}. Then the anode chemistry is loaded from the file
inputs/parameters/base_chemistry/anodes/anode_chemistry_authorYear, etc. Parameters in
“cell” should include geometry and current collector properties. Parameters in “experiment”

72 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

should include parameters relating to experimental conditions, such as initial conditions and
currents.

Examples

>>> import pybamm
>>> values = {"some parameter": 1, "another parameter": 2}
>>> param = pybamm.ParameterValues(values)
>>> param["some parameter"]
1
>>> file = "input/parameters/lithium-ion/cells/kokam_Marquis2019/parameters.csv"
>>> values_path = pybamm.get_parameters_filepath(file)
>>> param = pybamm.ParameterValues(values=values_path)
>>> param["Negative current collector thickness [m]"]
2.5e-05
>>> param = pybamm.ParameterValues(chemistry=pybamm.parameter_sets.Marquis2019)
>>> param["Reference temperature [K]"]
298.15

evaluate(symbol)
Process and evaluate a symbol.

Parameters symbol (pybamm.Symbol) – Symbol or Expression tree to evaluate

Returns The evaluated symbol

Return type number of array

items()
Get the items of the dictionary

keys()
Get the keys of the dictionary

process_boundary_conditions(model)
Process boundary conditions for a model Boundary conditions are dictionaries {“left”: left bc, “right”:
right bc} in general, but may be imposed on the tabs (or not on the tab) for a small number of variables,
e.g. {“negative tab”: neg. tab bc, “positive tab”: pos. tab bc “no tab”: no tab bc}.

process_geometry(geometry)
Assign parameter values to a geometry (inplace).

Parameters geometry (pybamm.Geometry) – Geometry specs to assign parameter values
to

process_model(unprocessed_model, inplace=True)
Assign parameter values to a model. Currently inplace, could be changed to return a new model.

Parameters

• unprocessed_model (pybamm.BaseModel) – Model to assign parameter values
for

• inplace (bool, optional) – If True, replace the parameters in the model in place.
Otherwise, return a new model with parameter values set. Default is True.

Raises pybamm.ModelError – If an empty model is passed (model.rhs = {} and
model.algebraic={})

1.3. Parameters 73

https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.0

process_symbol(symbol)
Walk through the symbol and replace any Parameter with a Value. If a symbol has already been processed,
the stored value is returned.

Parameters symbol (pybamm.Symbol) – Symbol or Expression tree to set parameters for

Returns symbol – Symbol with Parameter instances replaced by Value

Return type pybamm.Symbol

read_parameters_csv(filename)
Reads parameters from csv file into dict.

Parameters filename (str) – The name of the csv file containing the parameters.

Returns {name: value} pairs for the parameters.

Return type dict

update(values, check_conflict=False, check_already_exists=True, path=”)
Update parameter dictionary, while also performing some basic checks.

Parameters

• values (dict) – Dictionary of parameter values to update parameter dictionary with

• check_conflict (bool, optional) – Whether to check that a parameter in values
has not already been defined in the parameter class when updating it, and if so that its value
does not change. This is set to True during initialisation, when parameters are combined
from different sources, and is False by default otherwise

• check_already_exists (bool, optional) – Whether to check that a parameter
in values already exists when trying to update it. This is to avoid cases where an intended
change in the parameters is ignored due a typo in the parameter name, and is True by
default but can be manually overridden.

• path (string, optional) – Path from which to load functions

update_from_chemistry(chemistry)
Load standard set of components from a ‘chemistry’ dictionary

values()
Get the values of the dictionary

1.3.2 Geometric Parameters

Standard geometric parameters

1.3.3 Electrical Parameters

1.3.4 Thermal Parameters

1.3.5 Standard Lithium-ion Parameters

Standard parameters for lithium-ion battery models

1.3.6 Standard Lead-Acid Parameters

Standard Parameters for lead-acid battery models

74 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.0

1.3.7 Print parameters

pybamm.print_parameters(parameters, parameter_values, output_file=None)
Return dictionary of evaluated parameters, and optionally print these evaluated parameters to an output file. For
dimensionless parameters that depend on the C-rate, the value is given as a function of the C-rate (either x *
Crate or x / Crate depending on the dependence)

Parameters

• parameters (class or dict containing pybamm.Parameter objects) – Class or dictio-
nary containing all the parameters to be evaluated

• parameter_values (pybamm.ParameterValues) – The class of parameter values

• output_file (string, optional) – The file to print parameters to. If None, the
parameters are not printed, and this function simply acts as a test that all the parameters can
be evaluated, and returns the dictionary of evaluated parameters.

Returns evaluated_parameters – The evaluated parameters, for further processing if needed

Return type defaultdict

Notes

A C-rate of 1 C is the current required to fully discharge the battery in 1 hour, 2 C is current to discharge the
battery in 0.5 hours, etc

pybamm.print_evaluated_parameters(evaluated_parameters, output_file)
Print a dictionary of evaluated parameters to an output file

Parameters

• evaluated_parameters (defaultdict) – The evaluated parameters, for further
processing if needed

• output_file (string, optional) – The file to print parameters to. If None, the
parameters are not printed, and this function simply acts as a test that all the parameters can
be evaluated

1.3.8 Parameters Sets

Parameter sets from papers. The ‘citation’ entry provides a reference to the appropriate paper in the file “py-
bamm/CITATIONS.txt”. To see which parameter sets have been used in your simulation, add the line “py-
bamm.print_citations()” to your script.

1.4 Geometry

1.4.1 Geometry

class pybamm.Geometry(*geometries, custom_geometry={})
A geometry class to store the details features of the cell geometry.

Geometry extends the class dictionary and uses the key words: “negative electrode”, “positive electrode”, etc
to indicate the subdomain. Within each subdomain, there are “primary”, “secondary” or “tabs” dimensions.
“primary” dimensions correspond to dimensions on which spatial operators will be applied (e.g. the gradient

1.4. Geometry 75

PyBaMM Documentation, Release 0.2.0

and divergence). In contrast, spatial operators do not act along “secondary” dimensions. This allows for multiple
independent particles to be included into a model.

The values assigned to each domain are dictionaries containing the spatial variables in that domain, along with
expression trees giving their min and maximum extents. For example, the following dictionary structure would
represent a Geometry with a single domain “negative electrode”, defined using the variable x_n which has a
range from 0 to the pre-defined parameter l_n.

{
"negative electrode": {

"primary": {x_n: {"min": pybamm.Scalar(0), "max": l_n}}
}

}

A user can create a new Geometry by combining one or more of the pre-defined geometries defined with the
names given below.

• “1D macro”: macroscopic 1D cell geometry (i.e. electrodes)

• “3D macro”: macroscopic 3D cell geometry

• “1+1D macro”: 1D macroscopic cell geometry with a 1D current collector

• “1+2D macro”: 1D macroscopic cell geometry with a 2D current collector

• “1D micro”: 1D microscopic cell geometry (i.e. particles)

• “1+1D micro”: This is the geometry used in the standard DFN or P2D model

• “(1+0)+1D micro”: 0D macroscopic cell geometry with 1D current collector, along with the micro-
scopic 1D particle geometry.

• “(2+0)+1D micro”: 0D macroscopic cell geometry with 1D current collector, along with the micro-
scopic 1D particle geometry.

• “(1+1)+1D micro”: 1D macroscopic cell geometry, with 1D current collector model, along with the
microscopic 1D particle geometry.

• “(2+1)+1D micro”: 1D macroscopic cell geometry, with 2D current collector model, along with the
microscopic 1D particle geometry.

• “2D current collector”: macroscopic 2D current collector geometry

Extends: dict

Parameters

• geometries (one or more strings or Geometry objects. A string
will be assumed to be) – one of the predefined Geometries given above

• custom_geometry (dict containing any extra user defined
geometry) –

add_domain(name, geometry)
Add a new domain to the geometry

Parameters

• name (string giving the name of the domain) –

• geometry (dict of variables in the domain, along with the
minimum and maximum) – extents (e.g. {“primary”: {x_n: {“min”: py-
bamm.Scalar(0), “max”: l_n}}}

76 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

class pybamm.Geometry1DMacro(custom_geometry={})
A geometry class to store the details features of the macroscopic 1D cell geometry.

Extends: Geometry

Parameters custom_geometry (dict containing any extra user defined
geometry) –

class pybamm.Geometry3DMacro(custom_geometry={})
A geometry class to store the details features of the macroscopic 3D cell geometry.

Extends: Geometry1DMacro

Parameters custom_geometry (dict containing any extra user defined
geometry) –

class pybamm.Geometry1DMicro(custom_geometry={})
A geometry class to store the details features of the microscopic 1D particle geometry.

Extends: Geometry

Parameters custom_geometry (dict containing any extra user defined
geometry) –

class pybamm.Geometry1p1DMicro(custom_geometry={})
A geometry class to store the details features of the 1+1D cell geometry. This is the geometry used in the
standard DFN or P2D model.

Extends: Geometry

Parameters custom_geometry (dict containing any extra user defined
geometry) –

class pybamm.Geometryxp1DMacro(cc_dimension=1, custom_geometry={})
A geometry class to store the details features of x+1D macroscopic cell geometry, where x is the dimension of
the current collector model.

Extends: Geometry1DMacro

Parameters

• cc_dimension (int, optional) – the dimension of the current collector model

• custom_geometry (dict, optional) – dictionary containing any extra user defined
geometry

class pybamm.Geometryxp0p1DMicro(cc_dimension=1, custom_geometry={})
A geometry class to store the details features of x+0D macroscopic cell geometry, where x is the dimension of
the current collector model, along with the microscopic 1D particle geometry.

Extends: Geometry1DMicro

Parameters

• cc_dimension (int, optional) – the dimension of the current collector model

• custom_geometry (dict, optional) – dictionary containing any extra user defined
geometry

class pybamm.Geometryxp1p1DMicro(cc_dimension=1, custom_geometry={})
A geometry class to store the details features of x+1D macroscopic cell geometry, where x is the dimension of
the current collector model, along with the microscopic 1D particle geometry.

Extends: Geometry1DMicro

Parameters

1.4. Geometry 77

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

• cc_dimension (int, optional) – the dimension of the current collector model

• custom_geometry (dict, optional) – dictionary containing any extra user defined
geometry

class pybamm.Geometry2DCurrentCollector(custom_geometry={})
A geometry class to store the details features of the macroscopic 2D current collector geometry.

Extends: Geometry

Parameters custom_geometry (dict containing any extra user defined
geometry) –

1.5 Meshes

1.5.1 Meshes

class pybamm.Mesh(geometry, submesh_types, var_pts)
Mesh contains a list of submeshes on each subdomain.

Extends: dict

Parameters

• geometry – contains the geometry of the problem.

• submesh_types (dict) – contains the types of submeshes to use (e.g. Uni-
form1DSubMesh)

• submesh_pts (dict) – contains the number of points on each subdomain

add_ghost_meshes()
Create meshes for potential ghost nodes on either side of each submesh, using self.submeshclass This will
be useful for calculating the gradient with Dirichlet BCs.

combine_submeshes(*submeshnames)
Combine submeshes into a new submesh, using self.submeshclass Raises pybamm.DomainError if sub-
meshes to be combined do not match up (edges are not aligned).

Parameters submeshnames (list of str) – The names of the submeshes to be combined

Returns submesh – A new submesh with the class defined by self.submeshclass

Return type self.submeshclass

class pybamm.SubMesh
Base submesh class. Contains the position of the nodes, the number of mesh points, and (optionally) information
about the tab locations.

class pybamm.MeshGenerator(submesh_type, submesh_params=None)
Base class for mesh generator objects that are used to generate submeshes.

Parameters

• submesh_type (pybamm.SubMesh) – The type of submesh to use (e.g. Uni-
form1DSubMesh).

• submesh_params (dict, optional) – Contains any parameters required by the sub-
mesh.

78 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

1.5.2 0D Sub Mesh

class pybamm.SubMesh0D(position, npts=None, tabs=None)
0D submesh class. Contains the position of the node.

Parameters

• position (dict) – A dictionary that contains the position of the 0D submesh (a signle
point) in space

• npts (dict, optional) – Number of points to be used. Included for compatibility
with other meshes, but ignored by this mesh class

• tabs (dict) – A dictionary that contains information about the size and location of the
tabs. Included for compatibility with other meshes, but ignored by this mesh class

• **Extends (“”: pybamm.SubMesh) –

1.5.3 1D Sub Meshes

class pybamm.SubMesh1D(edges, coord_sys, tabs=None)
1D submesh class. Contains the position of the nodes, the number of mesh points, and (optionally) information
about the tab locations.

Parameters

• edges (array_like) – An array containing the points corresponding to the edges of the
submesh

• coord_sys (string) – The coordinate system of the submesh

• tabs (dict, optional) – A dictionary that contains information about the size and
location of the tabs

• **Extends (“”: pybamm.SubMesh) –

class pybamm.Uniform1DSubMesh(lims, npts, tabs=None)
A class to generate a uniform submesh on a 1D domain

Parameters

• lims (dict) – A dictionary that contains the limits of the spatial variables

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable. Note: the number of nodes (located at the cell centres) is npts, and the number of
edges is npts+1.

• tabs (dict, optional) – A dictionary that contains information about the size and
location of the tabs

• **Extends (“”: pybamm.SubMesh1D) –

class pybamm.Exponential1DSubMesh(lims, npts, tabs, side=’symmetric’, stretch=None)
A class to generate a submesh on a 1D domain in which the points are clustered close to one or both of boundaries
using an exponential formula on the interval [a,b].

If side is “left”, the gridpoints are given by

+ a,for k = 1, . . . , N, where N is the number of nodes.

Is side is “right”, the gridpoints are given by

1.5. Meshes 79

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

+ a,for k = 1, . . . , N.

If side is “symmetric”, the first half of the interval is meshed using the gridpoints

+ a,for k = 1, . . . , N. The grid spacing is then reflected to contruct the grid on the full interval [a,b].

In the above, alpha is a stretching factor. As the number of gridpoints tends to infinity, the ratio of the largest and
smallest grid cells tends to exp(alpha).

Parameters

• lims (dict) – A dictionary that contains the limits of the spatial variables

• npts (dict) – A dictionary that contains the number of points to be used on each spatial variable.
Note: the number of nodes (located at the cell centres) is npts, and the number of edges is npts+1.

• tabs (dict) – A dictionary that contains information about the size and location of the tabs

• side (str, optional) – Whether the points are clustered near to the left or right boundary,
or both boundaries. Can be “left”, “right” or “symmetric”. Default is “symmetric”

• stretch (float, optional) – The factor (alpha) which appears in the exponential. If side
is “symmetric” then the default stretch is 1.15. If side is “left” or “right” then the default stretch is
2.3.

• **Extends (“”: pybamm.SubMesh1D) –

class pybamm.Chebyshev1DSubMesh(lims, npts, tabs=None)
A class to generate a submesh on a 1D domain using Chebyshev nodes on the interval (a, b), given by

𝑥𝑘 =
1

2
(𝑎+ 𝑏) +

1

2
(𝑏− 𝑎) cos(

2𝑘 − 1

2𝑁
𝜋),

for k = 1, . . . , N, where N is the number of nodes. Note: this mesh then appends the boundary edges, so that the
mesh edges are given by

𝑎 < 𝑥1 < ... < 𝑥𝑁 < 𝑏.

Parameters

• lims (dict) – A dictionary that contains the limits of the spatial variables

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable. Note: the number of nodes (located at the cell centres) is npts, and the number of
edges is npts+1.

• tabs (dict, optional) – A dictionary that contains information about the size and
location of the tabs

• **Extends (“”: pybamm.SubMesh1D) –

class pybamm.UserSupplied1DSubMesh(lims, npts, tabs, edges=None)
A class to generate a submesh on a 1D domain from a user supplied array of edges.

Parameters

• lims (dict) – A dictionary that contains the limits of the spatial variables

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable. Note: the number of nodes (located at the cell centres) is npts, and the number of
edges is npts+1.

80 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

• tabs (dict) – A dictionary that contains information about the size and location of the
tabs

• edges (array_like) – The array of points which correspond to the edges of the mesh.

• **Extends (“”: pybamm.SubMesh1D) –

1.5.4 2D Sub Meshes

class pybamm.ScikitSubMesh2D(edges, coord_sys, tabs)
2D submesh class. Contains information about the 2D finite element mesh. Note: This class only allows for the
use of piecewise-linear triangular finite elements.

Parameters

• edges (array_like) – An array containing the points corresponding to the edges of the
submesh

• coord_sys (string) – The coordinate system of the submesh

• tabs (dict, optional) – A dictionary that contains information about the size and
location of the tabs

• **Extends (“”: pybamm.SubMesh) –

on_boundary(y, z, tab)
A method to get the degrees of freedom corresponding to the subdomains for the tabs.

class pybamm.ScikitUniform2DSubMesh(lims, npts, tabs)
Contains information about the 2D finite element mesh with uniform grid spacing (can be different spacing in y
and z). Note: This class only allows for the use of piecewise-linear triangular finite elements.

Parameters

• lims (dict) – A dictionary that contains the limits of each spatial variable

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable

• tabs (dict) – A dictionary that contains information about the size and location of the
tabs

• **Extends (“”: pybamm.ScikitSubMesh2D) –

class pybamm.ScikitExponential2DSubMesh(lims, npts, tabs, side=’top’, stretch=2.3)
Contains information about the 2D finite element mesh generated by taking the tensor product of a uniformly
spaced grid in the y direction, and a unequally spaced grid in the z direction in which the points are clustered
close to the top boundary using an exponential formula on the interval [a,b]. The gridpoints in the z direction
are given by

+ a,for k = 1, . . . , N, where N is the number of nodes. Here alpha is a stretching factor. As the number of gridpoints
tends to infinity, the ratio of the largest and smallest grid cells tends to exp(alpha).

Note: in the future this will be extended to allow points to be clustered near any of the boundaries.

Parameters

• lims (dict) – A dictionary that contains the limits of each spatial variable

• npts (dict) – A dictionary that contains the number of points to be used on each spatial variable

• tabs (dict) – A dictionary that contains information about the size and location of the tabs

1.5. Meshes 81

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

• side (str, optional) – Whether the points are clustered near to a particular boundary. At
present, can only be “top”. Default is “top”.

• stretch (float, optional) – The factor (alpha) which appears in the exponential. Default
is 2.3.

• **Extends (“”: pybamm.ScikitSubMesh2D) –

class pybamm.ScikitChebyshev2DSubMesh(lims, npts, tabs)
Contains information about the 2D finite element mesh generated by taking the tensor product of two 1D meshes
which use Chebyshev nodes on the interval (a, b), given by

𝑥𝑘 =
1

2
(𝑎+ 𝑏) +

1

2
(𝑏− 𝑎) cos(

2𝑘 − 1

2𝑁
𝜋),

for k = 1, . . . , N, where N is the number of nodes. Note: this mesh then appends the boundary edgess, so that
the 1D mesh edges are given by

𝑎 < 𝑥1 < ... < 𝑥𝑁 < 𝑏.

Note: This class only allows for the use of piecewise-linear triangular finite elements.

Parameters

• lims (dict) – A dictionary that contains the limits of each spatial variable

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable

• tabs (dict) – A dictionary that contains information about the size and location of the
tabs

• **Extends (“”: pybamm.ScikitSubMesh2D) –

class pybamm.UserSupplied2DSubMesh(lims, npts, tabs, y_edges=None, z_edges=None)
A class to generate a tensor product submesh on a 2D domain by using two user supplied vectors of
edges: one for the y-direction and one for the z-direction. Note: this mesh should be created using
UserSupplied2DSubMeshGenerator.

Parameters

• lims (dict) – A dictionary that contains the limits of the spatial variables

• npts (dict) – A dictionary that contains the number of points to be used on each spatial
variable. Note: the number of nodes (located at the cell centres) is npts, and the number of
edges is npts+1.

• tabs (dict) – A dictionary that contains information about the size and location of the
tabs

• y_edges (array_like) – The array of points which correspond to the edges in the y
direction of the mesh.

• z_edges (array_like) – The array of points which correspond to the edges in the z
direction of the mesh.

• **Extends (“”: pybamm.ScikitSubMesh2D) –

82 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

1.6 Discretisation and spatial methods

1.6.1 Discretisation

class pybamm.Discretisation(mesh=None, spatial_methods=None)
The discretisation class, with methods to process a model and replace Spatial Operators with Matrices and
Variables with StateVectors

Parameters

• mesh (pybamm.Mesh) – contains all submeshes to be used on each domain

• spatial_methods (dict) – a dictionary of the spatial methods to be used on each
domain. The keys correspond to the model domains and the values to the spatial method.

check_initial_conditions(model)
Check initial conditions are a numpy array

check_initial_conditions_rhs(model)
Check initial conditions and rhs have the same shape

check_model(model)
Perform some basic checks to make sure the discretised model makes sense.

check_tab_conditions(symbol, bcs)
Check any boundary conditions applied on “negative tab”, “positive tab” and “no tab”. For 1D current
collector meshes, these conditions are converted into boundary conditions on “left” (tab at z=0) or “right”
(tab at z=l_z) depending on the tab location stored in the mesh. For 2D current collector meshes, the
boundary conditions can be applied on the tabs directly.

Parameters

• symbol (pybamm.expression_tree.symbol.Symbol) – The symbol on which
the boundary conditions are applied.

• bcs (dict) – The dictionary of boundary conditions (a dict of {side: equation}).

Returns The dictionary of boundary conditions, with the keys changed to “left” and “right”
where necessary.

Return type dict

check_variables(model)
Check variables in variable list against rhs Be lenient with size check if the variable in model.variables is
broadcasted, or a concatenation (if broadcasted, variable is a multiplication with a vector of ones)

create_jacobian(model)
Creates Jacobian of the discretised model. Note that the model is assumed to be of the form M*y_dot =
f(t,y), where M is the (possibly singular) mass matrix. The Jacobian is df/dy.

Note: At present, calculation of the Jacobian is deferred until after simplification, since it is much faster to
compute the Jacobian of the simplified model. However, in some use cases (e.g. running the same model
multiple times but with different parameters) it may be more efficient to compute the Jacobian once, before
simplification, so that parameters in the Jacobian can be updated (see PR #670).

Parameters model (pybamm.BaseModel) – Discretised model. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns The expression trees corresponding to the Jacobian of the model

Return type pybamm.Concatenation

1.6. Discretisation and spatial methods 83

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

create_mass_matrix(model)
Creates mass matrix of the discretised model. Note that the model is assumed to be of the form M*y_dot
= f(t,y), where M is the (possibly singular) mass matrix.

Parameters model (pybamm.BaseModel) – Discretised model. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns

• pybamm.Matrix – The mass matrix

• pybamm.Matrix – The inverse of the ode part of the mass matrix (required by solvers
which only accept the ODEs in explicit form)

process_boundary_conditions(model)
Discretise model boundary_conditions, also converting keys to ids

Parameters model (pybamm.BaseModel) – Model to dicretise. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns Dictionary of processed boundary conditions

Return type dict

process_dict(var_eqn_dict)
Discretise a dictionary of {variable: equation}, broadcasting if necessary (can be model.rhs,
model.algebraic, model.initial_conditions or model.variables).

Parameters var_eqn_dict (dict) – Equations ({variable: equation} dict) to dicretise (can
be model.rhs, model.algebraic, model.initial_conditions or model.variables)

Returns new_var_eqn_dict – Discretised equations

Return type dict

process_initial_conditions(model)
Discretise model initial_conditions.

Parameters model (pybamm.BaseModel) – Model to dicretise. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns Tuple of processed_initial_conditions (dict of initial conditions) and concate-
nated_initial_conditions (numpy array of concatenated initial conditions)

Return type tuple

process_model(model, inplace=True, check_model=True)
Discretise a model. Currently inplace, could be changed to return a new model.

Parameters

• model (pybamm.BaseModel) – Model to dicretise. Must have attributes rhs, ini-
tial_conditions and boundary_conditions (all dicts of {variable: equation})

• inplace (bool, optional) – If True, discretise the model in place. Otherwise,
return a new discretised model. Default is True.

• check_model (bool, optional) – If True, model checks are performed after dis-
cretisation. For large systems these checks can be slow, so can be skipped by setting this
option to False. When developing, testing or debugging it is recommened to leave this
option as True as it may help to identify any errors. Default is True.

Returns model_disc – The discretised model. Note that if inplace is True, model will have
also been discretised in place so model == model_disc. If inplace is False, model !=
model_disc

84 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.0

Return type pybamm.BaseModel

Raises pybamm.ModelError – If an empty model is passed (model.rhs = {} and
model.algebraic={})

process_rhs_and_algebraic(model)
Discretise model equations - differential (‘rhs’) and algebraic.

Parameters model (pybamm.BaseModel) – Model to dicretise. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns Tuple of processed_rhs (dict of processed differential equations), pro-
cessed_concatenated_rhs, processed_algebraic (dict of processed algebraic equations)
and processed_concatenated_algebraic

Return type tuple

process_symbol(symbol)
Discretise operators in model equations. If a symbol has already been discretised, the stored value is
returned.

Parameters symbol (pybamm.expression_tree.symbol.Symbol) – Symbol to dis-
cretise

Returns Discretised symbol

Return type pybamm.expression_tree.symbol.Symbol

set_external_variables(model)
Add external variables to the list of variables to account for, being careful about concatenations

set_internal_boundary_conditions(model)
A method to set the internal boundary conditions for the submodel. These are required to properly calculate
the gradient. Note: this method modifies the state of self.boundary_conditions.

set_variable_slices(variables)
Sets the slicing for variables.

Parameters variables (iterable of pybamm.Variables) – The variables for which to set
slices

1.6.2 Spatial Method

class pybamm.SpatialMethod(options=None)
A general spatial methods class, with default (trivial) behaviour for some spatial operations. All spatial methods
will follow the general form of SpatialMethod in that they contain a method for broadcasting variables onto a
mesh, a gradient operator, and a divergence operator.

Parameters mesh – Contains all the submeshes for discretisation

boundary_integral(child, discretised_child, region)
Implements the boundary integral for a spatial method.

Parameters

• child (pybamm.Symbol) – The symbol to which is being integrated

• discretised_child (pybamm.Symbol) – The discretised symbol of the correct
size

• region (str) – The region of the boundary over which to integrate. If region is None
(default) the integration is carried out over the entire boundary. If region is negative tab

1.6. Discretisation and spatial methods 85

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

or positive tab then the integration is only carried out over the appropriate part of the
boundary corresponding to the tab.

Returns Contains the result of acting the discretised boundary integral on the child discre-
tised_symbol

Return type class: pybamm.Array

boundary_value_or_flux(symbol, discretised_child, bcs=None)
Returns the boundary value or flux using the approriate expression for the spatial method. To do this, we
create a sparse vector ‘bv_vector’ that extracts either the first (for side=”left”) or last (for side=”right”)
point from ‘discretised_child’.

Parameters

• symbol (pybamm.Symbol) – The boundary value or flux symbol

• discretised_child (pybamm.StateVector) – The discretised variable from
which to calculate the boundary value

• bcs (dict (optional)) – The boundary conditions. If these are supplied and “use
bcs” is True in the options, then these will be used to improve the accuracy of the extrap-
olation.

Returns The variable representing the surface value.

Return type pybamm.MatrixMultiplication

broadcast(symbol, domain, auxiliary_domains, broadcast_type)
Broadcast symbol to a specified domain.

Parameters

• symbol (pybamm.Symbol) – The symbol to be broadcasted

• domain (iterable of strings) – The domain to broadcast to

• broadcast_type (str) – The type of broadcast, either: ‘primary’ or ‘full’

Returns broadcasted_symbol – The discretised symbol of the correct size for the spatial
method

Return type class: pybamm.Symbol

concatenation(disc_children)
Discrete concatenation object.

Parameters disc_children (list) – List of discretised children

Returns Concatenation of the discretised children

Return type pybamm.DomainConcatenation

delta_function(symbol, discretised_symbol)
Implements the delta function on the approriate side for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol to which is being integrated

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

divergence(symbol, discretised_symbol, boundary_conditions)
Implements the divergence for a spatial method.

Parameters

86 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 0.2.0

• symbol (pybamm.Symbol) – The symbol that we will take the gradient of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right bc}})

Returns Contains the result of acting the discretised divergence on the child discretised_symbol

Return type class: pybamm.Array

gradient(symbol, discretised_symbol, boundary_conditions)
Implements the gradient for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the gradient of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right bc}})

Returns Contains the result of acting the discretised gradient on the child discretised_symbol

Return type class: pybamm.Array

gradient_squared(symbol, discretised_symbol, boundary_conditions)
Implements the inner product of the gradient with itself for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the gradient of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right bc}})

Returns Contains the result of taking the inner product of the result of acting the discretised
gradient on the child discretised_symbol with itself

Return type class: pybamm.Array

indefinite_integral(child, discretised_child)
Implements the indefinite integral for a spatial method.

Parameters

• child (pybamm.Symbol) – The symbol to which is being integrated

• discretised_child (pybamm.Symbol) – The discretised symbol of the correct
size

Returns Contains the result of acting the discretised indefinite integral on the child discre-
tised_symbol

Return type class: pybamm.Array

integral(child, discretised_child)
Implements the integral for a spatial method.

Parameters

1.6. Discretisation and spatial methods 87

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

• child (pybamm.Symbol) – The symbol to which is being integrated

• discretised_child (pybamm.Symbol) – The discretised symbol of the correct
size

Returns Contains the result of acting the discretised integral on the child discretised_symbol

Return type class: pybamm.Array

internal_neumann_condition(left_symbol_disc, right_symbol_disc, left_mesh, right_mesh)
A method to find the internal neumann conditions between two symbols on adjacent subdomains.

Parameters

• left_symbol_disc (pybamm.Symbol) – The discretised symbol on the left subdo-
main

• right_symbol_disc (pybamm.Symbol) – The discretised symbol on the right sub-
domain

• left_mesh (list) – The mesh on the left subdomain

• right_mesh (list) – The mesh on the right subdomain

laplacian(symbol, discretised_symbol, boundary_conditions)
Implements the laplacian for a spatial method.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the gradient of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right bc}})

Returns Contains the result of acting the discretised laplacian on the child discretised_symbol

Return type class: pybamm.Array

mass_matrix(symbol, boundary_conditions)
Calculates the mass matrix for a spatial method.

Parameters

• symbol (pybamm.Variable) – The variable corresponding to the equation for which
we are calculating the mass matrix.

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right bc}})

Returns The (sparse) mass matrix for the spatial method.

Return type pybamm.Matrix

process_binary_operators(bin_op, left, right, disc_left, disc_right)
Discretise binary operators in model equations. Default behaviour is to return a new binary operator with
the discretised children.

Parameters

• bin_op (pybamm.BinaryOperator) – Binary operator to discretise

• left (pybamm.Symbol) – The left child of bin_op

• right (pybamm.Symbol) – The right child of bin_op

88 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

• disc_left (pybamm.Symbol) – The discretised left child of bin_op

• disc_right (pybamm.Symbol) – The discretised right child of bin_op

Returns Discretised binary operator

Return type pybamm.BinaryOperator

spatial_variable(symbol)
Convert a pybamm.SpatialVariable node to a linear algebra object that can be evaluated (here, a
pybamm.Vector on either the nodes or the edges).

Parameters symbol (pybamm.SpatialVariable) – The spatial variable to be discretised.

Returns Contains the discretised spatial variable

Return type pybamm.Vector

1.6.3 Finite Volume

class pybamm.FiniteVolume(options=None)
A class which implements the steps specific to the finite volume method during discretisation.

For broadcast and mass_matrix, we follow the default behaviour from SpatialMethod.

Parameters

• mesh (pybamm.Mesh) – Contains all the submeshes for discretisation

• **Extends (“”: pybamm.SpatialMethod) –

add_ghost_nodes(symbol, discretised_symbol, bcs)
Add ghost nodes to a symbol.

For Dirichlet bcs, for a boundary condition “y = a at the left-hand boundary”, we concatenate a ghost node
to the start of the vector y with value “2*a - y1” where y1 is the value of the first node. Similarly for the
right-hand boundary condition.

For Neumann bcs no ghost nodes are added. Instead, the exact value provided by the boundary
condition is used at the cell edge when calculating the gradient (see pybamm.FiniteVolume.
add_neumann_values()).

Parameters

• symbol (pybamm.SpatialVariable) – The variable to be discretised

• discretised_symbol (pybamm.Vector) – Contains the discretised variable

• bcs (dict of tuples (pybamm.Scalar, str)) – Dictionary (with keys “left” and “right”)
of boundary conditions. Each boundary condition consists of a value and a flag indicating
its type (e.g. “Dirichlet”)

Returns Matrix @ discretised_symbol + bcs_vector. When evaluated, this gives the discre-
tised_symbol, with appropriate ghost nodes concatenated at each end.

Return type pybamm.Symbol

add_neumann_values(symbol, discretised_gradient, bcs, domain)
Add the known values of the gradient from Neumann boundary conditions to the discretised gradient.

Dirichlet bcs are implemented using ghost nodes, see pybamm.FiniteVolume.
add_ghost_nodes().

Parameters

1.6. Discretisation and spatial methods 89

PyBaMM Documentation, Release 0.2.0

• symbol (pybamm.SpatialVariable) – The variable to be discretised

• discretised_gradient (pybamm.Vector) – Contains the discretised gradient of
symbol

• bcs (dict of tuples (pybamm.Scalar, str)) – Dictionary (with keys “left” and “right”)
of boundary conditions. Each boundary condition consists of a value and a flag indicating
its type (e.g. “Dirichlet”)

• domain (list of strings) – The domain of the gradient of the symbol (may in-
clude ghost nodes)

Returns Matrix @ discretised_gradient + bcs_vector. When evaluated, this gives the discre-
tised_gradient, with the values of the Neumann boundary conditions concatenated at each
end (if given).

Return type pybamm.Symbol

boundary_value_or_flux(symbol, discretised_child, bcs=None)
Uses extrapolation to get the boundary value or flux of a variable in the Finite Volume Method.

See pybamm.SpatialMethod.boundary_value()

concatenation(disc_children)
Discrete concatenation, taking edge_to_node for children that evaluate on edges. See pybamm.
SpatialMethod.concatenation()

definite_integral_matrix(domain, vector_type=’row’)
Matrix for finite-volume implementation of the definite integral in the primary dimension

𝐼 =

∫︁ 𝑏

𝑎

𝑓(𝑠) 𝑑𝑠

for where 𝑎 and 𝑏 are the left-hand and right-hand boundaries of the domain respectively

Parameters domain (list) – The domain(s) of integration

Returns

• pybamm.Matrix – The finite volume integral matrix for the domain

• vector_type (str, optional) – Whether to return a row or column vector in the primary
dimension (default is row)

delta_function(symbol, discretised_symbol)
Delta function. Implemented as a vector whose only non-zero element is the first (if symbol.side = “left”)
or last (if symbol.side = “right”), with appropriate value so that the integral of the delta function across the
whole domain is the same as the integral of the discretised symbol across the whole domain.

See pybamm.SpatialMethod.delta_function()

divergence(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the divergence operator. See pybamm.SpatialMethod.
divergence()

divergence_matrix(domain)
Divergence matrix for finite volumes in the appropriate domain. Equivalent to div(N) = (N[1:] - N[:-1])/dx

Parameters domain (list) – The domain(s) in which to compute the divergence matrix

Returns The (sparse) finite volume divergence matrix for the domain

Return type pybamm.Matrix

90 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 0.2.0

edge_to_node(discretised_symbol, method=’arithmetic’)
Convert a discretised symbol evaluated on the cell edges to a discretised symbol evaluated on the cell
nodes. See pybamm.FiniteVolume.shift()

gradient(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the gradient operator. See pybamm.SpatialMethod.
gradient()

gradient_matrix(domain)
Gradient matrix for finite volumes in the appropriate domain. Equivalent to grad(y) = (y[1:] - y[:-1])/dx

Parameters domain (list) – The domain(s) in which to compute the gradient matrix

Returns The (sparse) finite volume gradient matrix for the domain

Return type pybamm.Matrix

indefinite_integral(child, discretised_child)
Implementation of the indefinite integral operator.

indefinite_integral_matrix_edges(domain)
Matrix for finite-volume implementation of the indefinite integral where the integrand is evaluated on mesh
edges

𝐹 (𝑥) =

∫︁ 𝑥

0

𝑓(𝑢) 𝑑𝑢

The indefinite integral must satisfy the following conditions:

• 𝐹 (0) = 0

• 𝑓(𝑥) = 𝑑𝐹
𝑑𝑥

or, in discrete form,

• BoundaryValue(F, “left”) = 0, i.e. 3 * 𝐹0 − 𝐹1 = 0

• 𝑓𝑖+1/2 = (𝐹𝑖+1 − 𝐹𝑖)/𝑑𝑥𝑖+1/2

Hence we must have

• 𝐹0 = 𝑑𝑢1/2 * 𝑓1/2/2

• 𝐹𝑖+1 = 𝐹𝑖 + 𝑑𝑢 * 𝑓𝑖+1/2

Note that 𝑓−1/2 and 𝑓𝑛+1/2 are included in the discrete integrand vector f, so we add a column of zeros at
each end of the indefinite integral matrix to ignore these.

Parameters domain (list) – The domain(s) of integration

Returns The finite volume integral matrix for the domain

Return type pybamm.Matrix

indefinite_integral_matrix_nodes(domain)
Matrix for finite-volume implementation of the indefinite integral where the integrand is evaluated on mesh
nodes. This is just a straightforward cumulative sum of the integrand

Parameters domain (list) – The domain(s) of integration

Returns The finite volume integral matrix for the domain

Return type pybamm.Matrix

integral(child, discretised_child)
Vector-vector dot product to implement the integral operator.

1.6. Discretisation and spatial methods 91

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 0.2.0

internal_neumann_condition(left_symbol_disc, right_symbol_disc, left_mesh, right_mesh)
A method to find the internal neumann conditions between two symbols on adjacent subdomains.

Parameters

• left_symbol_disc (pybamm.Symbol) – The discretised symbol on the left subdo-
main

• right_symbol_disc (pybamm.Symbol) – The discretised symbol on the right sub-
domain

• left_mesh (list) – The mesh on the left subdomain

• right_mesh (list) – The mesh on the right subdomain

laplacian(symbol, discretised_symbol, boundary_conditions)
Laplacian operator, implemented as div(grad(.)) See pybamm.SpatialMethod.laplacian()

node_to_edge(discretised_symbol, method=’arithmetic’)
Convert a discretised symbol evaluated on the cell nodes to a discretised symbol evaluated on the cell
edges. See pybamm.FiniteVolume.shift()

preprocess_external_variables(var)
For finite volumes, we need the boundary fluxes for discretising properly. Here, we extrapolate and then
add them to the boundary conditions.

Parameters var (pybamm.Variable or pybamm.Concatenation) – The external vari-
able that is to be processed

Returns new_bcs – A dictionary containing the new boundary conditions

Return type dict

process_binary_operators(bin_op, left, right, disc_left, disc_right)
Discretise binary operators in model equations. Performs appropriate averaging of diffusivities if one
of the children is a gradient operator, so that discretised sizes match up. For this averaging we use the
harmonic mean [1].

[1] Recktenwald, Gerald. “The control-volume finite-difference approximation to the diffusion equation.”
(2012).

Parameters

• bin_op (pybamm.BinaryOperator) – Binary operator to discretise

• left (pybamm.Symbol) – The left child of bin_op

• right (pybamm.Symbol) – The right child of bin_op

• disc_left (pybamm.Symbol) – The discretised left child of bin_op

• disc_right (pybamm.Symbol) – The discretised right child of bin_op

Returns Discretised binary operator

Return type pybamm.BinaryOperator

shift(discretised_symbol, shift_key, method)
Convert a discretised symbol evaluated at edges/nodes, to a discretised symbol evaluated at nodes/edges.
Can be the arithmetic mean or the harmonic mean.

Note: when computing fluxes at cell edges it is better to take the harmonic mean based on [1].

[1] Recktenwald, Gerald. “The control-volume finite-difference approximation to the diffusion equation.”
(2012).

92 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

Parameters

• discretised_symbol (pybamm.Symbol) – Symbol to be averaged. When
evaluated, this symbol returns either a scalar or an array of shape (n,) or (n+1,),
where n is the number of points in the mesh for the symbol’s domain (n =
self.mesh[symbol.domain].npts)

• shift_key (str) – Whether to shift from nodes to edges (“node to edge”), or from
edges to nodes (“edge to node”)

• method (str) – Whether to use the “arithmetic” or “harmonic” mean

Returns Averaged symbol. When evaluated, this returns either a scalar or an array of shape
(n+1,) (if shift_key = “node to edge”) or (n,) (if shift_key = “edge to node”)

Return type pybamm.Symbol

spatial_variable(symbol)
Creates a discretised spatial variable compatible with the FiniteVolume method.

Parameters symbol (pybamm.SpatialVariable) – The spatial variable to be discretised.

Returns Contains the discretised spatial variable

Return type pybamm.Vector

1.6.4 Scikit Finite Elements

class pybamm.ScikitFiniteElement(options=None)
A class which implements the steps specific to the finite element method during discretisation. The class uses
scikit-fem to discretise the problem to obtain the mass and stiffness matrices. At present, this class is only used
for solving the Poisson problem -grad^2 u = f in the y-z plane (i.e. not the through-cell direction).

For broadcast we follow the default behaviour from SpatialMethod.

Parameters

• mesh (pybamm.Mesh) – Contains all the submeshes for discretisation

• **Extends (“”: pybamm.SpatialMethod) –

assemble_mass_form(symbol, boundary_conditions, region=’interior’)
Assembles the form of the finite element mass matrix over the domain interior or boundary.

Parameters

• symbol (pybamm.Variable) – The variable corresponding to the equation for which
we are calculating the mass matrix.

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

• region (str, optional) – The domain over which to assemble the mass matrix
form. Can be “interior” (default) or “boundary”.

Returns The (sparse) mass matrix for the spatial method.

Return type pybamm.Matrix

bc_apply(M, boundary, zero=False)
Adjusts the assemled finite element matrices to account for boundary conditons.

Parameters

• M (scipy.sparse.coo_matrix) – The assemled finite element matrix to adjust.

1.6. Discretisation and spatial methods 93

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix

PyBaMM Documentation, Release 0.2.0

• boundary (numpy.array) – Array of the indicies which correspond to the boundary.

• zero (bool, optional) – If True, the rows of M given by the indicies in boundary
are set to zero. If False, the diagonal element is set to one. default is False.

boundary_integral(child, discretised_child, region)
Implementation of the boundary integral operator. See pybamm.SpatialMethod.
boundary_integral()

boundary_integral_vector(domain, region)
A node in the expression tree representing an integral operator over the boundary of a domain

𝐼 =

∫︁
𝜕𝑎

𝑓(𝑢) 𝑑𝑢,

where 𝜕𝑎 is the boundary of the domain, and 𝑢 ∈ domain boundary.

Parameters

• domain (list) – The domain(s) of the variable in the integrand

• region (str) – The region of the boundary over which to integrate. If region is entire
the integration is carried out over the entire boundary. If region is negative tab or posi-
tive tab then the integration is only carried out over the appropriate part of the boundary
corresponding to the tab.

Returns The finite element integral vector for the domain

Return type pybamm.Matrix

boundary_mass_matrix(symbol, boundary_conditions)
Calculates the mass matrix for the finite element method assembled over the boundary.

Parameters

• symbol (pybamm.Variable) – The variable corresponding to the equation for which
we are calculating the mass matrix.

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns The (sparse) mass matrix for the spatial method.

Return type pybamm.Matrix

boundary_value_or_flux(symbol, discretised_child, bcs=None)
Returns the average value of the symbol over the negative tab (“negative tab”) or the positive tab (“positive
tab”) in the Finite Element Method.

Overwrites the default pybamm.SpatialMethod.boundary_value()

definite_integral_matrix(domain, vector_type=’row’)
Matrix for finite-element implementation of the definite integral over the entire domain

𝐼 =

∫︁
Ω

𝑓(𝑠) 𝑑𝑥

for where Ω is the domain.

Parameters

• domain (list) – The domain(s) of integration

• vector_type (str, optional) – Whether to return a row or column vector (default
is row)

94 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

Returns The finite element integral vector for the domain

Return type pybamm.Matrix

divergence(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the divergence operator. See pybamm.SpatialMethod.
divergence()

gradient(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the gradient operator. The gradient w of the function u is
approximated by the finite element method using the same function space as u, i.e. we solve w = grad(u),
which corresponds to the weak form w*v*dx = grad(u)*v*dx, where v is a suitable test function.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the laplacian of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns A concatenation that contains the result of acting the discretised gradient on the child
discretised_symbol. The first column corresponds to the y-component of the gradient and
the second column corresponds to the z component of the gradient.

Return type class: pybamm.Concatenation

gradient_matrix(symbol, boundary_conditions)
Gradient matrix for finite elements in the appropriate domain.

Parameters

• symbol (pybamm.Symbol) – The symbol for which we want to calculate the gradient
matrix

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns The (sparse) finite element gradient matrix for the domain

Return type pybamm.Matrix

gradient_squared(symbol, discretised_symbol, boundary_conditions)
Multiplication to implement the inner product of the gradient operator with itself. See pybamm.
SpatialMethod.gradient_squared()

indefinite_integral(child, discretised_child)
Implementation of the indefinite integral operator. The input discretised child must be defined on the
internal mesh edges. See pybamm.SpatialMethod.indefinite_integral()

integral(child, discretised_child)
Vector-vector dot product to implement the integral operator. See pybamm.SpatialMethod.
integral()

laplacian(symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the laplacian operator.

Parameters

• symbol (pybamm.Symbol) – The symbol that we will take the laplacian of.

• discretised_symbol (pybamm.Symbol) – The discretised symbol of the correct
size

1.6. Discretisation and spatial methods 95

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns Contains the result of acting the discretised gradient on the child discretised_symbol

Return type class: pybamm.Array

mass_matrix(symbol, boundary_conditions)
Calculates the mass matrix for the finite element method.

Parameters

• symbol (pybamm.Variable) – The variable corresponding to the equation for which
we are calculating the mass matrix.

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns The (sparse) mass matrix for the spatial method.

Return type pybamm.Matrix

spatial_variable(symbol)
Creates a discretised spatial variable compatible with the FiniteElement method.

Parameters symbol (pybamm.SpatialVariable) – The spatial variable to be discretised.

Returns Contains the discretised spatial variable

Return type pybamm.Vector

stiffness_matrix(symbol, boundary_conditions)
Laplacian (stiffness) matrix for finite elements in the appropriate domain.

Parameters

• symbol (pybamm.Symbol) – The symbol for which we want to calculate the laplacian
matrix

• boundary_conditions (dict) – The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns The (sparse) finite element stiffness matrix for the domain

Return type pybamm.Matrix

1.6.5 Zero Dimensional Spatial Method

class pybamm.ZeroDimensionalMethod(options=None)
A discretisation class for the zero dimensional mesh

Parameters

• mesh – Contains all the submeshes for discretisation

• **Extends** (pybamm.SpatialMethod) –

boundary_value_or_flux(symbol, discretised_child, bcs=None)
In 0D, the boundary value is the identity operator. See SpatialMethod.
boundary_value_or_flux()

mass_matrix(symbol, boundary_conditions)
Calculates the mass matrix for a spatial method. Since the spatial method is zero dimensional, this is
simply the number 1.

96 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

1.7 Solvers

1.7.1 Algebraic Solvers

class pybamm.AlgebraicSolver(method=’lm’, tol=1e-06)
Solve a discretised model which contains only (time independent) algebraic equations using a root finding
algorithm. Note: this solver could be extended for quasi-static models, or models in which the time derivative
is manually discretised and results in a (possibly nonlinear) algebaric system at each time level.

Parameters

• method (str, optional) – The method to use to solve the system (default is “lm”)

• tolerance (float, optional) – The tolerance for the solver (default is 1e-6).

root(algebraic, y0_guess, jacobian=None)
Calculate the solution of the algebraic equations through root-finding

Parameters

• algebraic (method) – Function that takes in y and returns the value of the algebraic
equations

• y0_guess (array-like) – Array of the user’s guess for the solution, used to initialise
the root finding algorithm

• jacobian (method, optional) – A function that takes in t and y and returns the
Jacobian. If None, the solver will approximate the Jacobian if required.

set_up(model)
Unpack model, perform checks, simplify and calculate jacobian.

Parameters model (pybamm.BaseModel) – The model whose solution to calculate. Must
have attributes rhs and initial_conditions

Returns

• concatenated_algebraic (pybamm.Concatenation) – Algebraic equations, which
should evaluate to zero

• jac (pybamm.SparseStack) – Jacobian matrix for the differential and algebraic equa-
tions

Raises pybamm.SolverError – If the model contains any time derivatives, i.e. rhs equations
(in which case an ODE or DAE solver should be used instead)

solve(model)
Calculate the solution of the model.

Parameters model (pybamm.BaseModel) – The model whose solution to calculate. Must
only contain algebraic equations.

1.7.2 Base Solvers

class pybamm.BaseSolver(method=None, rtol=1e-06, atol=1e-06, root_method=’casadi’,
root_tol=1e-06, max_steps=1000)

Solve a discretised model.

Parameters

• method (str, optional) – The method to use for integration, specific to each solver

1.7. Solvers 97

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

• rtol (float, optional) – The relative tolerance for the solver (default is 1e-6).

• atol (float, optional) – The absolute tolerance for the solver (default is 1e-6).

• root_method (str, optional) – The method to use to find initial conditions (de-
fault is “casadi”). If “casadi”, the solver uses casadi’s Newton rootfinding algorithm to find
initial conditions. Otherwise, the solver uses ‘scipy.optimize.root’ with method specified by
‘root_method’ (e.g. “lm”, “hybr”, . . .)

• root_tol (float, optional) – The tolerance for the initial-condition solver (default
is 1e-6).

• max_steps (int, optional) – The maximum number of steps the solver will take
before terminating (default is 1000).

calculate_consistent_state(model, time=0, y0_guess=None, inputs=None)
Calculate consistent state for the algebraic equations through root-finding

Parameters

• model (pybamm.BaseModel) – The model for which to calculate initial conditions.

• time (float) – The time at which to calculate the states

• y0_guess (np.array) – Guess for the rootfinding

• inputs (dict, optional) – Any input parameters to pass to the model when solving

Returns y0_consistent – Initial conditions that are consistent with the algebraic equations (roots
of the algebraic equations)

Return type array-like, same shape as y0_guess

get_termination_reason(solution, events)
Identify the cause for termination. In particular, if the solver terminated due to an event, (try to) pinpoint
which event was responsible. Note that the current approach (evaluating all the events and then finding
which one is smallest at the final timestep) is pretty crude, but is the easiest one that works for all the
different solvers.

Parameters

• solution (pybamm.Solution) – The solution object

• events (dict) – Dictionary of events

set_inputs(model, ext_and_inputs)
Set values that are controlled externally, such as external variables and input parameters

Parameters ext_and_inputs (dict) – Any external variables or input parameters to pass
to the model when solving

set_up(model, inputs=None)
Unpack model, perform checks, simplify and calculate jacobian.

Parameters

• model (pybamm.BaseModel) – The model whose solution to calculate. Must have
attributes rhs and initial_conditions

• inputs (dict, optional) – Any input parameters to pass to the model when solving

solve(model, t_eval, external_variables=None, inputs=None)
Execute the solver setup and calculate the solution of the model at specified times.

Parameters

98 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.0

• model (pybamm.BaseModel) – The model whose solution to calculate. Must have
attributes rhs and initial_conditions

• t_eval (numeric type) – The times at which to compute the solution

• external_variables (dict) – A dictionary of external variables and their corre-
sponding values at the current time

• inputs (dict, optional) – Any input parameters to pass to the model when solving

Raises pybamm.ModelError – If an empty model is passed (model.rhs = {} and
model.algebraic={})

step(old_solution, model, dt, npts=2, external_variables=None, inputs=None, save=True)
Step the solution of the model forward by a given time increment. The first time this method is called it
executes the necessary setup by calling self.set_up(model).

Parameters

• old_solution (pybamm.Solution or None) – The previous solution to be added
to. If None, a new solution is created.

• model (pybamm.BaseModel) – The model whose solution to calculate. Must have
attributes rhs and initial_conditions

• dt (numeric type) – The timestep over which to step the solution

• npts (int, optional) – The number of points at which the solution will be returned
during the step dt. default is 2 (returns the solution at t0 and t0 + dt).

• external_variables (dict) – A dictionary of external variables and their corre-
sponding values at the current time

• inputs (dict, optional) – Any input parameters to pass to the model when solving

• save (bool) – Turn on to store the solution of all previous timesteps

Raises pybamm.ModelError – If an empty model is passed (model.rhs = {} and
model.algebraic={})

1.7.3 Scipy Solver

class pybamm.ScipySolver(method=’BDF’, rtol=1e-06, atol=1e-06)
Solve a discretised model, using scipy._integrate.solve_ivp.

Parameters

• method (str, optional) – The method to use in solve_ivp (default is “BDF”)

• rtol (float, optional) – The relative tolerance for the solver (default is 1e-6).

• atol (float, optional) – The absolute tolerance for the solver (default is 1e-6).

1.7.4 Scikits.odes Solvers

class pybamm.ScikitsOdeSolver(method=’cvode’, rtol=1e-06, atol=1e-06, linsolver=’dense’)
Solve a discretised model, using scikits.odes.

Parameters

• method (str, optional) – The method to use in solve_ivp (default is “BDF”)

• rtol (float, optional) – The relative tolerance for the solver (default is 1e-6).

1.7. Solvers 99

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

PyBaMM Documentation, Release 0.2.0

• atol (float, optional) – The absolute tolerance for the solver (default is 1e-6).

• linsolver (str, optional) – Can be ‘dense’ (= default), ‘lapackdense’, ‘spgmr’,
‘spbcgs’, ‘sptfqmr’

class pybamm.ScikitsDaeSolver(method=’ida’, rtol=1e-06, atol=1e-06, root_method=’casadi’,
root_tol=1e-06, max_steps=1000)

Solve a discretised model, using scikits.odes.

Parameters

• method (str, optional) – The method to use in solve_ivp (default is “BDF”)

• rtol (float, optional) – The relative tolerance for the solver (default is 1e-6).

• atol (float, optional) – The absolute tolerance for the solver (default is 1e-6).

• root_method (str, optional) – The method to use to find initial conditions (default
is “lm”)

• root_tol (float, optional) – The tolerance for the initial-condition solver (default
is 1e-6).

• max_steps (int, optional) – The maximum number of steps the solver will take
before terminating (default is 1000).

1.7.5 Casadi Solver

class pybamm.CasadiSolver(mode=’safe’, rtol=1e-06, atol=1e-06, root_method=’casadi’,
root_tol=1e-06, max_step_decrease_count=5, **extra_options)

Solve a discretised model, using CasADi.

Extends: pybamm.BaseSolver

Parameters

• method (str, optional) – The method to use for solving the system (‘cvodes’, for
ODEs, or ‘idas’, for DAEs). Default is ‘idas’.

• mode (str) – How to solve the model (default is “safe”):

– ”fast”: perform direct integration, without accounting for events. Recommended when
simulating a drive cycle or other simulation where no events should be triggered.

– ”safe”: perform step-and-check integration, checking whether events have been triggered.
Recommended for simulations of a full charge or discharge.

• rtol (float, optional) – The relative tolerance for the solver (default is 1e-6).

• atol (float, optional) – The absolute tolerance for the solver (default is 1e-6).

• root_method (str, optional) – The method to use for finding consistend initial
conditions. Default is ‘lm’.

• root_tol (float, optional) – The tolerance for root-finding. Default is 1e-6.

• max_step_decrease_counts (float, optional) – The maximum number of
times step size can be decreased before an error is raised. Default is 5.

• extra_options (keyword arguments, optional) – Any extra keyword-
arguments; these are passed directly to the CasADi integrator. Please consult CasADi doc-
umentation for details.

100 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://tinyurl.com/y5rk76os
https://tinyurl.com/y5rk76os

PyBaMM Documentation, Release 0.2.0

1.7.6 Solution

class pybamm._BaseSolution(t, y, t_event=None, y_event=None, termination=’final time’,
copy_this=None)

(Semi-private) class containing the solution of, and various attributes associated with, a PyBaMM model. This
class is automatically created by the Solution class, and should never be called from outside the Solution class.

Parameters

• t (numpy.array, size (n,)) – A one-dimensional array containing the times at which the
solution is evaluated

• y (numpy.array, size (m, n)) – A two-dimensional array containing the values of the
solution. y[i, :] is the vector of solutions at time t[i].

• t_event (numpy.array, size (1,)) – A zero-dimensional array containing the time at
which the event happens.

• y_event (numpy.array, size (m,)) – A one-dimensional array containing the value of
the solution at the time when the event happens.

• termination (str) – String to indicate why the solution terminated

• copy_this (pybamm.Solution, optional) – A solution to copy, if provided. Default
is None.

inputs
Values of the inputs

model
Model used for solution

save(filename)
Save the whole solution using pickle

save_data(filename, variables=None, to_format=’pickle’)
Save solution data only (raw arrays)

Parameters

• filename (str) – The name of the file to save data to

• variables (list, optional) – List of variables to save. If None, saves all of the
variables that have been created so far

• to_format (str, optional) – The format to save to. Options are:

– ’pickle’ (default): creates a pickle file with the data dictionary

– ’matlab’: creates a .mat file, for loading in matlab

– ’csv’: creates a csv file (1D variables only)

t
Times at which the solution is evaluated

t_event
Time at which the event happens

termination
Reason for termination

update(variables)
Add ProcessedVariables to the dictionary of variables in the solution

1.7. Solvers 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

y
Values of the solution

y_event
Value of the solution at the time of the event

class pybamm.Solution(t, y, t_event=None, y_event=None, termination=’final time’)
Class extending the base solution, with additional functionality for concatenating different solutions together

Extends: _BaseSolution

append(solution, start_index=1, create_sub_solutions=False)
Appends solution.t and solution.y onto self.t and self.y.

Note: by default this process removes the initial time and state of solution to avoid duplicate times and
states being stored (self.t[-1] is equal to solution.t[0], and self.y[:, -1] is equal to solution.y[:, 0]). Set the
optional argument start_index to override this behavior

sub_solutions
List of sub solutions that have been concatenated to form the full solution

1.8 Experiments

Classes to help set operating conditions for some standard battery modelling experiments

1.8.1 Base Experiment Class

class pybamm.Experiment(operating_conditions, parameters=None, period=’1 minute’)
Base class for experimental conditions under which to run the model. In general, a list of operating conditions
should be passed in. Each operating condition should be of the form “Do this for this long” or “Do this until
this happens”. For example, “Charge at 1 C for 1 hour”, or “Charge at 1 C until 4.2 V”, or “Charge at 1 C for 1
hour or until 4.2 V”. The instructions can be of the form “(Dis)charge at x A/C/W”, “Rest”, or “Hold at x V”.
The running time should be a time in seconds, minutes or hours, e.g. “10 seconds”, “3 minutes” or “1 hour”.
The stopping conditions should be a circuit state, e.g. “1 A”, “C/50” or “3 V”.

Parameters

• operating_conditions (list) – List of operating conditions

• parameters (dict) – Dictionary of parameters to use for this experiment, replacing
default parameters as appropriate

• period (string, optional) – Period (1/frequency) at which to record outputs. De-
fault is 1 minute. Can be overwritten by individual operating conditions.

convert_electric(electric)
Convert electrical instructions to consistent output

convert_time_to_seconds(time_and_units)
Convert a time in seconds, minutes or hours to a time in seconds

read_operating_conditions(operating_conditions)
Convert operating conditions to the appropriate format

Parameters operating_conditions (list) – List of operating conditions

Returns operating_conditions – Operating conditions in the tuple format

Return type list

102 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 0.2.0

read_string(cond)
Convert a string to a tuple of the right format

Parameters cond (str) – String of appropriate form for example “Charge at x C for y hours”.
x and y must be numbers, ‘C’ denotes the unit of the external circuit (can be A for current,
C for C-rate, V for voltage or W for power), and ‘hours’ denotes the unit of time (can be
second(s), minute(s) or hour(s))

1.9 Post-Process Variables

class pybamm.ProcessedVariable(base_variable, solution, known_evals=None)
An object that can be evaluated at arbitrary (scalars or vectors) t and x, and returns the (interpolated) value of
the base variable at that t and x.

Parameters

• base_variable (pybamm.Symbol) – A base variable with a method evaluate(t,y) that
returns the value of that variable. Note that this can be any kind of node in the expression
tree, not just a pybamm.Variable. When evaluated, returns an array of size (m,n)

• solution (pybamm.Solution) – The solution object to be used to create the processed
variables

• interp_kind (str) – The method to use for interpolation

• known_evals (dict) – Dictionary of known evaluations, to be used to speed up finding
the solution

call_2D(t, x, r, z)
Evaluate a 2D variable

call_3D(t, x, r, y, z)
Evaluate a 3D variable

data
Same as entries, but different name

initialise_3D()
Initialise a 3D object that depends on x and r, or x and z.

1.10 Utility functions

pybamm.get_infinite_nested_dict()
Return a dictionary that allows infinite nesting without having to define level by level.

See: https://stackoverflow.com/questions/651794/whats-the-best-way-to-initialize-a-dict-of-dicts-in-python/
652226#652226

Example

>>> import pybamm
>>> d = pybamm.get_infinite_nested_dict()
>>> d["a"] = 1
>>> d["a"]
1

(continues on next page)

1.9. Post-Process Variables 103

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://stackoverflow.com/questions/651794/whats-the-best-way-to-initialize-a-dict-of-dicts-in-python/652226#652226
https://stackoverflow.com/questions/651794/whats-the-best-way-to-initialize-a-dict-of-dicts-in-python/652226#652226

PyBaMM Documentation, Release 0.2.0

(continued from previous page)

>>> d["b"]["c"]["d"] = 2
>>> d["b"]["c"] == {"d": 2}
True

pybamm.load_function(filename)
Load a python function from a file “function_name.py” called “function_name”. The filename might either be
an absolute path, in which case that specific file will be used, or the file will be searched for relative to PyBaMM
root.

Parameters filename (str) – The name of the file containing the function of the same name.

Returns The python function loaded from the file.

Return type function

pybamm.rmse(x, y)
Calculate the root-mean-square-error between two vectors x and y, ignoring NaNs

pybamm.root_dir()
return the root directory of the PyBaMM install directory

class pybamm.Timer
Provides accurate timing.

Example

timer = pybamm.Timer() print(timer.format(timer.time()))

format(time=None)
Formats a (non-integer) number of seconds, returns a string like “5 weeks, 3 days, 1 hour, 4 minutes, 9
seconds”, or “0.0019 seconds”.

Parameters time (float, optional) – The time to be formatted.

Returns The string representation of time in human-readable form.

Return type string

reset()
Resets this timer’s start time.

time()
Returns the time (float, in seconds) since this timer was created, or since meth:reset() was last called.

1.11 Simulation

class pybamm.Simulation(model, experiment=None, geometry=None, parameter_values=None, sub-
mesh_types=None, var_pts=None, spatial_methods=None, solver=None,
quick_plot_vars=None, C_rate=None)

A Simulation class for easy building and running of PyBaMM simulations.

Parameters

• model (pybamm.BaseModel) – The model to be simulated

• experiment (: class:pybamm.Experiment (optional)) – The experimental conditions un-
der which to solve the model

104 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

PyBaMM Documentation, Release 0.2.0

• geometry (pybamm.Geometry (optional)) – The geometry upon which to solve the
model

• parameter_values (dict (optional)) – A dictionary of parameters and their cor-
responding numerical values

• submesh_types (dict (optional)) – A dictionary of the types of submesh to use
on each subdomain

• var_pts (dict (optional)) – A dictionary of the number of points used by each
spatial variable

• spatial_methods (dict (optional)) – A dictionary of the types of spatial method
to use on each domain (e.g. pybamm.FiniteVolume)

• solver (pybamm.BaseSolver (optional)) – The solver to use to solve the model.

• quick_plot_vars (list (optional)) – A list of variables to plot automatically

• C_rate (float (optional)) – The C_rate at which you would like to run a constant
current experiment at.

build(check_model=True)
A method to build the model into a system of matrices and vectors suitable for performing numerical
computations. If the model has already been built or solved then this function will have no effect. If you
want to rebuild, first use “reset()”. This method will automatically set the parameters if they have not
already been set.

Parameters check_model (bool, optional) – If True, model checks are performed after
discretisation (see pybamm.Discretisation.process_model()). Default is True.

get_variable_array(*variables)
A helper function to easily obtain a dictionary of arrays of values for a list of variables at the latest timestep.

Parameters variable (str) – The name of the variable/variables you wish to obtain the
arrays for.

Returns variable_arrays – A dictionary of the variable names and their corresponding arrays.

Return type dict

plot(quick_plot_vars=None, testing=False)
A method to quickly plot the outputs of the simulation.

Parameters

• quick_plot_vars (list, optional) – A list of the variables to plot.

• bool, optional (testing,) – If False the plot will not be displayed

reset(update_model=True)
A method to reset a simulation back to its unprocessed state.

save(filename)
Save simulation using pickle

set_defaults()
A method to set all the simulation specs to default values for the supplied model.

set_parameters()
A method to set the parameters in the model and the associated geometry. If the model has already been
built or solved then this will first reset to the unprocessed state and then set the parameter values.

1.11. Simulation 105

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 0.2.0

set_up_experiment(model, experiment)
Set up a simulation to run with an experiment. This creates a dictionary of inputs (current/voltage/power,
running time, stopping condition) for each operating condition in the experiment. The model will then be
solved by integrating the model successively with each group of inputs, one group at a time.

solve(t_eval=None, solver=None, external_variables=None, inputs=None, check_model=True)
A method to solve the model. This method will automatically build and set the model parameters if not
already done so.

Parameters

• t_eval (numeric type, optional) – The times at which to compute the solution.
If None and the parameter “Current function [A]” is not read from data the model will be
solved for a full discharge (1 hour / C_rate). If None and the parameter “Current function
[A]” is read from data the model will be solved at the times provided in the data.

• solver (pybamm.BaseSolver) – The solver to use to solve the model.

• external_variables (dict) – A dictionary of external variables and their corre-
sponding values at the current time. The variables must correspond to the variables that
would normally be found by solving the submodels that have been made external.

• inputs (dict, optional) – Any input parameters to pass to the model when solving

• check_model (bool, optional) – If True, model checks are performed after dis-
cretisation (see pybamm.Discretisation.process_model()). Default is True.

specs(model_options=None, geometry=None, parameter_values=None, submesh_types=None,
var_pts=None, spatial_methods=None, solver=None, quick_plot_vars=None, C_rate=None)

A method to set the various specs of the simulation. This method automatically resets the model after the
new specs have been set.

Parameters

• model_options (dict, optional) – A dictionary of options to tweak the model
you are using

• geometry (pybamm.Geometry , optional) – The geometry upon which to solve the
model

• parameter_values (dict, optional) – A dictionary of parameters and their cor-
responding numerical values

• submesh_types (dict, optional) – A dictionary of the types of submesh to use
on each subdomain

• var_pts (dict, optional) – A dictionary of the number of points used by each
spatial variable

• spatial_methods (dict, optional) – A dictionary of the types of spatial
method to use on each domain (e.g. pybamm.FiniteVolume)

• solver (pybamm.BaseSolver (optional)) – The solver to use to solve the model.

• quick_plot_vars (list (optional)) – A list of variables to plot automatically

• C_rate (float (optional)) – The C_rate at which you would like to run a constant
current experiment at.

step(dt, solver=None, npts=2, external_variables=None, inputs=None, save=True)
A method to step the model forward one timestep. This method will automatically build and set the model
parameters if not already done so.

Parameters

106 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

PyBaMM Documentation, Release 0.2.0

• dt (numeric type) – The timestep over which to step the solution

• solver (pybamm.BaseSolver) – The solver to use to solve the model.

• npts (int, optional) – The number of points at which the solution will be returned
during the step dt. default is 2 (returns the solution at t0 and t0 + dt).

• external_variables (dict) – A dictionary of external variables and their corre-
sponding values at the current time. The variables must correspond to the variables that
would normally be found by solving the submodels that have been made external.

• inputs (dict, optional) – Any input parameters to pass to the model when solving

• save (bool) – Turn on to store the solution of all previous timesteps

1.12 Citations

class pybamm.Citations
Entry point to citations management. This object may be used to record Bibtex citation information and then
register that a particular citation is relevant for a particular simulation. For a list of all possible citations, see
pybamm/CITATIONS.txt

Examples

>>> import pybamm
>>> pybamm.citations.register("sulzer2020python")
>>> pybamm.print_citations("citations.txt")

print(filename=None)
Print all citations that were used for running simulations.

Parameters filename (str, optional) – Filename to which to print citations. If None,
citations are printed to the terminal.

read_citations()
Read the citations text file

register(key)
Register a paper to be cited. The intended use is that register() should be called only when the
referenced functionality is actually being used.

Parameters key (str) – The key for the paper to be cited

pybamm.print_citations(filename=None)
See Citations.print()

1.13 Parameters command line interface

PyBaMM comes with a small command line interface that can be used to manage parameter sets. By default, Py-
BaMM provides parameters in the “input” directory located in the pybamm package directory. If you wish to add
new parameters, you can first pull a given parameter directory into the current working directory using the com-
mand pybamm_edit_parameter for manual editing. By default, PyBaMM first looks for parameter defined in
the current working directory before falling back the package directory if nothing is found locally. If you wish to
access a newly defined parameter set from anywhere in your system, you can use pybamm_add_parameter to

1.12. Citations 107

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.0

copy a given parameter directory to the package directory. To get a list of currently available parameter sets, use
pybamm_list_parameters.

pybamm.parameters_cli.add_parameter(arguments=None)
Add a parameter directory to package input directory. This allows the parameters to be used from anywhere in
the system.

Example: “add_parameter foo lithium-ion anodes” will copy directory foo in
“pybamm/input/parameters/lithium-ion/anodes”.

pybamm.parameters_cli.edit_parameter(arguments=None)
Copy a given parameter package directory to the current working directory for editing. The copy preserves the
directory structure within the “input” directory, i.e

edit_param(["graphite_Kim2011","lithium-ion","anodes"])

will create the directory structure “input/parameters/lithium-ion/anodes/graphite_Kim2011” in the current work-
ing directory.

pybamm.parameters_cli.list_parameters(arguments=None)
Output a list of available parameter sets for a given chemistry and component. The list is divided into package
parameter serts and local parameter sets, located in the current working directory.

>>> from pybamm.parameters_cli import list_parameters
>>> list_parameters(["lithium-ion", "anodes"])
Available package parameters:

* graphite_Chen2020

* graphite_mcmb2528_Marquis2019

* graphite_Kim2011
Available local parameters:

108 Chapter 1. Contents

CHAPTER 2

Examples

Detailed examples can be viewed on the GitHub examples page, and run locally using jupyter notebook, or
online through Binder.

109

https://github.com/pybamm-team/PyBaMM/tree/master/examples/notebooks
https://mybinder.org/v2/gh/pybamm-team/PyBaMM/master?filepath=examples%2Fnotebooks

PyBaMM Documentation, Release 0.2.0

110 Chapter 2. Examples

CHAPTER 3

Contributing

There are many ways to contribute to PyBaMM:

3.1 Adding Parameter Values

As with any contribution to PyBaMM, please follow the workflow in CONTRIBUTING.md. In particular, start by
creating an issue to discuss what you want to do - this is a good way to avoid wasted coding hours!

3.1.1 The role of parameter values

All models in PyBaMM are implemented as expression trees. At the stage of creating a model, we use pybamm.
Parameter and pybamm.FunctionParameter objects to represent parameters and functions respectively.

We then create a ParameterValues class, using a specific set of parameters, to iterate through the model and
replace any pybamm.Parameter objects with a pybamm.Scalar and any pybamm.FunctionParameter
objects with a pybamm.Function.

For an example of how the parameter values work, see the parameter values notebook.

3.1.2 Adding a set of parameters values

Parameter sets are split by material into anodes, separators, cathodes, electrolytes, cells (for cell
geometries and thermal properties) and experiments (for initial conditions and charge/discharge rates). To add
a new parameter set in one of these subcategories, first create a new folder in the appropriate chemistry folder: for
example, to add a new anode chemistry for lithium-ion, add a subfolder input/parameters/lithium-ion/
anodes/new_anode_chemistry_AuthorYear. This subfolder should then contain:

• a csv file parameters.csv with all the relevant scalar parameters. The expected structure of the csv file is:

Name [Units] Value Reference Notes
Example [m] 13 AuthorYear an example

111

https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression-tree.ipynb
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/parameter-values.ipynb

PyBaMM Documentation, Release 0.2.0

Empty lines, and lines starting with #, will be ignored.

• a README.md file with information on where these parameters came from

• python files for any functions, which should be referenced from the parameters.csv file (see Adding a
Function below)

• csv files for any data to be interpolated, which should be referenced from the parameters.csv file (see
Adding data for interpolation below)

The easiest way to start is to copy an existing file (e.g. ``input/parameters/lithium-ion/anodes/
graphite_mcmb2528_Marquis2019) and replace all entries in all files as appropriate

3.1.3 Adding a function

Functions should be added as Python functions under a file with the same name in the appropriate chemistry
folder in input/parameters/. These Python functions should be documented with references explaining where
they were obtained. For example, we would put the following Python function in a file input/parameters/
lithium_ion/anodes/new_anode_chemistry_AuthorYear/diffusivity_AuthorYear.py

def diffusivity_AuthorYear(c_e):
"""
Dimensional Fickian diffusivity in the electrolyte [m2.s-1], from [1]_, as a
function of the electrolyte concentration c_e [mol.m-3].

References

.. [1] J Bloggs, AN Other. A set of parameters. A Chemistry Journal,

123(4):567-573, 2019.

"""
return (1.75 + 260e-6 * c_e) * 1e-9

Then, these functions should be added to the parameter file from which they will be called (must be in the same folder),
with the tag [function], for example:

Name [Units] Value Reference Notes
Example [m2.s-1] [function]diffusivity_AuthorYear AuthorYear a function

3.1.4 Adding data for interpolation

Data should be added as as csv file in the appropriate chemistry folder in input/parameters/. For
example, we would put the following data in a file input/parameters/lithium_ion/anodes/
new_anode_chemistry_AuthorYear/diffusivity_AuthorYear.csv

concentration [mol/m3] Diffusivity [m2/s]
0.000000000000000000e+00
2.040816326530612082e-
02 4.081632653061224164e-
02 6.122448979591836593e-
02 8.163265306122448328e-
02 1.020408163265306006e-
01 1.224489795918367319e-01
1.428571428571428492e-01

4.714135898019971016e+00
4.708899441575220557e+00
4.702448345762175741e+00
4.694558534379876136e+00
4.684994372928071193e+00
4.673523893805322516e+00
4.659941254449398329e+00
4.644096031712390271e+00

112 Chapter 3. Contributing

PyBaMM Documentation, Release 0.2.0

Empty lines, and lines starting with #, will be ignored.

Then, this data should be added to the parameter file from which it will be called (must be in the same folder), with
the tag [data], for example:

Name [Units] Value Reference Notes
Example [m2.s-1] [data]diffusivity_AuthorYear AuthorYear some data

3.1.5 Using new parameters

If you have added a whole new set of parameters, then you can create a new parameter set in pybamm/parameters/
parameter_sets.py, by just adding a new dictionary to that file, for example

AuthorYear = {
"chemistry": "lithium-ion",
"cell": "new_cell_AuthorYear",
"anode": "new_anode_AuthorYear",
"separator": "new_separator_AuthorYear",
"cathode": "new_cathode_AuthorYear",
"electrolyte": "new_electrolyte_AuthorYear",
"experiment": "new_experiment_AuthorYear",

}

Then, to use these new parameters, use:

param = pybamm.ParameterValues(chemistry=pybamm.parameter_sets.AuthorYear)

Note that you can re-use existing parameter subsets instead of creating new ones (for example, you could just replace
“experiment”: “new_experiment_AuthorYear” with “experiment”: “1C_discharge_from_full_Marquis2019” in the
above dictionary).

It’s also possible to add parameters for a single material (e.g. anode) and then re-use existing parameters for the other
materials, without adding a parameter set to pybamm/parameters/parameter_sets.py.

param = pybamm.ParameterValues(
chemistry={

"chemistry": "lithium-ion",
"cell": "kokam_Marquis2019",
"anode": "new_anode_chemistry_AuthorYear",
"separator": "separator_Marquis2019",
"cathode": "lico2_Marquis2019",
"electrolyte": "lipf6_Marquis2019",
"experiment": "1C_discharge_from_full_Marquis2019",

}
)

or, equivalently in this case (since the only difference from the standard parameters from Marquis et al. is the set of
anode parameters),

param = pybamm.ParameterValues(
chemistry={

**pybamm.parameter_sets.Marquis2019,
"anode": "new_anode_chemistry_AuthorYear",

}
)

See the “Getting Started” tutorial for examples of setting parameters in action.

3.1. Adding Parameter Values 113

https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/Getting%20Started/Tutorial%202%20-%20Setting%20Parameter%20Values.ipynb

PyBaMM Documentation, Release 0.2.0

3.1.6 Unit tests for the new class

You might want to add some unit tests to show that the parameters combine as expected (see e.g. lithium-ion parameter
tests), but this is not crucial.

3.1.7 Test on the models

In theory, any existing model can now be solved using the new parameters instead of their default parameters, with no
extra work from here. To test this, add something like the following test to one of the model test files (e.g. DFN):

def test_my_new_parameters(self):
model = pybamm.lithium_ion.DFN()
parameter_values = pybamm.ParameterValues(chemistry=pybamm.parameter_sets.

→˓AuthorYear)
modeltest = tests.StandardModelTest(model, parameter_values=parameter_values)
modeltest.test_all()

This will check that the model can run with the new parameters (but not that it gives a sensible answer!).

Once you have performed the above checks, you are almost ready to merge your code into the core PyBaMM - see
CONTRIBUTING.md workflow for how to do this.

3.2 Adding a Model

As with any contribution to PyBaMM, please follow the workflow in CONTRIBUTING.md. In particular, start by
creating an issue to discuss what you want to do - this is a good way to avoid wasted coding hours!

We aim here to provide an overview of how a new model is entered into PyBaMM in a form which can be eventually
merged into the master branch of the PyBaMM project. However, we recommend that you first read through the
notebook: create a model, which goes step-by-step through the procedure for creating a model. Once you understand
that procedure, you can then formalise your model following the outline provided here.

3.2.1 The role of models

One of the main motivations for PyBaMM is to allow for new models of batteries to be easily be added, solved, tested,
and compared without requiring a detailed knowledge of sophisticated numerical methods. It has therefore been our
focus to make the process of adding a new model as simple as possible. To achieve this, all models in PyBaMM are
implemented as expression trees, which abstract away the details of computation.

The fundamental building blocks of a PyBaMM expression tree are pybamm.Symbol. There are different
types of pybamm.Symbol: pybamm.Variable, pybamm.Parameter, pybamm.Addition, pybamm.
Multiplication, pybamm.Gradient etc which have been created so that each component of a model written
out in PyBaMM mirrors exactly the written mathematics. For example, the expression:

∇ · (𝐷(𝑐)∇𝑐) + 𝑎𝐹𝑗

is simply written as

div(D(c) * grad(c)) + a * F * j

within PyBaMM. A model in PyBaMM is essentially an organised collection of expression trees.

114 Chapter 3. Contributing

https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_parameters/test_dimensionless_parameter_values_lithium_ion.py
https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_parameters/test_dimensionless_parameter_values_lithium_ion.py
https://github.com/pybamm-team/PyBaMM/blob/master/tests/integration/test_models/test_full_battery_models/test_lithium_ion/test_dfn.py
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md#c-merging-your-changes-with-pybamm
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/create-model.ipynb
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression-tree.ipynb

PyBaMM Documentation, Release 0.2.0

3.2.2 Implementing a new model

To add a new model (e.g. My New Model), first create a new file (my_new_model.py) in pybamm/models (or
the relevant subdirectory). In this file create a new class which inherits from pybamm.BaseModel (or pybamm.
LithiumIonBaseModel if you are modelling a full lithium-ion battery or pybamm.LeadAcidBaseModel if
you are modelling a full lead acid battery):

class MyNewModel(pybamm.BaseModel):
def

and add the class to pybamm/__init__.py:

from .models.my_new_model import MyNewModel

(this line will be slightly different if you created your model in a subdirectory of models). Within your new class
MyNewModel, first create an initialisation function which calls the initialisation function of the parent class

def __init__(self):
super().__init__()

Within the initialisation function of MyNewModel you must then define the following attributes:

• self.rhs

• self.algebraic

• self.boundary_conditions

• self.initial_conditions

• self.variables

You may also optionally also provide:

• self.events

• self.default_geometry

• self.default_solver

• self.default_spatial_methods

• self.default_submesh_types

• self.default_var_pts

• self.default_parameter_values

We will go through each of these attributes in turn here for completeness but refer the user to the API documentation
or example notebooks (create-model.ipnb) if further details are required.

Governing equations

The governing equations which can either be parabolic or elliptic are entered into the self.rhs and self.
algebraic dictionaries, respectively. We associate each governing equation with a subject variable, which is the
variable that is found when the equation is solved. We use this subject variable as the key of the dictionary. For
parabolic equations, we rearrange the equation so that the time derivative of the subject variable is the only term on the
left hand side of the equation. We then simply write the resulting right hand side into the self.rhs dictionary with
the subject variable as the key. For elliptic equations, we rearrange so that the left hand side of the equation if zero
and then write the right hand side into the self.algebraic dictionary in the same way. The resulting dictionary
should look like:

3.2. Adding a Model 115

PyBaMM Documentation, Release 0.2.0

self.rhs = {parabolic_var1: parabolic_rhs1, parabolic_var2: parabolic_rhs2, ...}
self.algebraic = {elliptic_var1: elliptic_rhs1, elliptic_var2: elliptic_rhs2, ...}

Boundary conditions

Boundary conditions on a variable can either be Dirichlet or Neumann (support for mixed boundary conditions will
be added at a later date). For a variable 𝑐 on a one dimensional domain with a Dirichlet condition of 𝑐 = 1 on the left
boundary and a Neumann condition of ∇𝑐 = 2 on the right boundary, we then have:

self.boundary_conditions = {c: {"left": (1, "Dirichlet"), "right": (2, "Neumann")}}

Initial conditions

For a variable 𝑐 that is initially at a value of 𝑐 = 1, the initial condition is included written into the model as

self.initial_conditions = {c: 1}

Output variables

PyBaMM allows users to create combinations of symbols to output from their model. For example, we might wish to
output the terminal voltage which is given by 𝑉 = 𝜑𝑠,𝑝|𝑥=1 − 𝜑𝑠,𝑛|𝑥=0. We would first define the voltage symbol 𝑉
and then include it into the output variables dictionary in the form:

self.variables = {"Terminal voltage [V]": V}

Note that we indicate that the quanitity is dimensional by including the dimensions, Volts in square brackets. We do
this to distinguish between dimensional and dimensionless outputs which may otherwise share the same name.

Note that if your model inherits from pybamm.StandardBatteryBaseModel, then there is a standard set of
output parameters which is enforced to ensure consistency across models so that they can be easily tested and com-
pared.

Events

Events can be added to stop computation when the event occurs. For example, we may wish to terminate our compu-
tation when the terminal voltage 𝑉 reaches some minimum voltage during a discharge 𝑉𝑚𝑖𝑛. We do this by adding
the following to the events dictionary:

self.events["Minimum voltage cut-off"] = V - V_min

Events will stop the solver whenever they return 0.

Setting defaults

It can be useful for testing, and quickly running a model to have a default setup. Each of the defaults listed
above should adhere to the API requirements but in short, we require self.default_geometry to be an in-
stance of pybamm.Geometry , self.default_solver to be an instance of pybamm.BaseSolver, and
self.default_parameter_values to be an instance of pybamm.ParameterValues. We also require
that self.default_submesh_types is a dictionary with keys which are strings corresponding to the re-
gions of the battery (e.g. “negative electrode”) and values which are an instance of pybamm.SubMesh1D.

116 Chapter 3. Contributing

PyBaMM Documentation, Release 0.2.0

The self.default_spatial_methods attribute is also required to be a dictionary with keys correspond-
ing to the regions of the battery but with values which are an instance of pybamm.SpatialMethod. Fi-
nally, self.default_var_pts is required to be a dictionary with keys which are an instance of pybamm.
SpatialVariable and values which are integers.

Using submodels

The inbuilt models in PyBaMM do not add all the model attributes within their own file. Instead, they make use of
inbuilt submodel (a particle model, an electrolyte model, etc). There are two main reasons for this. First, the code in
the submodels can then be used by multiple models cutting down on repeated code. This makes it easier to maintain the
codebase because fixing an issue in a submodel fixes that issue everywhere the submodel is called (instead of having
to track down the issue in every model). Secondly, it allows for the user to easily switch a submodel out for another
and study the effect. For example, we may be using standard diffusion in the particles but decide that we would like
to switch in particles which are phase separating. With submodels all we need to do is switch the submodel instead of
re-writing the whole sections of the model. Submodel contributions are highly encouraged so where possible, try to
divide your model into submodels.

In addition to calling submodels, common sets of variables and parameters found in lithium-ion and lead acid batter-
ies are provided in standard_variables.py, standard_parameters_lithium_ion.py, standard_parameters_lead_acid.py,
electrical_parameters.py, geometric_parameters.py, and standard_spatial_vars.py which we encourage use of to save
redefining the same parameters and variables in every model and submodel.

3.2.3 Unit tests for a MyNewModel

We strongly recommend testing your model to ensure that it is behaving correctly. To do this, first create a new file
test_my_new_model.py within tests/integration/test_models (or the appropriate subdirectory).
Within this file, add the following code

import pybamm
import unittest

class TestMyNewModel(unittest.TestCase):
def my_first_test(self):

add test here

if __name__ == "__main__":
print("Add -v for more debug output")
import sys

if "-v" in sys.argv:
debug = True

unittest.main()

We can now add functions such as my_first_test() to TestMyNewModel which run specific tests. As a first
test, we recommend you make use of tests.StandardModelTest which runs a suite of basic tests. If your
new model is a full model of a battery and therefore inherits from pybamm.StandardBatteryBaseModel then
tests.StandardBatteryTest will also check the set of outputs are producing reasonable behaviour.

Please see the tests of the inbuilt models to get a further idea of how to test the your model.

3.2. Adding a Model 117

PyBaMM Documentation, Release 0.2.0

3.3 Adding a Spatial Method

As with any contribution to PyBaMM, please follow the workflow in CONTRIBUTING.md. In particular, start by
creating an issue to discuss what you want to do - this is a good way to avoid wasted coding hours!

3.3.1 The role of spatial methods

All models in PyBaMM are implemented as expression trees. After it has been created and parameters have been
set, the model is passed to the pybamm.Discretisation class, which converts it into a linear algebra form. For
example, the object:

grad(u)

might get converted to a Matrix-Vector multiplication:

Matrix(100,100) @ y[0:100]

(in Python 3.5+, @ means matrix multiplication, while * is elementwise product). The pybamm.Discretisation
class is a wrapper that iterates through the different parts of the model, performing the trivial conversions (e.g. Addition
–> Addition), and calls upon spatial methods to perform the harder conversions (e.g. grad(u) –> Matrix * StateVector,
SpatialVariable –> Vector, etc).

Hence SpatialMethod classes only need to worry about the specific conversions, and pybamm.Discretisation
deals with the rest.

3.3.2 Implementing a new spatial method

To add a new spatial method (e.g. My Fast Method), first create a new file (my_fast_method.py) in pybamm/
spatial_methods/, with a single class that inherits from pybamm.SpatialMethod, such as:

class MyFastMethod(pybamm.SpatialMethod):

and add the class to pybamm/__init__.py:

from .spatial_methods.my_fast_method import MyFastMethod

You can then start implementing the spatial method by adding functions to the class. In particular, any spatial method
must have the following functions (from the base class pybamm.SpatialMethod):

• pybamm.SpatialMethod.gradient()

• pybamm.SpatialMethod.divergence()

• pybamm.SpatialMethod.integral()

• pybamm.SpatialMethod.indefinite integral()

• pybamm.SpatialMethod.boundary_value_or_flux()

Optionally, a new spatial method can also overwrite the default behaviour for the following functions:

• pybamm.SpatialMethod.spatial_variable()

• pybamm.SpatialMethod.broadcast()

• pybamm.SpatialMethod.mass_matrix()

• pybamm.SpatialMethod.process_binary_operators()

118 Chapter 3. Contributing

https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression-tree.ipynb

PyBaMM Documentation, Release 0.2.0

• pybamm.SpatialMethod.concatenation()

For an example of an existing spatial method implementation, see the Finite Volume API docs and notebook.

3.3.3 Unit tests for the new class

For the new spatial method to be added to PyBaMM, you must add unit tests to demonstrate that it behaves as
expected (see, for example, the Finite Volume unit tests). The best way to get started would be to create a file
test_my_fast_method.py in tests/unit/test_spatial_methods/ that performs at least the follow-
ing checks:

• Operations return objects that have the expected shape

• Standard operations behave as expected, e.g. (in 1D) grad(x^2) = 2*x, integral(sin(x), 0, pi) = 2

• (more advanced) make sure that the operations converge at the correct rate to known analytical solutions as you
decrease the grid size

3.3.4 Test on the models

In theory, any existing model can now be discretised using MyFastMethod instead of their default spatial methods,
with no extra work from here. To test this, add something like the following test to one of the model test files (e.g.
DFN):

def test_my_fast_method(self):
model = pybamm.lithium_ion.DFN()
spatial_methods = {

"macroscale": pybamm.MyFastMethod,
"negative particle": pybamm.MyFastMethod,
"positive particle": pybamm.MyFastMethod,

}
modeltest = tests.StandardModelTest(model, spatial_methods=spatial_methods)
modeltest.test_all()

This will check that the model can run with the new spatial method (but not that it gives a sensible answer!).

Once you have performed the above checks, you are almost ready to merge your code into the core PyBaMM - see
CONTRIBUTING.md workflow for how to do this.

3.4 Adding a Solver

As with any contribution to PyBaMM, please follow the workflow in CONTRIBUTING.md. In particular, start by
creating an issue to discuss what you want to do - this is a good way to avoid wasted coding hours!

3.4.1 The role of solvers

All models in PyBaMM are implemented as expression trees. After the model has been created, parameters have been
set, and the model has been discretised, the model is now a linear algebra object with the following attributes:

model.concatenated_rhs A pybamm.Symbol node that can be evaluated at a state (t, y) and returns the value of
all the differential equations at that state, concatenated into a single vector

model.concatenated_algebraic A pybamm.Symbol node that can be evaluated at a state (t, y) and returns the
value of all the algebraic equations at that state, concatenated into a single vector

3.4. Adding a Solver 119

https://pybamm.readthedocs.io/en/latest/source/spatial_methods/finite_volume.html
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/spatial_methods/finite-volumes.ipynb
https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_spatial_methods/test_finite_volume.py
https://github.com/pybamm-team/PyBaMM/blob/master/tests/integration/test_models/test_full_battery_models/test_lithium_ion/test_dfn.py
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md#c-merging-your-changes-with-pybamm
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression-tree.ipynb

PyBaMM Documentation, Release 0.2.0

model.concatenated_initial_conditions A numpy array of initial conditions for all the differential and algebraic
equations, concatenated into a single vector

model.events A dictionary of pybamm.Symbol nodes representing events at which the solver should terminate.
Specifically, the solver should terminate when any of the events in model.events.values() evaluate to
zero

The role of solvers is to solve a model at a given set of time points, returning a vector of times t and a matrix of states
y.

3.4.2 Base solver classes vs specific solver classes

There is one general base solver class, pybamm.BaseSolver, which sets up some useful solver properties such as
tolerances and implement a method self.solve() that solves a model at a given set of time points.

The solve method unpacks the model, simplifies it by removing extraneous operations, (optionally) creates or calls
the mass matrix and/or jacobian, and passes the appropriate attributes to another method, called integrate, which
does the time-stepping. The role of specific solver classes is simply to implement this integrate method for an
arbitrary set of derivative function, initial conditions etc.

The base solver class also computes a consistent set of initial conditions for the algebraic equations, using model.
concatenated_initial_conditions as an initial guess.

3.4.3 Implementing a new solver

To add a new solver (e.g. My Fast DAE Solver), first create a new file (my_fast_dae_solver.py) in pybamm/
solvers/, with a single class that inherits from pybamm.BaseSolver. For example:

def MyFastDaeSolver(pybamm.BaseSolver):

Also add the class to pybamm/__init__.py:

from .solvers.my_fast_dae_solver import MyFastDaeSolver

You can then start implementing the solver by adding the integrate function to the class.

For an example of an existing solver implementation, see the Scikits DAE solver API docs and notebook.

3.4.4 Unit tests for the new class

For the new solver to be added to PyBaMM, you must add unit tests to demonstrate that it behaves as expected (see, for
example, the Scikits solver tests). The best way to get started would be to create a file test_my_fast_solver.py
in tests/unit/test_solvers/ that performs at least the following checks:

• The integratemethod works on a simple ODE/DAE model with/without jacobian, mass matrix and/or events
as appropriate

• The solve method works on a simple model (in theory, if the integrate method works then the solve
method should always work)

If the solver is expected to converge in a certain way as the time step is changed, you could also add a convergence
test in tests/convergence/solvers/.

120 Chapter 3. Contributing

https://pybamm.readthedocs.io/en/latest/source/solvers/scikits_solvers.html
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/solvers/scikits-dae-solver.ipynb
https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_solvers/test_scikits_solvers.py

PyBaMM Documentation, Release 0.2.0

3.4.5 Test on the models

In theory, any existing model can now be solved using MyFastDaeSolver instead of their default solvers, with no extra
work from here. To test this, add something like the following test to one of the model test files (e.g. DFN):

def test_my_fast_solver(self):
model = pybamm.lithium_ion.DFN()
solver = pybamm.MyFastDaeSolver()
modeltest = tests.StandardModelTest(model, solver=solver)
modeltest.test_all()

This will check that the model can run with the new solver (but not that it gives a sensible answer!).

Once you have performed the above checks, you are almost ready to merge your code into the core PyBaMM - see
CONTRIBUTING.md workflow for how to do this.

Before contributing, please read the Contribution Guidelines.

3.4. Adding a Solver 121

https://github.com/pybamm-team/PyBaMM/blob/master/tests/integration/test_models/test_full_battery_models/test_lithium_ion/test_dfn.py
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md#c-merging-your-changes-with-pybamm
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md

PyBaMM Documentation, Release 0.2.0

122 Chapter 3. Contributing

Python Module Index

p
pybamm, 3
pybamm.parameters.electrical_parameters,

74
pybamm.parameters.geometric_parameters,

74
pybamm.parameters.parameter_sets, 75
pybamm.parameters.standard_parameters_lead_acid,

74
pybamm.parameters.standard_parameters_lithium_ion,

74
pybamm.parameters.thermal_parameters,

74

123

PyBaMM Documentation, Release 0.2.0

124 Python Module Index

Index

Symbols
_BaseSolution (class in pybamm), 101
__abs__() (pybamm.Symbol method), 3
__add__() (pybamm.Symbol method), 3
__ge__() (pybamm.Symbol method), 3
__getitem__() (pybamm.Symbol method), 3
__gt__() (pybamm.Symbol method), 3
__init__() (pybamm.Symbol method), 4
__le__() (pybamm.Symbol method), 4
__lt__() (pybamm.Symbol method), 4
__matmul__() (pybamm.Symbol method), 4
__mul__() (pybamm.Symbol method), 4
__neg__() (pybamm.Symbol method), 4
__pow__() (pybamm.Symbol method), 4
__radd__() (pybamm.Symbol method), 4
__repr__() (pybamm.Symbol method), 4
__rmatmul__() (pybamm.Symbol method), 4
__rmul__() (pybamm.Symbol method), 4
__rpow__() (pybamm.Symbol method), 4
__rsub__() (pybamm.Symbol method), 4
__rtruediv__() (pybamm.Symbol method), 4
__str__() (pybamm.Symbol method), 4
__sub__() (pybamm.Symbol method), 4
__truediv__() (pybamm.Symbol method), 4

A
AbsoluteValue (class in pybamm), 13
add_domain() (pybamm.Geometry method), 76
add_ghost_meshes() (pybamm.Mesh method), 78
add_ghost_nodes() (pybamm.FiniteVolume

method), 89
add_neumann_values() (pybamm.FiniteVolume

method), 89
add_parameter() (in module py-

bamm.parameters_cli), 108
Addition (class in pybamm), 11
algebraic (pybamm.BaseModel attribute), 24
algebraic (pybamm.BaseSubModel attribute), 33
AlgebraicSolver (class in pybamm), 97

append() (pybamm.Solution method), 102
assemble_mass_form() (py-

bamm.ScikitFiniteElement method), 93

B
BackwardTafel (class in pybamm.interface.kinetics),

56
BaseBatteryModel (class in pybamm), 27
BaseCompositePotentialPair (class in py-

bamm.current_collector), 35
BaseElectrode (class in pybamm.electrode), 41
BaseElectrolyteConductivity (class in py-

bamm.electrolyte), 44
BaseElectrolyteDiffusion (class in py-

bamm.electrolyte), 44
BaseFirstOrderKinetics (class in py-

bamm.interface.kinetics), 55
BaseHigherOrderModel (class in py-

bamm.lead_acid), 31
BaseInterface (class in pybamm.interface), 52
BaseInverseFirstOrderKinetics (class in py-

bamm.interface.inverse_kinetics), 54
BaseInverseKinetics (class in py-

bamm.interface.inverse_kinetics), 54
BaseModel (class in pybamm), 24
BaseModel (class in pybamm.convection), 38
BaseModel (class in pybamm.current_collector), 35
BaseModel (class in pybamm.electrode.ohm), 41
BaseModel (class in py-

bamm.electrolyte.stefan_maxwell.conductivity),
44

BaseModel (class in py-
bamm.electrolyte.stefan_maxwell.diffusion),
48

BaseModel (class in py-
bamm.interface.diffusion_limited), 53

BaseModel (class in pybamm.interface.kinetics), 55
BaseModel (class in pybamm.lead_acid), 30
BaseModel (class in pybamm.lithium_ion), 28
BaseModel (class in pybamm.oxygen_diffusion), 57

125

PyBaMM Documentation, Release 0.2.0

BaseModel (class in pybamm.particle.fast), 63
BaseModel (class in pybamm.porosity), 64
BaseModel (class in pybamm.thermal.x_full), 67
BaseModel (class in pybamm.thermal.x_lumped), 68
BaseModel (class in pybamm.thermal.xyz_lumped), 70
BaseModel (class in pybamm.tortuosity), 72
BaseParticle (class in pybamm.particle), 61
BasePotentialPair (class in py-

bamm.current_collector), 36
BaseQuiteConductivePotentialPair (class in

pybamm.current_collector), 37
BaseSetPotentialSingleParticle (class in py-

bamm.current_collector), 37
BaseSolver (class in pybamm), 97
BaseSubModel (class in pybamm), 33
BaseThermal (class in pybamm.thermal), 71
BasicDFN (class in pybamm.lithium_ion), 30
BasicSPM (class in pybamm.lithium_ion), 29
bc_apply() (pybamm.ScikitFiniteElement method), 93
BinaryOperator (class in pybamm), 11
boundary_conditions (pybamm.BaseModel

attribute), 24
boundary_conditions (pybamm.BaseSubModel at-

tribute), 33
boundary_integral() (py-

bamm.ScikitFiniteElement method), 94
boundary_integral() (pybamm.SpatialMethod

method), 85
boundary_integral_vector() (py-

bamm.ScikitFiniteElement method), 94
boundary_mass_matrix() (py-

bamm.ScikitFiniteElement method), 94
boundary_value() (in module pybamm), 17
boundary_value_or_flux() (py-

bamm.FiniteVolume method), 90
boundary_value_or_flux() (py-

bamm.ScikitFiniteElement method), 94
boundary_value_or_flux() (py-

bamm.SpatialMethod method), 86
boundary_value_or_flux() (py-

bamm.ZeroDimensionalMethod method),
96

BoundaryGradient (class in pybamm), 16
BoundaryIntegral (class in pybamm), 15
BoundaryOperator (class in pybamm), 16
BoundaryValue (class in pybamm), 16
Broadcast (class in pybamm), 18
broadcast() (pybamm.SpatialMethod method), 86
Bruggeman (class in pybamm.tortuosity), 72
build() (pybamm.Simulation method), 105
ButlerVolmer (class in pybamm.interface.kinetics),

56
ButlerVolmer (class in pybamm.interface.lead_acid),

57

ButlerVolmer (class in py-
bamm.interface.lithium_ion), 57

C
calculate_consistent_state() (py-

bamm.BaseSolver method), 98
call_2D() (pybamm.ProcessedVariable method), 103
call_3D() (pybamm.ProcessedVariable method), 103
CasadiConverter (class in pybamm), 23
CasadiSolver (class in pybamm), 100
Chebyshev1DSubMesh (class in pybamm), 80
check_algebraic_equations() (py-

bamm.BaseModel method), 26
check_and_set_domains() (py-

bamm.FullBroadcast method), 19
check_and_set_domains() (py-

bamm.PrimaryBroadcast method), 19
check_and_set_domains() (py-

bamm.SecondaryBroadcast method), 19
check_default_variables_dictionaries()

(pybamm.BaseModel method), 26
check_ics_bcs() (pybamm.BaseModel method), 26
check_initial_conditions() (py-

bamm.Discretisation method), 83
check_initial_conditions_rhs() (py-

bamm.Discretisation method), 83
check_model() (pybamm.Discretisation method), 83
check_tab_conditions() (py-

bamm.Discretisation method), 83
check_variables() (pybamm.Discretisation

method), 83
check_well_determined() (pybamm.BaseModel

method), 26
check_well_posedness() (pybamm.BaseModel

method), 26
children (pybamm.Symbol attribute), 4
Citations (class in pybamm), 107
clear_domains() (pybamm.Symbol method), 4
combine_submeshes() (pybamm.Mesh method), 78
Composite (class in pybamm.convection), 39
Composite (class in pybamm.electrode.ohm), 42
Composite (class in py-

bamm.electrolyte.stefan_maxwell.conductivity),
45

Composite (class in py-
bamm.electrolyte.stefan_maxwell.diffusion),
49

Composite (class in pybamm.lead_acid), 32
Composite (class in pybamm.oxygen_diffusion), 57
CompositeExtended (class in pybamm.lead_acid),

32
CompositePotentialPair1plus1D (class in py-

bamm.current_collector), 35

126 Index

PyBaMM Documentation, Release 0.2.0

CompositePotentialPair2plus1D (class in py-
bamm.current_collector), 35

concatenated_algebraic (pybamm.BaseModel
attribute), 25

concatenated_initial_conditions (py-
bamm.BaseModel attribute), 25

concatenated_rhs (pybamm.BaseModel attribute),
25

Concatenation (class in pybamm), 17
concatenation() (pybamm.FiniteVolume method),

90
concatenation() (pybamm.SpatialMethod method),

86
Constant (class in pybamm.porosity), 65
ConstantConcentration (class in py-

bamm.electrolyte.stefan_maxwell.diffusion),
49

convert() (pybamm.CasadiConverter method), 23
convert_electric() (pybamm.Experiment

method), 102
convert_time_to_seconds() (py-

bamm.Experiment method), 102
convert_to_format (pybamm.BaseModel at-

tribute), 26
copy_domains() (pybamm.Symbol method), 4
Cos (class in pybamm), 20
cos() (in module pybamm), 20
Cosh (class in pybamm), 20
cosh() (in module pybamm), 20
create_jacobian() (pybamm.Discretisation

method), 83
create_mass_matrix() (pybamm.Discretisation

method), 83
CurrentCollector0D (class in py-

bamm.thermal.x_lumped), 69
CurrentCollector1D (class in py-

bamm.thermal.x_lumped), 69
CurrentCollector1D (class in py-

bamm.thermal.xyz_lumped), 71
CurrentCollector2D (class in py-

bamm.thermal.x_lumped), 70
CurrentCollector2D (class in py-

bamm.thermal.xyz_lumped), 71
CurrentControl (class in pybamm.external_circuit),

51

D
data (pybamm.ProcessedVariable attribute), 103
default_solver (pybamm.BaseModel attribute), 26
default_solver (py-

bamm.current_collector.EffectiveResistance2D
attribute), 35

default_solver (pybamm.lead_acid.BaseModel at-
tribute), 30

definite_integral_matrix() (py-
bamm.FiniteVolume method), 90

definite_integral_matrix() (py-
bamm.ScikitFiniteElement method), 94

DefiniteIntegralVector (class in pybamm), 15
delta_function() (pybamm.FiniteVolume method),

90
delta_function() (pybamm.SpatialMethod

method), 86
DeltaFunction (class in pybamm), 16
DFN (class in pybamm.lithium_ion), 30
diff() (pybamm.AbsoluteValue method), 13
diff() (pybamm.Function method), 20
diff() (pybamm.FunctionParameter method), 7
diff() (pybamm.Heaviside method), 12
diff() (pybamm.MatrixMultiplication method), 11
diff() (pybamm.SpatialOperator method), 14
diff() (pybamm.Symbol method), 4
Discretisation (class in pybamm), 83
div() (in module pybamm), 16
Divergence (class in pybamm), 14
divergence() (pybamm.FiniteVolume method), 90
divergence() (pybamm.ScikitFiniteElement method),

95
divergence() (pybamm.SpatialMethod method), 86
divergence_matrix() (pybamm.FiniteVolume

method), 90
Division (class in pybamm), 11
domain (pybamm.Symbol attribute), 5
DomainConcatenation (class in pybamm), 18

E
edge_to_node() (pybamm.FiniteVolume method), 90
edit_parameter() (in module py-

bamm.parameters_cli), 108
EffectiveResistance2D (class in py-

bamm.current_collector), 35
evaluate() (pybamm.BinaryOperator method), 11
evaluate() (pybamm.Concatenation method), 18
evaluate() (pybamm.EvaluatorPython method), 23
evaluate() (pybamm.Event method), 28
evaluate() (pybamm.Function method), 20
evaluate() (pybamm.ParameterValues method), 73
evaluate() (pybamm.Symbol method), 5
evaluate() (pybamm.UnaryOperator method), 13
evaluate_for_shape() (pybamm.Symbol method),

5
evaluate_ignoring_errors() (pybamm.Symbol

method), 5
evaluates_on_edges() (pybamm.BinaryOperator

method), 11
evaluates_on_edges() (py-

bamm.BoundaryIntegral method), 15

Index 127

PyBaMM Documentation, Release 0.2.0

evaluates_on_edges() (pybamm.DeltaFunction
method), 16

evaluates_on_edges() (pybamm.Divergence
method), 14

evaluates_on_edges() (pybamm.Gradient
method), 14

evaluates_on_edges() (py-
bamm.Gradient_Squared method), 14

evaluates_on_edges() (pybamm.Index method),
13

evaluates_on_edges() (pybamm.Inner method),
12

evaluates_on_edges() (pybamm.Integral
method), 14

evaluates_on_edges() (pybamm.Laplacian
method), 14

evaluates_on_edges() (pybamm.Symbol method),
5

evaluates_on_edges() (pybamm.UnaryOperator
method), 13

evaluates_to_number() (pybamm.Symbol
method), 5

evaluation_array (pybamm.StateVector attribute),
10

EvaluatorPython (class in pybamm), 23
Event (class in pybamm), 28
event_type (pybamm.Event attribute), 28
events (pybamm.BaseModel attribute), 25
events (pybamm.BaseSubModel attribute), 33
EventType (class in pybamm), 28
exp() (in module pybamm), 20
Experiment (class in pybamm), 102
Exponential (class in pybamm), 20
Exponential1DSubMesh (class in pybamm), 79
expression (pybamm.Event attribute), 28
ExternalVariable (class in pybamm), 8

F
FiniteVolume (class in pybamm), 89
FirstOrder (class in pybamm.oxygen_diffusion), 58
FirstOrderButlerVolmer (class in py-

bamm.interface.kinetics), 56
FirstOrderButlerVolmer (class in py-

bamm.interface.lead_acid), 57
FirstOrderForwardTafel (class in py-

bamm.interface.kinetics), 56
FOQS (class in pybamm.lead_acid), 31
format() (pybamm.BinaryOperator method), 11
format() (pybamm.Timer method), 104
ForwardTafel (class in pybamm.interface.kinetics),

56
Full (class in pybamm.convection), 40
Full (class in pybamm.electrode.ohm), 42

Full (class in pybamm.electrolyte.stefan_maxwell.conductivity),
46

Full (class in pybamm.electrolyte.stefan_maxwell.diffusion),
50

Full (class in pybamm.lead_acid), 32
Full (class in pybamm.oxygen_diffusion), 58
Full (class in pybamm.porosity), 66
FullAlgebraic (class in py-

bamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form),
47

FullBroadcast (class in pybamm), 19
FullDifferential (class in py-

bamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form),
47

FullDiffusionLimited (class in py-
bamm.interface.diffusion_limited), 53

Function (class in pybamm), 19
FunctionControl (class in py-

bamm.external_circuit), 52
FunctionParameter (class in pybamm), 7

G
Geometry (class in pybamm), 75
Geometry1DMacro (class in pybamm), 76
Geometry1DMicro (class in pybamm), 77
Geometry1p1DMicro (class in pybamm), 77
Geometry2DCurrentCollector (class in py-

bamm), 78
Geometry3DMacro (class in pybamm), 77
Geometryxp0p1DMicro (class in pybamm), 77
Geometryxp1DMacro (class in pybamm), 77
Geometryxp1p1DMicro (class in pybamm), 77
get_children_auxiliary_domains() (py-

bamm.Symbol method), 6
get_children_domains() (py-

bamm.BinaryOperator method), 11
get_children_domains() (pybamm.Function

method), 20
get_children_domains() (py-

bamm.FunctionParameter method), 8
get_coupled_variables() (py-

bamm.BaseSubModel method), 34
get_coupled_variables() (py-

bamm.convection.Composite method), 39
get_coupled_variables() (py-

bamm.convection.Full method), 40
get_coupled_variables() (py-

bamm.convection.LeadingOrder method),
39

get_coupled_variables() (py-
bamm.current_collector.Uniform method),
36

get_coupled_variables() (py-
bamm.electrode.ohm.Composite method),

128 Index

PyBaMM Documentation, Release 0.2.0

42
get_coupled_variables() (py-

bamm.electrode.ohm.Full method), 42
get_coupled_variables() (py-

bamm.electrode.ohm.LeadingOrder method),
41

get_coupled_variables() (py-
bamm.electrode.ohm.SurfaceForm method),
43

get_coupled_variables() (py-
bamm.electrolyte.stefan_maxwell.conductivity.Full
method), 46

get_coupled_variables() (py-
bamm.electrolyte.stefan_maxwell.conductivity.LeadingOrder
method), 45

get_coupled_variables() (py-
bamm.electrolyte.stefan_maxwell.diffusion.Composite
method), 49

get_coupled_variables() (py-
bamm.electrolyte.stefan_maxwell.diffusion.Full
method), 50

get_coupled_variables() (py-
bamm.electrolyte.stefan_maxwell.diffusion.LeadingOrder
method), 51

get_coupled_variables() (py-
bamm.interface.diffusion_limited.BaseModel
method), 53

get_coupled_variables() (py-
bamm.interface.inverse_kinetics.BaseInverseFirstOrderKinetics
method), 54

get_coupled_variables() (py-
bamm.interface.inverse_kinetics.BaseInverseKinetics
method), 54

get_coupled_variables() (py-
bamm.interface.kinetics.BaseFirstOrderKinetics
method), 55

get_coupled_variables() (py-
bamm.interface.kinetics.BaseModel method),
55

get_coupled_variables() (py-
bamm.oxygen_diffusion.Composite method),
58

get_coupled_variables() (py-
bamm.oxygen_diffusion.FirstOrder method),
58

get_coupled_variables() (py-
bamm.oxygen_diffusion.Full method), 59

get_coupled_variables() (py-
bamm.oxygen_diffusion.LeadingOrder
method), 60

get_coupled_variables() (py-
bamm.particle.fickian.ManyParticles method),
61

get_coupled_variables() (py-

bamm.particle.fickian.SingleParticle method),
62

get_coupled_variables() (py-
bamm.porosity.Full method), 66

get_coupled_variables() (py-
bamm.porosity.LeadingOrder method), 65

get_coupled_variables() (py-
bamm.thermal.isothermal.Isothermal method),
67

get_coupled_variables() (py-
bamm.thermal.x_full.BaseModel method),
67

get_coupled_variables() (py-
bamm.thermal.x_lumped.BaseModel method),
68

get_coupled_variables() (py-
bamm.thermal.xyz_lumped.BaseModel
method), 70

get_coupled_variables() (py-
bamm.tortuosity.Bruggeman method), 72

get_external_variables() (py-
bamm.BaseSubModel method), 34

get_external_variables() (py-
bamm.electrolyte.stefan_maxwell.conductivity.Full
method), 46

get_fundamental_variables() (py-
bamm.BaseSubModel method), 34

get_fundamental_variables() (py-
bamm.convection.Full method), 40

get_fundamental_variables() (py-
bamm.convection.NoConvection method),
39

get_fundamental_variables() (py-
bamm.current_collector.BaseCompositePotentialPair
method), 35

get_fundamental_variables() (py-
bamm.current_collector.BasePotentialPair
method), 36

get_fundamental_variables() (py-
bamm.current_collector.BaseQuiteConductivePotentialPair
method), 37

get_fundamental_variables() (py-
bamm.current_collector.BaseSetPotentialSingleParticle
method), 38

get_fundamental_variables() (py-
bamm.electrode.ohm.Full method), 43

get_fundamental_variables() (py-
bamm.electrolyte.stefan_maxwell.conductivity.Full
method), 46

get_fundamental_variables() (py-
bamm.electrolyte.stefan_maxwell.diffusion.ConstantConcentration
method), 49

get_fundamental_variables() (py-
bamm.electrolyte.stefan_maxwell.diffusion.Full

Index 129

PyBaMM Documentation, Release 0.2.0

method), 50
get_fundamental_variables() (py-

bamm.electrolyte.stefan_maxwell.diffusion.LeadingOrder
method), 51

get_fundamental_variables() (py-
bamm.external_circuit.CurrentControl
method), 51

get_fundamental_variables() (py-
bamm.external_circuit.FunctionControl
method), 52

get_fundamental_variables() (py-
bamm.oxygen_diffusion.Full method), 59

get_fundamental_variables() (py-
bamm.oxygen_diffusion.LeadingOrder
method), 60

get_fundamental_variables() (py-
bamm.oxygen_diffusion.NoOxygen method),
60

get_fundamental_variables() (py-
bamm.particle.fast.ManyParticles method),
63

get_fundamental_variables() (py-
bamm.particle.fast.SingleParticle method),
64

get_fundamental_variables() (py-
bamm.particle.fickian.ManyParticles method),
61

get_fundamental_variables() (py-
bamm.particle.fickian.SingleParticle method),
62

get_fundamental_variables() (py-
bamm.porosity.Constant method), 65

get_fundamental_variables() (py-
bamm.porosity.Full method), 66

get_fundamental_variables() (py-
bamm.porosity.LeadingOrder method), 65

get_fundamental_variables() (py-
bamm.thermal.isothermal.Isothermal method),
67

get_fundamental_variables() (py-
bamm.thermal.x_full.BaseModel method),
67

get_fundamental_variables() (py-
bamm.thermal.x_lumped.BaseModel method),
68

get_fundamental_variables() (py-
bamm.thermal.xyz_lumped.BaseModel
method), 71

get_infinite_nested_dict() (in module py-
bamm), 103

get_processed_potentials() (py-
bamm.current_collector.EffectiveResistance2D
method), 35

get_termination_reason() (py-

bamm.BaseSolver method), 98
get_variable_array() (pybamm.Simulation

method), 105
grad() (in module pybamm), 16
grad_squared() (in module pybamm), 17
Gradient (class in pybamm), 14
gradient() (pybamm.FiniteVolume method), 91
gradient() (pybamm.ScikitFiniteElement method), 95
gradient() (pybamm.SpatialMethod method), 87
gradient_matrix() (pybamm.FiniteVolume

method), 91
gradient_matrix() (pybamm.ScikitFiniteElement

method), 95
Gradient_Squared (class in pybamm), 14
gradient_squared() (pybamm.ScikitFiniteElement

method), 95
gradient_squared() (pybamm.SpatialMethod

method), 87

H
has_symbol_of_classes() (pybamm.Symbol

method), 6
Heaviside (class in pybamm), 12

I
indefinite_integral() (pybamm.FiniteVolume

method), 91
indefinite_integral() (py-

bamm.ScikitFiniteElement method), 95
indefinite_integral() (pybamm.SpatialMethod

method), 87
indefinite_integral_matrix_edges()

(pybamm.FiniteVolume method), 91
indefinite_integral_matrix_nodes()

(pybamm.FiniteVolume method), 91
IndefiniteIntegral (class in pybamm), 15
IndependentVariable (class in pybamm), 9
Index (class in pybamm), 13
initial_conditions (pybamm.BaseModel at-

tribute), 24
initial_conditions (pybamm.BaseSubModel at-

tribute), 33
initialise_3D() (pybamm.ProcessedVariable

method), 103
Inner (class in pybamm), 11
InputParameter (class in pybamm), 21
inputs (pybamm._BaseSolution attribute), 101
Integral (class in pybamm), 14
integral() (pybamm.FiniteVolume method), 91
integral() (pybamm.ScikitFiniteElement method), 95
integral() (pybamm.SpatialMethod method), 87
internal_neumann_condition() (py-

bamm.FiniteVolume method), 91

130 Index

PyBaMM Documentation, Release 0.2.0

internal_neumann_condition() (py-
bamm.SpatialMethod method), 88

Interpolant (class in pybamm), 21
InverseButlerVolmer (class in py-

bamm.interface.inverse_kinetics), 55
InverseButlerVolmer (class in py-

bamm.interface.lead_acid), 57
InverseButlerVolmer (class in py-

bamm.interface.lithium_ion), 57
InverseFirstOrderKinetics (class in py-

bamm.interface.lead_acid), 57
is_constant() (pybamm.Symbol method), 6
Isothermal (class in pybamm.thermal.isothermal), 66
items() (pybamm.ParameterValues method), 73

J
jac() (pybamm.Jacobian method), 23
jac() (pybamm.Symbol method), 6
Jacobian (class in pybamm), 23
jacobian (pybamm.BaseModel attribute), 25
jacobian_algebraic (pybamm.BaseModel at-

tribute), 25
jacobian_rhs (pybamm.BaseModel attribute), 25

K
keys() (pybamm.ParameterValues method), 73

L
Laplacian (class in pybamm), 14
laplacian() (in module pybamm), 17
laplacian() (pybamm.FiniteVolume method), 92
laplacian() (pybamm.ScikitFiniteElement method),

95
laplacian() (pybamm.SpatialMethod method), 88
LeadingOrder (class in pybamm.convection), 39
LeadingOrder (class in pybamm.electrode.ohm), 41
LeadingOrder (class in py-

bamm.electrolyte.stefan_maxwell.conductivity),
45

LeadingOrder (class in py-
bamm.electrolyte.stefan_maxwell.diffusion),
50

LeadingOrder (class in pybamm.oxygen_diffusion),
59

LeadingOrder (class in pybamm.porosity), 65
LeadingOrderAlgebraic (class in py-

bamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form),
48

LeadingOrderDifferential (class in py-
bamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form),
48

LeadingOrderDiffusionLimited (class in py-
bamm.interface.diffusion_limited), 53

list_parameters() (in module py-
bamm.parameters_cli), 108

load_function() (in module pybamm), 104
Log (class in pybamm), 20
log() (in module pybamm), 20
LOQS (class in pybamm.lead_acid), 31

M
ManyParticles (class in pybamm.particle.fast), 63
ManyParticles (class in pybamm.particle.fickian), 61
Mass (class in pybamm), 14
mass_matrix (pybamm.BaseModel attribute), 25
mass_matrix() (pybamm.ScikitFiniteElement

method), 96
mass_matrix() (pybamm.SpatialMethod method), 88
mass_matrix() (pybamm.ZeroDimensionalMethod

method), 96
mass_matrix_inv (pybamm.BaseModel attribute),

25
Matrix (class in pybamm), 10
MatrixMultiplication (class in pybamm), 11
max() (in module pybamm), 20
Mesh (class in pybamm), 78
MeshGenerator (class in pybamm), 78
min() (in module pybamm), 20
model (pybamm._BaseSolution attribute), 101
Multiplication (class in pybamm), 11

N
name (pybamm.BaseModel attribute), 24
name (pybamm.Event attribute), 28
name (pybamm.Symbol attribute), 6
Negate (class in pybamm), 13
new_copy() (pybamm.BaseModel method), 26
new_copy() (pybamm.BinaryOperator method), 11
new_copy() (pybamm.Concatenation method), 18
new_copy() (pybamm.Function method), 20
new_copy() (pybamm.FunctionParameter method), 8
new_copy() (pybamm.InputParameter method), 21
new_copy() (pybamm.Parameter method), 7
new_copy() (pybamm.Scalar method), 9
new_copy() (pybamm.SpatialVariable method), 9
new_copy() (pybamm.StateVector method), 10
new_copy() (pybamm.Symbol method), 6
new_copy() (pybamm.Time method), 9
new_copy() (pybamm.UnaryOperator method), 13
new_copy() (pybamm.Variable method), 8
NoConvection (class in pybamm.convection), 39
NoCurrentCollector (class in py-

bamm.thermal.x_full), 68
NoCurrentCollector (class in py-

bamm.thermal.x_lumped), 69
node_to_edge() (pybamm.FiniteVolume method), 92
NoOxygen (class in pybamm.oxygen_diffusion), 60

Index 131

PyBaMM Documentation, Release 0.2.0

NoReaction (class in pybamm.interface.kinetics), 56
NumpyConcatenation (class in pybamm), 18

O
on_boundary() (pybamm.ScikitSubMesh2D method),

81
options (pybamm.BaseBatteryModel attribute), 27
options (pybamm.BaseModel attribute), 24
orphans (pybamm.Symbol attribute), 6

P
param (pybamm.BaseSubModel attribute), 33
Parameter (class in pybamm), 7
ParameterValues (class in pybamm), 72
plot() (pybamm.Simulation method), 105
PotentialPair1plus1D (class in py-

bamm.current_collector), 37
PotentialPair2plus1D (class in py-

bamm.current_collector), 36
Power (class in pybamm), 11
PowerFunctionControl (class in py-

bamm.external_circuit), 52
pre_order() (pybamm.Symbol method), 6
preprocess_external_variables() (py-

bamm.FiniteVolume method), 92
PrimaryBroadcast (class in pybamm), 19
print() (pybamm.Citations method), 107
print_citations() (in module pybamm), 107
print_evaluated_parameters() (in module py-

bamm), 75
print_parameters() (in module pybamm), 75
process_binary_operators() (py-

bamm.FiniteVolume method), 92
process_binary_operators() (py-

bamm.SpatialMethod method), 88
process_boundary_conditions() (py-

bamm.Discretisation method), 84
process_boundary_conditions() (py-

bamm.ParameterValues method), 73
process_dict() (pybamm.Discretisation method),

84
process_geometry() (pybamm.ParameterValues

method), 73
process_initial_conditions() (py-

bamm.Discretisation method), 84
process_model() (pybamm.Discretisation method),

84
process_model() (pybamm.ParameterValues

method), 73
process_parameters_and_discretise() (py-

bamm.BaseBatteryModel method), 27
process_rhs_and_algebraic() (py-

bamm.Discretisation method), 85

process_symbol() (pybamm.Discretisation
method), 85

process_symbol() (pybamm.ParameterValues
method), 73

ProcessedVariable (class in pybamm), 103
pybamm (module), 3
pybamm.parameters.electrical_parameters

(module), 74
pybamm.parameters.geometric_parameters

(module), 74
pybamm.parameters.parameter_sets (mod-

ule), 75
pybamm.parameters.standard_parameters_lead_acid

(module), 74
pybamm.parameters.standard_parameters_lithium_ion

(module), 74
pybamm.parameters.thermal_parameters

(module), 74

Q
QuiteConductivePotentialPair1plus1D

(class in pybamm.current_collector), 37
QuiteConductivePotentialPair2plus1D

(class in pybamm.current_collector), 37

R
read_citations() (pybamm.Citations method), 107
read_operating_conditions() (py-

bamm.Experiment method), 102
read_parameters_csv() (py-

bamm.ParameterValues method), 74
read_string() (pybamm.Experiment method), 102
register() (pybamm.Citations method), 107
relabel_tree() (pybamm.Symbol method), 6
render() (pybamm.Symbol method), 6
reset() (pybamm.Simulation method), 105
reset() (pybamm.Timer method), 104
rhs (pybamm.BaseModel attribute), 24
rhs (pybamm.BaseSubModel attribute), 33
rmse() (in module pybamm), 104
root() (pybamm.AlgebraicSolver method), 97
root_dir() (in module pybamm), 104

S
save() (pybamm._BaseSolution method), 101
save() (pybamm.Simulation method), 105
save_data() (pybamm._BaseSolution method), 101
Scalar (class in pybamm), 9
ScikitChebyshev2DSubMesh (class in pybamm),

82
ScikitExponential2DSubMesh (class in py-

bamm), 81
ScikitFiniteElement (class in pybamm), 93
ScikitsDaeSolver (class in pybamm), 100

132 Index

PyBaMM Documentation, Release 0.2.0

ScikitsOdeSolver (class in pybamm), 99
ScikitSubMesh2D (class in pybamm), 81
ScikitUniform2DSubMesh (class in pybamm), 81
ScipySolver (class in pybamm), 99
secondary_domain (pybamm.Symbol attribute), 6
SecondaryBroadcast (class in pybamm), 19
set_algebraic() (pybamm.BaseSubModel method),

34
set_algebraic() (pybamm.convection.Full

method), 40
set_algebraic() (py-

bamm.current_collector.BasePotentialPair
method), 36

set_algebraic() (py-
bamm.current_collector.BaseQuiteConductivePotentialPair
method), 37

set_algebraic() (py-
bamm.current_collector.BaseSetPotentialSingleParticle
method), 38

set_algebraic() (pybamm.electrode.ohm.Full
method), 43

set_algebraic() (py-
bamm.electrolyte.stefan_maxwell.conductivity.Full
method), 46

set_algebraic() (py-
bamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.FullAlgebraic
method), 47

set_algebraic() (py-
bamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.LeadingOrderAlgebraic
method), 48

set_algebraic() (py-
bamm.external_circuit.FunctionControl
method), 52

set_boundary_conditions() (py-
bamm.BaseSubModel method), 34

set_boundary_conditions() (py-
bamm.convection.Full method), 40

set_boundary_conditions() (py-
bamm.current_collector.PotentialPair1plus1D
method), 37

set_boundary_conditions() (py-
bamm.current_collector.PotentialPair2plus1D
method), 36

set_boundary_conditions() (py-
bamm.electrode.ohm.BaseModel method),
41

set_boundary_conditions() (py-
bamm.electrode.ohm.Composite method),
42

set_boundary_conditions() (py-
bamm.electrode.ohm.Full method), 43

set_boundary_conditions() (py-
bamm.electrode.ohm.LeadingOrder method),
41

set_boundary_conditions() (py-
bamm.electrolyte.stefan_maxwell.conductivity.BaseModel
method), 44

set_boundary_conditions() (py-
bamm.electrolyte.stefan_maxwell.conductivity.Full
method), 46

set_boundary_conditions() (py-
bamm.electrolyte.stefan_maxwell.diffusion.BaseModel
method), 48

set_boundary_conditions() (py-
bamm.electrolyte.stefan_maxwell.diffusion.ConstantConcentration
method), 49

set_boundary_conditions() (py-
bamm.oxygen_diffusion.Full method), 59

set_boundary_conditions() (py-
bamm.particle.fickian.ManyParticles method),
61

set_boundary_conditions() (py-
bamm.particle.fickian.SingleParticle method),
62

set_boundary_conditions() (py-
bamm.thermal.x_full.NoCurrentCollector
method), 68

set_boundary_conditions() (py-
bamm.thermal.x_lumped.CurrentCollector1D
method), 69

set_boundary_conditions() (py-
bamm.thermal.x_lumped.CurrentCollector2D
method), 70

set_defaults() (pybamm.Simulation method), 105
set_evaluation_array() (pybamm.StateVector

method), 10
set_events() (pybamm.BaseSubModel method), 34
set_events() (pybamm.electrolyte.BaseElectrolyteDiffusion

method), 44
set_events() (pybamm.electrolyte.stefan_maxwell.conductivity.Full

method), 46
set_events() (pybamm.particle.BaseParticle

method), 61
set_events() (pybamm.porosity.BaseModel

method), 64
set_external_circuit_submodel() (py-

bamm.BaseBatteryModel method), 28
set_external_circuit_submodel() (py-

bamm.lead_acid.LOQS method), 31
set_external_variables() (py-

bamm.Discretisation method), 85
set_full_convection_submodel() (py-

bamm.lead_acid.BaseHigherOrderModel
method), 31

set_full_interface_submodel() (py-
bamm.lead_acid.BaseHigherOrderModel
method), 31

set_full_porosity_submodel() (py-

Index 133

PyBaMM Documentation, Release 0.2.0

bamm.lead_acid.BaseHigherOrderModel
method), 31

set_full_porosity_submodel() (py-
bamm.lead_acid.Composite method), 32

set_full_porosity_submodel() (py-
bamm.lead_acid.CompositeExtended method),
32

set_full_porosity_submodel() (py-
bamm.lead_acid.FOQS method), 32

set_id() (pybamm.BoundaryIntegral method), 15
set_id() (pybamm.BoundaryOperator method), 16
set_id() (pybamm.DefiniteIntegralVector method), 15
set_id() (pybamm.DeltaFunction method), 16
set_id() (pybamm.FunctionParameter method), 8
set_id() (pybamm.Index method), 13
set_id() (pybamm.Integral method), 14
set_id() (pybamm.Scalar method), 9
set_id() (pybamm.StateVector method), 10
set_id() (pybamm.Symbol method), 6
set_initial_conditions() (py-

bamm.BaseSubModel method), 34
set_initial_conditions() (py-

bamm.convection.Full method), 40
set_initial_conditions() (py-

bamm.current_collector.BasePotentialPair
method), 36

set_initial_conditions() (py-
bamm.current_collector.BaseQuiteConductivePotentialPair
method), 37

set_initial_conditions() (py-
bamm.current_collector.BaseSetPotentialSingleParticle
method), 38

set_initial_conditions() (py-
bamm.electrode.ohm.Full method), 43

set_initial_conditions() (py-
bamm.electrolyte.stefan_maxwell.conductivity.Full
method), 47

set_initial_conditions() (py-
bamm.electrolyte.stefan_maxwell.diffusion.Full
method), 50

set_initial_conditions() (py-
bamm.electrolyte.stefan_maxwell.diffusion.LeadingOrder
method), 51

set_initial_conditions() (py-
bamm.external_circuit.FunctionControl
method), 52

set_initial_conditions() (py-
bamm.oxygen_diffusion.Full method), 59

set_initial_conditions() (py-
bamm.oxygen_diffusion.LeadingOrder
method), 60

set_initial_conditions() (py-
bamm.particle.fast.ManyParticles method),
64

set_initial_conditions() (py-
bamm.particle.fast.SingleParticle method),
64

set_initial_conditions() (py-
bamm.particle.fickian.ManyParticles method),
62

set_initial_conditions() (py-
bamm.particle.fickian.SingleParticle method),
63

set_initial_conditions() (py-
bamm.porosity.Full method), 66

set_initial_conditions() (py-
bamm.porosity.LeadingOrder method), 65

set_initial_conditions() (py-
bamm.thermal.x_full.BaseModel method),
67

set_initial_conditions() (py-
bamm.thermal.x_lumped.BaseModel method),
69

set_initial_conditions() (py-
bamm.thermal.xyz_lumped.BaseModel
method), 71

set_inputs() (pybamm.BaseSolver method), 98
set_internal_boundary_conditions()

(pybamm.Discretisation method), 85
set_parameters() (pybamm.Simulation method),

105
set_rhs() (pybamm.BaseSubModel method), 34
set_rhs() (pybamm.current_collector.BaseSetPotentialSingleParticle

method), 38
set_rhs() (pybamm.electrolyte.stefan_maxwell.conductivity.Full

method), 47
set_rhs() (pybamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.FullDifferential

method), 47
set_rhs() (pybamm.electrolyte.stefan_maxwell.conductivity.surface_potential_form.LeadingOrderDifferential

method), 48
set_rhs() (pybamm.electrolyte.stefan_maxwell.diffusion.Composite

method), 50
set_rhs() (pybamm.electrolyte.stefan_maxwell.diffusion.Full

method), 50
set_rhs() (pybamm.electrolyte.stefan_maxwell.diffusion.LeadingOrder

method), 51
set_rhs() (pybamm.oxygen_diffusion.Composite

method), 58
set_rhs() (pybamm.oxygen_diffusion.Full method),

59
set_rhs() (pybamm.oxygen_diffusion.LeadingOrder

method), 60
set_rhs() (pybamm.particle.fast.BaseModel method),

63
set_rhs() (pybamm.particle.fickian.ManyParticles

method), 62
set_rhs() (pybamm.particle.fickian.SingleParticle

method), 63

134 Index

PyBaMM Documentation, Release 0.2.0

set_rhs() (pybamm.porosity.Full method), 66
set_rhs() (pybamm.porosity.LeadingOrder method),

65
set_rhs() (pybamm.thermal.x_full.NoCurrentCollector

method), 68
set_rhs() (pybamm.thermal.x_lumped.CurrentCollector0D

method), 69
set_rhs() (pybamm.thermal.x_lumped.CurrentCollector1D

method), 69
set_rhs() (pybamm.thermal.x_lumped.CurrentCollector2D

method), 70
set_rhs() (pybamm.thermal.x_lumped.NoCurrentCollector

method), 69
set_rhs() (pybamm.thermal.x_lumped.SetTemperature1D

method), 70
set_rhs() (pybamm.thermal.xyz_lumped.BaseModel

method), 71
set_soc_variables() (py-

bamm.BaseBatteryModel method), 28
set_soc_variables() (py-

bamm.lead_acid.BaseModel method), 30
set_up() (pybamm.AlgebraicSolver method), 97
set_up() (pybamm.BaseSolver method), 98
set_up_experiment() (pybamm.Simulation

method), 105
set_variable_slices() (pybamm.Discretisation

method), 85
SetPotentialSingleParticle1plus1D (class

in pybamm.current_collector), 38
SetPotentialSingleParticle2plus1D (class

in pybamm.current_collector), 38
SetTemperature1D (class in py-

bamm.thermal.x_lumped), 70
shape (pybamm.Symbol attribute), 7
shape_for_testing (pybamm.Symbol attribute), 7
shift() (pybamm.FiniteVolume method), 92
Simplification (class in pybamm), 22
simplify() (pybamm.Simplification method), 22
simplify() (pybamm.Symbol method), 7
simplify_addition_subtraction() (in mod-

ule pybamm), 22
simplify_if_constant() (in module pybamm),

22
simplify_multiplication_division() (in

module pybamm), 22
Simulation (class in pybamm), 104
Sin (class in pybamm), 21
sin() (in module pybamm), 21
SingleParticle (class in pybamm.particle.fast), 64
SingleParticle (class in pybamm.particle.fickian),

62
Sinh (class in pybamm), 21
sinh() (in module pybamm), 21
size (pybamm.ExternalVariable attribute), 8

size (pybamm.StateVector attribute), 10
size (pybamm.Symbol attribute), 7
size_for_testing (pybamm.Symbol attribute), 7
Solution (class in pybamm), 102
solve() (pybamm.AlgebraicSolver method), 97
solve() (pybamm.BaseSolver method), 98
solve() (pybamm.Simulation method), 106
source() (in module pybamm), 12
SparseStack (class in pybamm), 18
spatial_variable() (pybamm.FiniteVolume

method), 93
spatial_variable() (pybamm.ScikitFiniteElement

method), 96
spatial_variable() (pybamm.SpatialMethod

method), 89
SpatialMethod (class in pybamm), 85
SpatialOperator (class in pybamm), 13
SpatialVariable (class in pybamm), 9
SpecificFunction (class in pybamm), 20
specs() (pybamm.Simulation method), 106
SPM (class in pybamm.lithium_ion), 29
SPMe (class in pybamm.lithium_ion), 29
StateVector (class in pybamm), 10
step() (pybamm.BaseSolver method), 99
step() (pybamm.Simulation method), 106
stiffness_matrix() (pybamm.ScikitFiniteElement

method), 96
sub_solutions (pybamm.Solution attribute), 102
SubMesh (class in pybamm), 78
SubMesh0D (class in pybamm), 79
SubMesh1D (class in pybamm), 79
Subtraction (class in pybamm), 11
surf() (in module pybamm), 17
SurfaceForm (class in pybamm.electrode.ohm), 43
Symbol (class in pybamm), 3

T
t (in module pybamm), 9
t (pybamm._BaseSolution attribute), 101
t_event (pybamm._BaseSolution attribute), 101
termination (pybamm._BaseSolution attribute), 101
test_shape() (pybamm.Symbol method), 7
Time (class in pybamm), 9
time() (pybamm.Timer method), 104
Timer (class in pybamm), 104
timescale (pybamm.BaseModel attribute), 26
to_casadi() (pybamm.Symbol method), 7

U
UnaryOperator (class in pybamm), 12
Uniform (class in pybamm.current_collector), 36
Uniform1DSubMesh (class in pybamm), 79
unpack() (pybamm.electrolyte.stefan_maxwell.conductivity.Composite

method), 45

Index 135

PyBaMM Documentation, Release 0.2.0

update() (pybamm._BaseSolution method), 101
update() (pybamm.BaseModel method), 26
update() (pybamm.ParameterValues method), 74
update_from_chemistry() (py-

bamm.ParameterValues method), 74
use_jacobian (pybamm.BaseModel attribute), 25
use_simplify (pybamm.BaseModel attribute), 25
UserSupplied1DSubMesh (class in pybamm), 80
UserSupplied2DSubMesh (class in pybamm), 82

V
value (pybamm.Scalar attribute), 10
values() (pybamm.ParameterValues method), 74
Variable (class in pybamm), 8
variables (pybamm.BaseModel attribute), 24
variables (pybamm.BaseSubModel attribute), 33
Vector (class in pybamm), 10
visualise() (pybamm.Symbol method), 7
VoltageFunctionControl (class in py-

bamm.external_circuit), 52

X
x_average() (in module pybamm), 17

Y
y (pybamm._BaseSolution attribute), 101
y_event (pybamm._BaseSolution attribute), 102

Z
ZeroDimensionalMethod (class in pybamm), 96

136 Index

	Contents
	Expression Tree
	Models
	Parameters
	Geometry
	Meshes
	Discretisation and spatial methods
	Solvers
	Experiments
	Post-Process Variables
	Utility functions
	Simulation
	Citations
	Parameters command line interface

	Examples
	Contributing
	Adding Parameter Values
	Adding a Model
	Adding a Spatial Method
	Adding a Solver

	Python Module Index
	Index

