PyBaMM Documentation
Release 0.2.3

Valentin Sulzer

Mar 12, 2021

Contents

5

Quickstart
Installation

API documentation
Examples

Contributing

Python Module Index

Index

15

135

137

149

151

PyBaMM Documentation, Release 0.2.3

Python Battery Mathematical Modelling (PyBAMM) solves continuum models for batteries, using both numerical
methods and asymptotic analysis.

PyBaMM is hosted on GitHub. This page provides the API, or developer documentation for pybamm.
¢ genindex
* modindex

e search

Contents 1

https://github.com/pybamm-team/PyBaMM

PyBaMM Documentation, Release 0.2.3

2 Contents

CHAPTER 1

Quickstart

PyBaMM is available on GNU/Linux, MacOS and Windows.

1.1 Using pip

1.1.1 GNU/Linux and Windows

’pip install pybamm

1.1.2 macOS

’brew install sundials && pip install pybamm

1.2 Using conda

PyBaMM is available as a conda package through the conda-forge channel.

’conda install -c¢ conda-forge pybamm

1.3 Optional solvers

On GNU/Linux and MacOS, an optional scikits.odes -based solver is available, see Optional - scikits.odes solver.

https://scikits-odes.readthedocs.io/en/latest/

PyBaMM Documentation, Release 0.2.3

4 Chapter 1. Quickstart

CHAPTER 2

Installation

2.1 GNU-Linux & MacOS

Contents

* GNU-Linux & MacOS
— Prerequisites
— Install PyBaMM
x User install
- GNU/Linux and Windows
- macOS
+ Optional - scikits.odes solver
- GNU/Linux
- macOS
* Developer install

— Uninstall PyBaMM

— Troubleshooting

2.1.1 Prerequisites

To use and/or contribute to PyBaMM, you must have Python 3.6 or 3.7 installed (note that 3.8 is not yet supported).

To install Python 3 on Debian-based distribution (Debian, Ubuntu, Linux mint), open a terminal and run

PyBaMM Documentation, Release 0.2.3

sudo apt update
sudo apt install python3

On Fedora or CentOS, you can use DNF or Yum. For example

sudo dnf install python3

On Mac OS distributions, you can use homebrew. First install “‘brew* <https://docs.python-guide.org/starting/
install3/osx/>‘__:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
—install)"

then follow instructions in link on adding brew to path, and run

brew install python3

2.1.2 Install PyBaMM

User install

We recommend to install PyBaMM within a virtual environment, in order not to alter any distribution python files.
First, make sure you are using python 3.6 or 3.7. To create a virtual environment env within your current directory

type:

’virtualenv env

You can then “activate” the environment using:

’source env/bin/activate

Now all the calls to pip described below will install PyBaMM and its dependencies into the environment env. When
you are ready to exit the environment and go back to your original system, just type:

’deactivate

PyBaMM can be installed via pip. On macOS, it is necessary to install the SUNDIALS library beforehand.

GNU/Linux and Windows

pip install pybamm

macOS

brew install sundials
pip install pybamm

PyBaMM'’s dependencies (such as numpy, scipy, etc) will be installed automatically when you install PyBaMM
using pip.

For an introduction to virtual environments, see (https://realpython.com/python-virtual-environments-a-primer/).

6 Chapter 2. Installation

https://docs.python-guide.org/starting/install3/osx/
https://docs.python-guide.org/starting/install3/osx/
https://computing.llnl.gov/projects/sundials/
https://realpython.com/python-virtual-environments-a-primer/

PyBaMM Documentation, Release 0.2.3

Optional - scikits.odes solver

Users can install scikits.odes in order to use the wrapped SUNDIALS ODE and DAE solvers. Currently, only
GNU/Linux and macOS are supported.

GNU/Linux

apt install libopenblas-dev
pybamm_install_odes —-—-install-sundials

The pybamm_install_odes command is installed with PyBaMM. It automatically downloads and installs
the SUNDIALS library on your system (under ~/.local), before installing sckits.odes (by running pip
install scikits.odes).

macOS

pip install scikits.odes

Assuming that the SUNDIALS were installed as described above.

Developer install

If you wish to contribute to PyBaMM, you should get the latest version from the GitHub repository. To do so, you
must have Git and graphviz installed. For instance run

sudo apt install git graphviz

on Debian-based distributions, or

’brew install git graphviz

on Mac OS.

To install PyBaMM, the first step is to get the code by cloning this repository

git clone https://github.com/pybamm-team/PyBaMM.git
cd PyBaMM

Then, to install PyBaMM as a developer, type

pip install -e .[dev,docs]

KLU sparse solver If you wish so simulate large systems such as the 2+1D models, we recommend employing a
sparse solver. PyBaMM currently offers a direct interface to the sparse KLU solver within Sundials, but it is unlikely
to be installed as you may not have all the dependencies available. If you wish to install the KLU from the PyBaMM
sources, see the instructions for compiling the KLU sparse solver.

To check whether PyBaMM has installed properly, you can run the tests:

python3 run-tests.py ——unit

Before you start contributing to PyBaMM, please read the contributing guidelines.

2.1. GNU-Linux & MacOS 7

https://github.com/bmcage/odes
https://pybamm.readthedocs.io/en/latest/source/solvers/scikits_solvers.html
CONTRIBUTING.md
CONTRIBUTING.md

PyBaMM Documentation, Release 0.2.3

2.1.3 Uninstall PyBaMM

PyBaMM can be uninstalled by running

pip uninstall pybamm

in your virtual environment.

2.1.4 Troubleshooting

Problem: I’ve made edits to source files in PyBaMM, but these are not being used when I run my Python script.

Solution: Make sure you have installed PyBaMM using the —e flag, i.e. pip install —e .. This sets the
installed location of the source files to your current directory.

Problem: When running python run-tests.py —--quick,giveserror FileNotFoundError: [Errno
2] No such file or directory: 'flake8': 'flakes8.

Solution: make sure you have included the [dev,docs] flags when you pip installed PyBaMM, i.e. pip
install -e . [dev,docs]

Problem: Errors when solving model ValueError: Integrator name ida does not exsist, or
ValueError: Integrator name cvode does not exsist.

Solution: This could mean that you have not installed scikits. odes correctly, check the instructions given above
and make sure each command was successful.

One possibility is that you have not set your LD_LIBRARY_PATH to point to the sundials library, type echo
$LD_LIBRARY_PATH and make sure one of the directories printed out corresponds to where the sundials libraries
are located.

Another common reason is that you forget to install a BLAS library such as OpenBLAS before installing sundials.
Check the cmake output when you configured Sundials, it might say:

—-— A library with BLAS API not found. Please specify library location.
—— LAPACK requires BLAS

If this is the case, on a Debian or Ubuntu system you can install OpenBLAS using sudo apt-get install
libopenblas-dev (or brew install openblas for Mac OS) and then re-install sundials using the instruc-
tions above.

2.2 Windows

Contents

e Windows

— Prerequisites

Install PyBaMM

* User install

Uninstall PyBaMM

Installation using WSL

8 Chapter 2. Installation

PyBaMM Documentation, Release 0.2.3

2.2.1 Prerequisites

To use and/or contribute to PyBaMM, you must have Python 3.6 or 3.7 installed (note that 3.8 is not yet supported).

To install Python 3 download the installation files from Python’s website. Make sure to tick the box on Add Python
3.X to PATH. For more detailed instructions please see the official Python on Windows guide.

2.2.2 Install PyBaMM

User install

Launch the Command Prompt and go to the directory where you want to install PyBaMM. You can find a reminder of
how to navigate the terminal here.

We recommend to install PyBaMM within a virtual environment, in order not to alter any distribution python files.

To create a virtual environment env within your current directory type:

’python -m venv env

You can then “activate” the environment using:

’env\Scripts\activate.bat

Now all the calls to pip described below will install PyBaMM and its dependencies into the environment env. When
you are ready to exit the environment and go back to your original system, just type:

’deactivate

PyBaMM can be installed via pip:

’pip install pybamm

PyBaMM'’s dependencies (such as numpy, scipy, etc) will be installed automatically when you install PyBaMM
using pip.

For an introduction to virtual environments, see (https://realpython.com/python-virtual-environments-a-primer/).

2.2.3 Uninstall PyBaMM

PyBaMM can be uninstalled by running

pip uninstall pybamm

in your virtual environment.

2.2.4 Installation using WSL

If you want to install the optional PyBaMM solvers, you have to use the Windows Subsystem for Linux (WSL). You
can find the installation instructions here.

2.2. Windows 9

https://www.python.org/downloads/windows/
https://docs.python.org/3.7/using/windows.html
http://www.cs.columbia.edu/~sedwards/classes/2015/1102-fall/Command%20Prompt%20Cheatsheet.pdf
https://realpython.com/python-virtual-environments-a-primer/
INSTALL-WINDOWS-WSL.md

PyBaMM Documentation, Release 0.2.3

2.3 Windows Subsystem for Linux (WSL)

We recommend the use of Windows Subsystem for Linux (WSL) to install PyBaMM, see the instructions below to get
PyBaMM working using Windows, WSL and VSCode.

Contents

» Windows Subsystem for Linux (WSL)
— Install WSL
— Install PyBaMM

— Use Visual Studio Code to run PyBaMM

2.3.1 Install WSL

Follow the instructions from Microsoft here. When given the option, choose the Ubuntu 18.04 LTS distribution to
install. Don’t forget to initialise the Ubuntu installation using the instructions given here.

2.3.2 Install PyBaMM

Open a terminal window in your installed Ubuntu distribution by selecting “Ubuntu” from the start menu. This should
give you a bash prompt in your home directory.

To download the PyBaMM source code, you first need to install git, which you can do by typing

’sudo apt install git-core ‘

For easier integration with WSL, we recommend that you install PyBaMM in your Windows Documents folder, for
example by first navigating to

’$ cd /mnt/c/Users/USER_NAME/Documents ‘

where USER_NAME is your username. Exact path to Windows documents may vary. Now use git to clone the
PyBaMM repository:

’ git clone https://github.com/pybamm-team/PyBaMM.git ‘

This will create a new directly called PyBaMM, you can move to this directory in bash using the cd command:

’ cd PyBaMM ‘

If you are unfamiliar with the linux command line, you might find it useful to work through this tutorial provided by
Ubuntu.

Now head over and follow the installation instructions for PyBaMM for linux here.

2.3.3 Use Visual Studio Code to run PyBaMM

You will probably want to use a native Windows IDE such as Visual Studio Code or the full Microsoft Visual Studio
IDE. Both of these packages can connect to WSL so that you can write python code in a native windows environment,

10 Chapter 2. Installation

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/initialize-distro
https://tutorials.ubuntu.com/tutorial/command-line-for-beginners
INSTALL-LINUX-MAC.md

PyBaMM Documentation, Release 0.2.3

while at the same time using WSL to run the code using your installed Ubuntu distribution. The following instructions
assume that you are using Visual Studio Code.

First, setup VSCode to run within the PyBaMM directory that you created above, using the instructions provided here.

Once you have opened the PyBaMM folder in vscode, use the Extensions panel to install the Python extension
from Microsoft. Note that extensions are either installed on the Windows (Local) or on in WSL (WSL:Ubuntu), so
even if you have used VSCode previously with the Python extension, you probably haven’t installed it in WSL. Make
sure to reload after installing the Python extension so that it is available.

If you have installed PyBaMM into the virtual environment env as in the PyBaMM linux install guide, then VSCode
should automatically start using this environment and you should see something similar to “Python 3.6.8 64-bit (‘env’:
venv)” in the bottom bar.

To test that vscode can run a PyBaMM script, navigate to the examples/scripts folder and right click on the
create-model.py script. Select “Run current file in Python Interactive Window”. This should run the script,
which sets up and solves a model of SEI thickness using PyBaMM. You should see a plot of SEI thickness versus time
pop up in the interactive window.

The Python Interactive Window in VSCode can be used to view plots, but is restricted in functionality and cannot, for
example, launch separate windows to show plot. To setup an xserver on windows and use this to launch windows for
plotting, follow these instructions:

1. Install VcXsrv from here.

2. Set the display port in the WSL command-line: echo "export DISPLAY=localhost:0.0" >> ~/.
bashrc

3. Install python3-tk in WSL: sudo apt-get install python3-tk

4. Set the matplotlib backend to TKAgg in WSL: echo "backend : TKAgg" >> ~/.config/
matplotlib/matplotlibrc

5. Before running the code, just launch XLaunch (with the default settings) from within Windows. Then the code
works as usual.

2.4 PyBaMM developer install - The KLU sparse solver

If you wish to try a different DAE solver, PyBaMM currently offers a direct interface to the sparse KLU solver within
Sundials. This solver comes as a C++ python extension module. Therefore, when installing PyBaMM from source
(e.g. from the GitHub repository), the KLU sparse solver module must be compiled. Running pip install . or
python setup.py install in the PyBaMM directory will result in a attempt to compile the KLU module.

Note that if CMake of pybind11 are not found (see below), the installation of PyBaMM will carry on, however skipping
the compilation of the idaklu module. This allows developers that are not interested in the KLU module to install
PyBaMM from source without having to install the required dependencies.

To build the KLU solver, the following dependencies are required:
e A C++ compiler (e.g. g++)
* A Fortran compiler (e.g. gfortran)
* The python 3 header files
* CMake
* A BLAS implementation (e.g. openblas)
e pybindl1

e sundials

2.4. PyBaMM developer install - The KLU sparse solver 11

https://code.visualstudio.com/docs/remote/wsl
https://sourceforge.net/projects/vcxsrv/
https://cmake.org/
https://www.openblas.net/
https://github.com/pybind/pybind11
https://computing.llnl.gov/projects/sundials

PyBaMM Documentation, Release 0.2.3

 SuiteSparse

The first four should be available through your favourite package manager. On Debian-based GNU/Linux distributions:

apt update
apt install python3-dev gcc gfortran cmake libopenblas-dev

2.4.1 pybind11

The pybind11 source directory should be located in the PyBaMM project directory at the time of compilation. Simply
clone the GitHub repository, for example:

In the PyBaMM project dir (next to setup.py)
git clone https://github.com/pybind/pybindll.git

2.4.2 SuiteSparse and sundials

Method 1 - Using the convenience script

The PyBaMM repository contains a script scripts/setup_KLU_module_build. py that automatically down-
loads, extracts, compiles and installs the two libraries.

First install the Python wget module

pip install wget

Then execute the script

In the PyBaMM project dir (next to setup.py)
python scripts/setup_KLU_module_build.py

The above will install the required component of SuiteSparse and Sundials in your home directory under ~/ . local/.
Note that you can provide the option ——install-dir=<install/path> to install both libraries to an alternative
location. If <install/path> is not absolute, it will be interpreted as relative to the PyBaMM project directory.

Finally, reactivate your virtual environment by running

source $ (VIRTUAL_ENV) /bin/activate

Alternatively, you update the LD_LIBRARY_PATH environment variable as follows

export LD_LIBRARY_PATH=$ (HOME) /.local:$LD_LIBRARY_PATH

The above export statement will be ran automatically the next time you activate you python virtual environment.

If did not run the convenience script inside a python virtual environment, execute you bash config file

source ~/.bashrc

(or start a new shell).

Build files are located inside the PyBaMM project directory under KLU_module_deps/. Feel free to remove this
directory once everything is installed correctly.

12 Chapter 2. Installation

http://faculty.cse.tamu.edu/davis/suitesparse.html

PyBaMM Documentation, Release 0.2.3

Method 2 - Compiling Sundials (advanced)

SuiteSparse

On most current linux distributions and macQOS, a recent enough version of the suitesparse source package is available
through the package manager. For instance on Fedora

yum install libsuitesparse-dev

Sundials

The PyBaMM KLU solver requires Sundials >= 4.0. Because most Linux distribution provide older versions through
their respective package manager, it is recommended to build and install Sundials manually.

First, download and extract the sundials 5.0.0 source

wget https://computing.llnl.gov/projects/sundials/download/sundials-5.0.0.tar.gz
tar -xvf sundials-5.0.0.tar.gz

Then, create a temporary build directory and navigate into it

mkdir build_sundials
cd build_sundials

You can now configure the build, by running

cmake —-DLAPACK_ENABLE=ON\
—~DSUNDIALS_INDEX_SIZE=32\
—-DBUILD_ARKODE=0FF\
-DBUILD_CVODE=0OFF\
-DBUILD_CVODES=0FF\
~DBUILD_IDAS=0FF\
-DBUILD_KINSOL=0OFF\
-DEXAMPLES_ENABLE : BOOL=0OFF\
—~DKLU_ENABLE=0ON\
~-DKLU_INCLUDE_DIR=path/to/suitesparse/headers\
-DKLU_LIBRARY_DIR=path/to/suitesparse/libraries\
../sundials-5.0.0

Be careful set the two variables KLU_INCLUDE_DIR and KLU_LIBRARY_ DIR to the correct installation location
of the SuiteSparse libary on your system. If you installed SuiteSparse through your package manager, this is likely to
be something similar to:

~-DKLU_INCLUDE_DIR=/usr/include/suitesparse\
-DKLU_LIBRARY_DIR=/usr/lib/x86_64-1linux-gnu\

By default, Sundials will be installed on your system under /usr/local (this varies depending on the distribution).
Should you wish to install sundials in a specific location, set the following variable

~DCMAKE_INSTALL_PREFIX=install/location)\

Finally, build the library:

’make install

You may be asked to run this command as a super-user, depending on the installation location.

2.4. PyBaMM developer install - The KLU sparse solver 13

PyBaMM Documentation, Release 0.2.3

Alternative installation location

By default, it is assumed that the SuiteSparse and Sundials libraries are installed in your home directory under ~/
.local. If you installed the libraries to (a) different location(s), you must set the options suitesparse-root
or/and sundials—-root when installing PyBaMM. Examples:

’python setup.py install --suitesparse-root=path/to/suitesparse

or

’pip install . —--install-option="--sundials-root=path/to/sundials"

2.4.3 (re)lnstall PyBaMM to build the KLU solver

If the above dependencies are correctly installed, any of the following commands will install PyBaMM with the
idak1lu solver module:

pip install

pip install -e

python setup.py install
python setup.py develop

Note that it doesn’t matter if pybamm is already installed. The above commands will update your exisitng installation
by adding the idak1lu module.

2.4.4 Check that the solver is correctly installed

If you install PyBaMM in editable mode using the —e pip switch or if you use the python setup.py install
command, a log file will be located in the project directory (next to the setup. py file).

cat setup.log

020-03-24 11:33:50,645 - PyBaMM setup - INFO - Starting PyBaMM setup

2020-03-24 11:33:50,653 - PyBaMM setup - INFO - Not running on windows

2020-03-24 11:33:50,654 - PyBaMM setup - INFO - Could not find CMake. Skipping,
—compilation of KLU module.

2020-03-24 11:33:50,655 — PyBaMM setup — INFO - Could not find pybindll directory (/
—~io/pybindll) . Skipping compilation of KLU module.

If the KLU sparse solver is correctly installed, then the following command should return True.

$ python -c "import pybamm; print (pybamm.have_idaklu())"

14 Chapter 2. Installation

https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs

CHAPTER 3

APl documentation

3.1 Expression Tree

3.1.1 Symbol

class pybamm.Symbol (name, children=None, domain=None, auxiliary_domains=None)
Base node class for the expression tree

Parameters

e name (st r) - name for the node

* children (iterable Symbol, optional) — children to attach to this node, default to an

abs_ ()

empty list

domain (iterable of str, or str)-listof domains over which the node is valid
(empty list indicates the symbol is valid over all domains)

auxiliary_domains (dict of str) - dictionary of auxiliary domains over which
the node is valid (empty dictionary indicates no auxiliary domains). Keys can be
“secondary” or “tertiary”’. The symbol is broadcast over its auxiliary domains. For
example, a symbol might have domain “negative particle”, secondary domain “sep-
arator” and tertiary domain “current collector” (domain="negative particle”, auxil-

» o«

iary_domains={ “secondary”: “separator”, “tertiary”: “current collector”}).

return an AbsoluteValue object

__add__ (other)
return an Addit ion object

__ge___(other)
return a EqualHeaviside object

__gt__ (other)
return a Not EqualHeaviside object

15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

__init__ (name, children=None, domain=None, auxiliary_domains=None)
Initialize self. See help(type(self)) for accurate signature.

__le__ (other)
return a EqualHeaviside object

1t (other)
return a Not EqualHeaviside object

__matmul__ (other)
return a MatrixMultiplication object

__mul__ (other)
return a Multiplication object

__neg__ ()
return a Negat e object

pow___(other)
return a Powe r object

__radd__ (other)
return an Add1it 1ion object

__repr__ ()
returns the string __class__(id, name, children, domain)

__rmatmul__ (other)
return a MatrixMultiplication object

__rmul__ (other)
return a Multiplication object

__rpow___(other)
return a Power object

__rsub__ (other)
return a Subt raction object

___rtruediv___ (other)
return a Division object

__str_ ()
return a string representation of the node and its children

__sub__ (other)
return a Subtraction object

__truediv__ (other)
return a Division object

auxiliary domains
Returns domains that are not the primary domain

children
returns the cached children of this node.

Note: it is assumed that children of a node are not modified after initial creation

clear domains ()
Clear domains, bypassing checks

copy_domains (symbol)
Copy the domains from a given symbol, bypassing checks

16 Chapter 3. API documentation

PyBaMM Documentation, Release 0.2.3

diff£ (variable)
Differentiate a symbol with respect to a variable. For any symbol that can be differentiated, return /
if differentiating with respect to yourself, self._diff{variable) if variable is in the expression tree of the
symbol, and zero otherwise.

Parameters variable (pybamm. Symbol) — The variable with respect to which to differen-
tiate

domain
list of applicable domains

Returns
Return type iterable of str

evaluate (t=None, y=None, y_dot=None, inputs=None, known_evals=None)
Evaluate expression tree (wrapper to allow using dict of known values). If the dict ‘known_evals’ is
provided, the dict is searched for self.id; if self.id is in the keys, return that value; otherwise, evaluate
using _base_evaluate () and add that value to known_evals

Parameters

e t (float or numeric type, optional) — time at which to evaluate (default
None)

e y(numpy.array, optional)-—array with state values to evaluate when solving (de-
fault None)

e y_dot (numpy.array, optional) - array with time derivatives of state values to
evaluate when solving (default None)

e inputs (dict, optional)-dictionary of inputs to use when solving (default None)

* known_evals (dict, optional) — dictionary containing known values (default
None)

Returns
* number or array — the node evaluated at (t,y)
* known_evals (if known_evals input is not None) (dict) — the dictionary of known values

evaluate_for_shape ()
Evaluate expression tree to find its shape. For symbols that cannot be evaluated directly (e.g. Variable
or Parameter), a vector of the appropriate shape is returned instead, using the symbol’s domain. See
pybamm. Symbol.evaluate ()

evaluate_ignoring errors (t=0)
Evaluates the expression. If a node exists in the tree that cannot be evaluated as a scalar or vector (e.g.
Time, Parameter, Variable, StateVector), then None is returned. If there is an InputParameter in the tree
then a 1 is returned. Otherwise the result of the evaluation is given.

See also:
evaluate () evaluate the expression

evaluates_on_edges (dimension)
Returns True if a symbol evaluates on an edge, i.e. symbol contains a gradient operator, but not a diver-
gence operator, and is not an IndefiniteIntegral.

Parameters dimension (str) — The dimension (primary, secondary, etc) in which to query
evaluation on edges

3.1.

Expression Tree 17

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

Returns Whether the symbol evaluates on edges (in the finite volume discretisation sense)
Return type bool

evaluates_to_number ()
Returns True if evaluating the expression returns a number. Returns False otherwise, including if NotIm-
plementedError or TyperError is raised. !Not to be confused with isinstance(self, pybamm.Scalar)!

See also:
evaluate () evaluate the expression
get_children_auxiliary domains (children)

Combine auxiliary domains from children, at all levels

has_symbol_of_classes (symbol_classes)
Returns True if equation has a term of the class(es) symbol_class.

Parameters symbol_classes (pybamm class or iterable of classes) - The
classes to test the symbol against

is_constant ()
returns true if evaluating the expression is not dependent on ¢ or y or u

See also:
evaluate () evaluate the expression

jac (variable, known_jacs=None, clear_domain=True)
Differentiate a symbol with respect to a (slice of) a StateVector or StateVectorDot. See pybamm.
Jacobian.

name
name of the node

new_copy ()
Make a new copy of a symbol, to avoid Tree corruption errors while bypassing copy.deepcopy(), which is
slow.

orphans
Returning new copies of the children, with parents removed to avoid corrupting the expression tree internal
data

pre_order ()
returns an iterable that steps through the tree in pre-order fashion

Examples

>>> import pybamm

>>> a = pybamm.Symbol('a')

>>> b = pybamm.Symbol ('b")

>>> for node in (axb) .pre_order () :
print (node.name)

o))

18

Chapter 3. API documentation

https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.3

relabel_tree (symbol, counter)

Finds all children of a symbol and assigns them a new id so that they can be visualised properly using the

graphviz output

render ()
print out a visual representation of the tree (this node and its children)

secondary_domain
Helper function to get the secondary domain of a symbol

set_id()
Set the immutable “identity” of a variable (e.g. for identifying y_slices).

This is identical to what we’d put in a __hash__ function However, implementing __hash__ requires also

implementing __eq__, which would then mess with loop-checking in the anytree module.
Hashing can be slow, so we set the id when we create the node, and hence only need to hash once.

shape
Shape of an object, found by evaluating it with appropriate t and y.

shape_for_testing

Shape of an object for cases where it cannot be evaluated directly. If a symbol cannot be evaluated directly

(e.g. it is a Variable or Parameter), it is instead given an arbitrary domain-dependent shape.

simplify (simplified_symbols=None)
Simplify the expression tree. See pybamm. Simplification.

size
Size of an object, found by evaluating it with appropriate t and y

size_for_testing
Size of an object, based on shape for testing

test_shape ()
Check that the discretised self has a pybamm shape, i.e. can be evaluated

Raises pybamm. ShapeError — If the shape of the object cannot be found

to_casadi (1=None, y=None, y_dot=None, inputs=None, casadi_symbols=None)
Convert the expression tree to a CasADi expression tree. See pybamm. CasadiConverter.

visualise (filename)
Produces a .png file of the tree (this node and its children) with the name filename

Parameters filename (st r) - filename to output, must end in “.png”

3.1.2 Parameter
class pybamm.Parameter (name, domain=[])
A node in the expression tree representing a parameter
This node will be replaced by a Scalar node by :class‘.Parameter*
Parameters
* name (st r)—name of the node

* domain (iterable of str, optional) — list of domains the parameter is valid
over, defaults to empty list

new_copy ()
See pybamm. Symbol.new_copy ().

3.1. Expression Tree

19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

class pybamm.FunctionParameter (name, inputs, diff_variable=None)
A node in the expression tree representing a function parameter

This node will be replaced by a pybamm. Function node if a callable function is passed to the parameter
values, and otherwise (in some rarer cases, such as constant current) a pybamm. Scalar node.

Parameters
* name (str)—name of the node

* inputs (dict)— A dictionary with string keys and pybamm. Symbol values represent-
ing the function inputs. The string keys should provide a reasonable description of what the
input to the function is (e.g. “Electrolyte concentration [mol.m-3]")

* diff variable (pybamm.Symbol, optional) — if diff_variable is specified, the Func-
tionParameter node will be replaced by a pybamm. Funct ion and then differentiated with
respect to diff_variable. Default is None.

diff (variable)
See pybamm. Symbol.diff ().

get_children_domains (children_list)
Obtains the unique domain of the children. If the children have different domains then raise an error

new_copy ()
See pybamm. Symbol.new_copy ().

set_id()
See pybamm.Symbol.set_id/()

3.1.3 Variable

class pybamm.Variable (name, domain=None, auxiliary_domains=None, bounds=None)
A node in the expression tree represending a dependent variable

This node will be discretised by Discretisation and converted to a pybamm. StateVector node.
Parameters

* name (str)—name of the node domain : iterable of str, optional list of domains that this
variable is valid over

* auxiliary domains (dict, optional) — dictionary of auxiliary domains ({ ‘sec-
ondary’: ..., ‘tertiary’: ... }). For example, for the single particle model, the particle con-
centration would be a Variable with domain ‘negative particle’ and secondary auxiliary do-
main ‘current collector’. For the DFN, the particle concentration would be a Variable with
domain ‘negative particle’, secondary domain ‘negative electrode’ and tertiary domain ‘cur-
rent collector’

* bounds (tuple, optional)— Physical bounds on the variable
* xExtends -

diff£ (variable)
Differentiate a symbol with respect to a variable. For any symbol that can be differentiated, return /
if differentiating with respect to yourself, self._diff{variable) if variable is in the expression tree of the
symbol, and zero otherwise.

Parameters variable (pybamm. Symbol) — The variable with respect to which to differen-
tiate

20 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple

PyBaMM Documentation, Release 0.2.3

class pybamm.VariableDot (name, domain=None, auxiliary_domains=None, bounds=None)
A node in the expression tree represending the time derviative of a dependent variable

This node will be discretised by Discretisation and converted to a pybamm. StateVectorDot node.
Parameters
* name (str)—name of the node
e domain (iterable of str)- list of domains that this variable is valid over

* auxiliary domains (dict)—dictionary of auxiliary domains ({ ‘secondary’: ..., ‘ter-
tiary’: ...}). For example, for the single particle model, the particle concentration would
be a Variable with domain ‘negative particle’ and secondary auxiliary domain ‘current col-
lector’. For the DFN, the particle concentration would be a Variable with domain ‘negative
particle’, secondary domain ‘negative electrode’ and tertiary domain ‘current collector’

* bounds (tuple, optional) - Physical bounds on the variable. Included for compati-
bility with VariableBase, but ignored.

e xExtends —

diff (variable)
Differentiate a symbol with respect to a variable. For any symbol that can be differentiated, return /
if differentiating with respect to yourself, self._diff{variable) if variable is in the expression tree of the
symbol, and zero otherwise.

Parameters variable (pybamm. Symbol) — The variable with respect to which to differen-
tiate

get_variable ()
return a Variable corresponding to this VariableDot

Note: Variable._jac adds a dash to the name of the corresponding VariableDot, so we remove this here

class pybamm.ExternalVariable (name, size, domain=None, auxiliary_domains=None)
A node in the expression tree representing an external variable variable

This node will be discretised by Discretisation and converted to a Vector node.
Parameters
* name (st r)—name of the node
* domain (iterable of str)- listof domains that this variable is valid over

* auxiliary_domains (dict)—dictionary of auxiliary domains ({ ‘secondary’: ..., ‘ter-
tiary’: ...}). For example, for the single particle model, the particle concentration would
be a Variable with domain ‘negative particle’ and secondary auxiliary domain ‘current col-
lector’. For the DFN, the particle concentration would be a Variable with domain ‘negative
particle’, secondary domain ‘negative electrode’ and tertiary domain ‘current collector’

* xExtends —

diff (variable)
Differentiate a symbol with respect to a variable. For any symbol that can be differentiated, return /
if differentiating with respect to yourself, self._diff{variable) if variable is in the expression tree of the
symbol, and zero otherwise.

Parameters variable (pybamm. Symbol) — The variable with respect to which to differen-
tiate
size
Size of an object, found by evaluating it with appropriate t and y

3.1. Expression Tree 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

3.1.4 Independent Variable
class pybamm.IndependentVariable (name, domain=None, auxiliary_domains=None)
A node in the expression tree representing an independent variable
Used for expressing functions depending on a spatial variable or time
Parameters
* name (st r)—name of the node
e domain (iterable of str)- listof domains that this variable is valid over
* xExtends —

class pybamm.Time
A node in the expression tree representing time

Extends: Symbol

new_copy ()
See pybamm.Symbol.new_copy ().

class pybamm.SpatialVariable (name, domain=None, auxiliary_domains=None, coord_sys=None)
A node in the expression tree representing a spatial variable
Parameters
(12 Ce_ 9% ¢ [IP% LTI EE T3 bR 13 99 13 EE T3

* name (str)—name of the node (e.g. “x”, “y”, “z”, “r”, “x_n”", “x_s”, “x_p”, “r_n”, “r_p”)

* domain (iterable of str) — list of domains that this variable is valid over (e.g.

LEINT3

“cartesian”, “spherical polar”)
* xExtends -

new_copy ()
See pybamm. Symbol.new_copy ().

pybamm.t = the independent variable time
A node in the expression tree representing time

Extends: Symbol

3.1.5 Scalar

class pybamm.Scalar (value, name=None, domain=[])
A node in the expression tree representing a scalar value

Extends: Symbol
Parameters
* value (numeric) — the value returned by the node when evaluated

* name (str, optional) — the name of the node. Defaulted to str (value) if not
provided

* domain (iterable of str, optional) — list of domains the parameter is valid
over, defaults to empty list

new_copy ()
See pybamm. Symbol.new_copy ().

22 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

set_id()
See pybamm. Symbol.set_id().

value
the value returned by the node when evaluated

3.1.6 Array

class pybamm.Array (entries, name=None, domain=None, auxiliary_domains=None, en-
tries_string=None)
node in the expression tree that holds an tensor type variable (e.g. numpy .array)

Parameters

* entries (numpy.array or 1ist)— the array associated with the node. If a list is
provided, it is converted to a numpy array

* name (str, optional) - the name of the node

* domain (iterable of str, optional) — list of domains the parameter is valid
over, defaults to empty list

* auxiliary domainds (dict, optional) — dictionary of auxiliary domains, de-
faults to empty dict

* entries_string (str) — String representing the entries (slow to recalculate when
copying)
* xExtends —
ndim
returns the number of dimensions of the tensor

new_copy ()
See pybamm. Symbol.new_copy ().

set_id()
See pybamm. Symbol.set_id ().

shape
returns the number of entries along each dimension

pybamm.linspace (start, stop, num=50, **kwargs)
Creates a linearly spaced array by calling numpy.linspace with keyword arguments ‘kwargs’. For a list of
‘kwargs’ see the numpy linspace documentation

pybamm.meshgrid (x, y, **kwargs)
Return coordinate matrices as from coordinate vectors by calling numpy.meshgrid with keyword arguments
‘kwargs’. For a list of ‘kwargs’ see the numpy meshgrid documentation

3.1.7 Matrix

class pybamm.Matrix (entries, name=None, domain=None, auxiliary_domains=None, en-
tries_string=None)
node in the expression tree that holds a matrix type (e.g. numpy .array)

Extends: Array

3.1. Expression Tree 23

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://tinyurl.com/yc4ne47x
https://tinyurl.com/y8azewrj

PyBaMM Documentation, Release 0.2.3

3.1.8 Vector

class pybamm.Vector (entries, name=None, domain=None, auxiliary_domains=None, en-

tries_string=None)

node in the expression tree that holds a vector type (e.g. numpy .array)

Extends: Array

3.1.9 State Vector

class pybamm.StateVector (*y_slices, name=None, domain=None, auxiliary_domains=None, evalu-

ation_array=None)

node in the expression tree that holds a slice to read from an external vector type

Parameters

y_slice (s1ice) - the slice of an external y to read
name (str, optional) - the name of the node

domain (iterable of str, optional) — list of domains the parameter is valid
over, defaults to empty list

auxiliary domains (dict of str, optional) — dictionary of auxiliary do-
mains

evaluation_array (list, optional)- Listof boolean arrays representing slices.
Default is None, in which case the evaluation_array is computed from y_slices.

*Extends —

diff (variable)
Differentiate a symbol with respect to a variable. For any symbol that can be differentiated, return /
if differentiating with respect to yourself, self._diff{variable) if variable is in the expression tree of the
symbol, and zero otherwise.

Parameters variable (pybamm. Symbol) — The variable with respect to which to differen-

tiate

class pybamm.StateVectorDot (*y_slices, name=None, domain=None, auxiliary_domains=None,

evaluation_array=None)

node in the expression tree that holds a slice to read from the ydot

Parameters

y_slice (s1ice) - the slice of an external ydot to read
name (str, optional)- the name of the node

domain (iterable of str, optional) — list of domains the parameter is valid
over, defaults to empty list

auxiliary_domains (dict of str, optional) — dictionary of auxiliary do-
mains

evaluation_ array(list, optional)- Listof boolean arrays representing slices.
Default is None, in which case the evaluation_array is computed from y_slices.

*Extends —

diff (variable)
Differentiate a symbol with respect to a variable. For any symbol that can be differentiated, return /

24

Chapter 3. API documentation

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 0.2.3

if differentiating with respect to yourself, self._diff{variable) if variable is in the expression tree of the
symbol, and zero otherwise.

Parameters variable (pybamm. Symbol) — The variable with respect to which to differen-
tiate

3.1.10 Binary Operators
class pybamm.BinaryOperator (name, left, right)
A node in the expression tree representing a binary operator (e.g. +, *)
Derived classes will specify the particular operator
Extends: Symbol
Parameters
* name (st r)—name of the node
e left (Symbol or Number) — lhs child node (converted to Scalar if Number)
e right (Symbol or Number) — rhs child node (converted to Scalar if Number)

evaluate (1=None, y=None, y_dot=None, inputs=None, known_evals=None)
See pybamm. Symbol.evaluate ().

evaluates_on_edges (dimension)
See pybamm. Symbol.evaluates_on_edges ().

format (left, right)
Format children left and right into compatible form

get_children_domains (ldomain, rdomain)
Combine domains from children in appropriate way

new_copy ()
See pybamm. Symbol.new_copy ().

class pybamm.Power (left, right)
A node in the expression tree representing a ** power operator

Extends: BinaryOperator

class pybamm.Addition (left, right)
A node in the expression tree representing an addition operator

Extends: BinaryOperator

class pybamm.Subtraction (left, right)
A node in the expression tree representing a subtraction operator

Extends: BinaryOperator

class pybamm.Multiplication (left, right)
A node in the expression tree representing a multiplication operator (Hadamard product). Overloads cases where
the “*” operator would usually return a matrix multiplication (e.g. scipy.sparse.co0.coo_matrix)

Extends: BinaryOperator

class pybamm.MatrixMultiplication (left, right)
A node in the expression tree representing a matrix multiplication operator

Extends: BinaryOperator

3.1. Expression Tree 25

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

diff£ (variable)
See pybamm. Symbol.diff ().

class pybamm.Division (left, right)
A node in the expression tree representing a division operator

Extends: BinaryOperator

class pybamm.Inner (left, right)

A node in the expression tree which represents the inner (or dot) product. This operator should be used to
take the inner product of two mathematical vectors (as opposed to the computational vectors arrived at post-
discretisation) of the formv=v_xe_x+v_ye_y+Vv_ze_z where v_x, v_y, v_z are scalars and e_x, e_y, e_z are
x-y-z-directional unit vectors. For v and w mathematical vectors, inner product returns v_x * w_x + v_y * w_y
+ v_z * w_z. In addition, for some spatial discretisations mathematical vector quantities (such as i = grad(phi))
are evaluated on a different part of the grid to mathematical scalars (e.g. for finite volume mathematical scalars
are evaluated on the nodes but mathematical vectors are evaluated on cell edges). Therefore, inner also transfers
the inner product of the vector onto the scalar part of the grid if required by a particular discretisation.

Extends: BinaryOperator

evaluates_on_edges (dimension)
See pybamm. Symbol.evaluates_on_edges ().

class pybamm.Heaviside (name, left, right)
A node in the expression tree representing a heaviside step function.

Adding this operation to the rhs or algebraic equations in a model can often cause a discontinuity in the solution.
For the specific cases listed below, this will be automatically handled by the solver. In the general case, you can
explicitly tell the solver of discontinuities by adding a Event object with Event Type DISCONTINUITY to
the model’s list of events.

In the case where the Heaviside function is of the form pybamm.t < x, pybamm.t <= x, x < pybamm.t, or x <=
pybamm.t, where x is any constant equation, this DISCONTINUITY event will automatically be added by the
solver.

Extends: BinaryOperator

diff£ (variable)
See pybamm.Symbol.diff ().

class pybamm.EqualHeaviside (left, right)
A heaviside function with equality (return 1 when left = right)

class pybamm.NotEqualHeaviside (left, right)
A heaviside function without equality (return O when left = right)

class pybamm.Minimum (left, right)
Returns the smaller of two objects

class pybamm.Maximum (left, right)
Returns the smaller of two objects

pybamm.minimum (left, right)
Returns the smaller of two objects. Not to be confused with pybamm.min (), which returns min function of
child.

pybamm.maximum (left, right)
Returns the larger of two objects. Not to be confused with pybamm.max (), which returns max function of
child.

pybamm. source (left, right, boundary=False)
A convinience function for creating (part of) an expression tree representing a source term. This is necessary for

26 Chapter 3. API documentation

PyBaMM Documentation, Release 0.2.3

spatial methods where the mass matrix is not the identity (e.g. finite element formulation with piecwise linear
basis functions). The left child is the symbol representing the source term and the right child is the symbol of the
equation variable (currently, the finite element formulation in PyBaMM assumes all functions are constructed
using the same basis, and the matrix here is constructed accoutning for the boundary conditions of the right
child). The method returns the matrix-vector product of the mass matrix (adjusted to account for any Dirichlet
boundary conditions imposed the the right symbol) and the discretised left symbol.

Parameters
* left (Symbol) - The left child node, which represents the expression for the source term.

e right (Symbol) — The right child node. This is the symbol whose boundary conditions
are accounted for in the construction of the mass matrix.

* boundary (bool, optional) — If True, then the mass matrix should is assembled
over the boundary, corresponding to a source term which only acts on the boundary of the
domain. If False (default), the matrix is assembled over the entire domain, corresponding to
a source term in the bulk.

3.1.11 Unary Operators

class pybamm.UnaryOperator (name, child, domain=None, auxiliary_domains=None)

A node in the expression tree representing a unary operator (e.g. ‘-, grad, div)
Derived classes will specify the particular operator
Extends: Symbol
Parameters
* name (st r)—name of the node
e child (Symbo1l) - child node

evaluate (1=None, y=None, y_dot=None, inputs=None, known_evals=None)
See pybamm. Symbol.evaluate ().

evaluates_on_edges (dimension)
See pybamm. Symbol.evaluates_on_edges ().

new_copy ()
See pybamm. Symbol.new_copy ().

class pybamm.Negate (child)

A node in the expression tree representing a - negation operator

Extends: UnaryOperator

class pybamm.AbsoluteValue (child)

A node in the expression tree representing an abs operator
Extends: UnaryOperator

diff£ (variable)
See pybamm. Symbol.diff ().

class pybamm.Sign (child)

A node in the expression tree representing a sign operator
Extends: UnaryOperator

diff (variable)
See pybamm. Symbol.diff ().

3.1. Expression Tree 27

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

class pybamm.Index (child, index, name=None, check_size=True)
A node in the expression tree, which stores the index that should be extracted from its child after the child has
been evaluated.

Parameters
* child (pybamm. Symbol) — The symbol of which to take the index

e index (int or slice) — The index (if int) or indices (if slice) to extract from the
symbol

* name (str, optional)- The name of the symbol

e check_size (bool, optional)- Whether to check if the slice size exceeds the child
size. Default is True. This should always be True when creating a new symbol so that
the appropriate check is performed, but should be False for creating a new copy to avoid
unnecessarily repeating the check.

evaluates_on_edges (dimension)
See pybamm. Symbol.evaluates_on_edges ().

set_id()
See pybamm. Symbol.set_id()

class pybamm.SpatialOperator (name, child, domain=None, auxiliary_domains=None)
A node in the expression tree representing a unary spatial operator (e.g. grad, div)

Derived classes will specify the particular operator
This type of node will be replaced by the Discretisationclass witha Matrix
Extends: UnaryOperator
Parameters
* name (st r)—name of the node
* child (Symbo1l) - child node

diff£ (variable)
See pybamm. Symbol.diff ().

class pybamm.Gradient (child)
A node in the expression tree representing a grad operator

Extends: SpatialOperator

evaluates_on_edges (dimension)
See pybamm.Symbol.evaluates_on_edges ().

class pybamm.Divergence (child)
A node in the expression tree representing a div operator

Extends: SpatialOperator

evaluates_on_edges (dimension)
See pybamm.Symbol.evaluates_on_edges ().

class pybamm.Laplacian (child)
A node in the expression tree representing a laplacian operator. This is currently only implemeted in the weak
form for finite element formulations.

Extends: SpatialOperator

evaluates_on_edges (dimension)
See pybamm. Symbol.evaluates_on_edges ().

28 Chapter 3. API documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

class pybamm.Gradient_Squared (child)
A node in the expression tree representing a the inner product of the grad operator with itself. In particular, this
is useful in the finite element formualtion where we only require the (sclar valued) square of the gradient, and
not the gradient itself. Extends: SpatialOperator

evaluates_on_edges (dimension)
See pybamm. Symbol.evaluates_on_edges ().

class pybamm.Mass (child)
Returns the mass matrix for a given symbol, accounting for Dirchlet boundary conditions where necessary (e.g.
in the finite element formualtion) Extends: SpatialOperator

class pybamm.Integral (child, integration_variable)
A node in the expression tree representing an integral operator

I=vaww

where a and b are the left-hand and right-hand boundaries of the domain respectively, and © € domain.
Parameters

e function (pybamm.Symbol) — The function to be integrated (will become
self.children[0])

* integration_variable (pybamm. IndependentVariable)— The variable over
which to integrate

* xxExtends (** SpatialOperator)—

evaluates_on_edges (dimension)
See pybamm. Symbol.evaluates_on_edges ().

set_id()
See pybamm. Symbol.set_id ()

class pybamm.IndefinitelIntegral (child, integration_variable)
A node in the expression tree representing an indefinite integral operator

x
I= / f(u)du
rextmin
where u € domain which can represent either a spatial or temporal variable.
Parameters

* function (pybamm.Symbol) — The function to be integrated (will become
self.children[0])

* integration_variable (pybamm. IndependentVariable)— The variable over
which to integrate

* ¥xExtends (** BaseIndefiniteIntegral)—

class pybamm.DefiniteIntegralVector (child, vector_type="row’)
A node in the expression tree representing an integral of the basis used for discretisation

Izlwwma

where a and b are the left-hand and right-hand boundaries of the domain respectively and % is the basis function.

Parameters

3.1. Expression Tree 29

PyBaMM Documentation, Release 0.2.3

* variable (pybamm. Symbol) — The variable whose basis will be integrated over the
entire domain

* vector_type (str, optional)- Whether to return a row or column vector (default
is row)

* x*Extends (** SpatialOperator)—

set_id()
See pybamm.Symbol.set_id()

class pybamm.BoundaryIntegral (child, region="entire’)
A node in the expression tree representing an integral operator over the boundary of a domain

I= [fu)du,
da
where Ja is the boundary of the domain, and © € domain boundary.
Parameters

* function (pybamm.Symbol) — The function to be integrated (will become
self.children[0])

* region (str, optional)— The region of the boundary over which to integrate. If
region is entire (default) the integration is carried out over the entire boundary. If region is
negative tab or positive tab then the integration is only carried out over the appropriate part
of the boundary corresponding to the tab.

* xxExtends (** SpatialOperator)—

evaluates_on_edges (dimension)
See pybamm. Symbol.evaluates_on_edges ().

set_id()
See pybamm. Symbol.set_id()

class pybamm.DeltaFunction (child, side, domain)
Delta function. Currently can only be implemented at the edge of a domain

Parameters
* child (pybamm. Symbol) — The variable that sets the strength of the delta function
* side (str)— Which side of the domain to implement the delta function on
* x*Extends (** SpatialOperator)—

evaluate_for_shape ()
See pybamm. Symbol.evaluate_for_shape_using_domain ()

evaluates_on_edges (dimension)
See pybamm. Symbol.evaluates_on_edges ().

set_id()
See pybamm. Symbol.set_id ()

class pybamm.BoundaryOperator (name, child, side)
A node in the expression tree which gets the boundary value of a variable.

Parameters
* name (str)— The name of the symbol

* child (pybamm. Symbol)— The variable whose boundary value to take

30 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

* side (str)— Which side to take the boundary value on (“left” or “right”)
* xxExtends (** SpatialOperator)—

set_id()
See pybamm. Symbol.set_id ()

class pybamm.BoundaryValue (child, side)
A node in the expression tree which gets the boundary value of a variable.

Parameters
* child (pybamm. Symbol) — The variable whose boundary value to take
* side (str)— Which side to take the boundary value on (“left” or “right”)
* xxExtends (** BoundaryOperator) —

class pybamm.BoundaryGradient (child, side)
A node in the expression tree which gets the boundary flux of a variable.

Parameters
* child (pybamm. Symbol) — The variable whose boundary flux to take
* side (str)— Which side to take the boundary flux on (“left” or “right”)
* x*Extends (** BoundaryOperator) —

pybamm. grad (expression)
convenience function for creating a Gradient

Parameters expression (Symbol) — the gradient will be performed on this sub-expression
Returns the gradient of expression
Return type Gradient

pybamm.diwv (expression)
convenience function for creating a Divergence

Parameters expression (Symbol) — the divergence will be performed on this sub-expression
Returns the divergence of expression
Return type Divergence

pybamm. laplacian (expression)
convenience function for creating a Laplacian

Parameters expression (Symbol) — the laplacian will be performed on this sub-expression
Returns the laplacian of expression
Return type Laplacian

pybamm.grad_squared (expression)
convenience function for creating a Gradient_Squared

Parameters expression (Symbol) — the inner product of the gradient with itself will be per-
formed on this sub-expression

Returns inner product of the gradient of expression with itself
Return type Gradient_Squared

pybamm. surf (symbol)
convenience function for creating a right BoundaryValue, usually in the spherical geometry

3.1. Expression Tree 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

Parameters symbol (pybamm. Symbol) — the surface value of this symbol will be returned
Returns the surface value of symbol
Return type pybamm.BoundaryValue

pybamm.x_average (symbol)
convenience function for creating an average in the x-direction

Parameters symbol (pybamm. Symbol)— The function to be averaged
Returns the new averaged symbol
Return type Symbol

pybamm.r_average (symbol)
convenience function for creating an average in the r-direction

Parameters symbol (pybamm. Symbol)— The function to be averaged
Returns the new averaged symbol
Return type Symbol

pybamm. z_average (symbol)
convenience function for creating an average in the z-direction

Parameters symbol (pybamm. Symbol)— The function to be averaged
Returns the new averaged symbol
Return type Symbol

pybamm.yz_average (symbol)
convenience function for creating an average in the y-z-direction

Parameters symbol (pybamm. Symbol)— The function to be averaged
Returns the new averaged symbol
Return type Symbol

pybamm.boundary_value (symbol, side)
convenience function for creating a pybamm. BoundaryValue

Parameters

* symbol (pybamm.Symbol) — The symbol whose boundary value to take

* side (str)— Which side to take the boundary value on (“left” or “right”)
Returns the new integrated expression tree
Return type BoundaryValue

pybamm. sign (symbol)
Returns a Sign object.

3.1.12 Concatenations

class pybamm.Concatenation (*children, name=None, check_domain=True, concat_fun=None)
A node in the expression tree representing a concatenation of symbols
Extends: pybamm. Symbol

Parameters children (iterable of pybamm. Symbol) — The symbols to concatenate

32 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

evaluate (1=None, y=None, y_dot=None, inputs=None, known_evals=None)
See pybamm. Symbol.evaluate ().

new_copy ()
See pybamm. Symbol.new_copy ().

class pybamm.NumpyConcatenation (*children)
A node in the expression tree representing a concatenation of equations, when we don’t care about domains.
The class pybamm.DomainConcatenation, which is careful about domains and uses broadcasting where
appropriate, should be used whenever possible instead.

Upon evaluation, equations are concatenated using numpy concatenation.
Extends: Concatenation
Parameters children (iterable of pybamm. Symbol) — The equations to concatenate

class pybamm.DomainConcatenation (children, full_mesh, copy_this=None)
A node in the expression tree representing a concatenation of symbols, being careful about domains.

It is assumed that each child has a domain, and the final concatenated vector will respect the sizes and ordering
of domains established in mesh keys

Extends: pybamm.Concatenation
Parameters
* children (iterable of pybamm. Symbo1) — The symbols to concatenate

e full _mesh (pybamm.BaseMesh) — The underlying mesh for discretisation, used to
obtain the number of mesh points in each domain.

* copy_this (pybamm.DomainConcatenat ion (optional)) —if provided, this class is
initialised by copying everything except the children from copy_this. mesh is not used in
this case

class pybamm.SparseStack (*children)
A node in the expression tree representing a concatenation of sparse matrices. As with NumpyConcatenation,
we don’t care about domains. The class pybamm. DomainConcatenat ion, which is careful about domains
and uses broadcasting where appropriate, should be used whenever possible instead.

Extends: Concatenation

Parameters children (iterable of Concatenat ion)— The equations to concatenate

3.1.13 Broadcasting Operators

class pybamm.Broadcast (child, broadcast_domain, broadcast_auxiliary_domains=None, broad-

cast_type="full to nodes’, name=None)
A node in the expression tree representing a broadcasting operator. Broadcasts a child to a specified domain.

After discretisation, this will evaluate to an array of the right shape for the specified domain.
For an example of broadcasts in action, see this example notebook
Parameters
e child (Symbo1l) - child node

* broadcast_domain (iterable of str)-Primary domain for broadcast. This will
become the domain of the symbol

* broadcast_auxiliary_domains (dict of str)-— Auxiliary domains for broad-
cast.

3.1. Expression Tree 33

https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression_tree/broadcasts.ipynb

PyBaMM Documentation, Release 0.2.3

* broadcast_type (str, optional)— Whether to broadcast to the full domain (pri-
mary and secondary) or only in the primary direction. Default is “full”.

* name (st r)—name of the node
* x*xExtends (** SpatialOperator)—

class pybamm.FullBroadcast (child, broadcast_domain, auxiliary_domains, name=None)
A class for full broadcasts

check_and set_domains (child, broadcast_type, broadcast_domain, broad-
cast_auxiliary_domains)
See Broadcast.check_and_set_domains ()

class pybamm.PrimaryBroadcast (child, broadcast_domain, name=None)
A node in the expression tree representing a primary broadcasting operator. Broadcasts in a primary dimension
only. That is, makes explicit copies of the symbol in the domain specified by broadcast_domain. This should
be used for broadcasting from a “larger” scale to a “smaller” scale, for example broadcasting temperature T(x)
from the electrode to the particles, or broadcasting current collector current i(y, z) from the current collector to
the electrodes.

Parameters
e child (Symbo1l) — child node

* broadcast_domain (iterable of str)-—Primary domain for broadcast. This will
become the domain of the symbol

* name (st r)—name of the node
* ¥xExtends (** SpatialOperator)—

check_and set_domains (child, broadcast_type, broadcast_domain, broad-

cast_auxiliary_domains)
See Broadcast .check_and_set_domains ()

class pybamm.SecondaryBroadcast (child, broadcast_domain, name=None)
A node in the expression tree representing a primary broadcasting operator. Broadcasts in a secondary dimension
only. That is, makes explicit copies of the symbol in the domain specified by broadcast_domain. This should
be used for broadcasting from a “smaller” scale to a “larger” scale, for example broadcasting SPM particle
concentrations c_s(r) from the particles to the electrodes. Note that this wouldn’t be used to broadcast particle
concentrations in the DFN, since these already depend on both x and r.

Parameters
e child (Symbo1l) - child node

* broadcast_domain (iterable of str)-—Primary domain for broadcast. This will
become the domain of the symbol

e name (str)—name of the node
* xxExtends (** SpatialOperator)—

check_and_set_domains (child, broadcast_type, broadcast_domain, broad-

cast_auxiliary_domains)
See Broadcast .check_and_set_domains ()

class pybamm.FullBroadcastToEdges (child, broadcast_domain, auxiliary_domains, name=None)
A full broadcast onto the edges of a domain (edges of primary dimension, nodes of other dimensions)

evaluates_on_edges (dimension)
See pybamm. Symbol.evaluates_on_edges ().

34 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

class pybamm.PrimaryBroadcastToEdges (child, broadcast_domain, name=None)
A primary broadcast onto the edges of the domain

evaluates_on_edges (dimension)
See pybamm. Symbol.evaluates_on_edges ().

class pybamm.SecondaryBroadcastToEdges (child, broadcast_domain, name=None)
A secondary broadcast onto the edges of a domain

evaluates_on_edges (dimension)
See pybamm. Symbol.evaluates_on_edges ().

pybamm.ones_1like (*symbols)

Create a symbol with the same shape as the input symbol and with constant value ‘1’, using FullBroadcast.

Parameters symbols (Symbol)— Symbols whose shape to copy

3.1.14 Functions

class pybamm.Function (function, *children, name=None, derivative="autograd’, differenti-

ated_function=None)

A node in the expression tree representing an arbitrary function

Parameters

function (method) — A function can have 0 or many inputs. If no inputs are
given, self.evaluate() simply returns func(). Otherwise, self.evaluate(t, y, u) returns
func(childO.evaluate(t, y, u), child1.evaluate(t, y, u), etc).

children (pybamm. Symbol)— The children nodes to apply the function to

derivative (str, optional)-— Which derivative to use when differentiating (“auto-
grad” or “derivative”). Default is “autograd”.

differentiated function (method, optional)- The function which was dif-
ferentiated to obtain this one. Default is None.

xExtends (pybamm. Symbol) —

diff (variable)
See pybamm. Symbol.diff ().

evaluate (1=None, y=None, y_dot=None, inputs=None, known_evals=None)
See pybamm. Symbol.evaluate ().

evaluates_on_edges (dimension)
See pybamm. Symbol.evaluates_on_edges ().

get_children_domains (children_list)
Obtains the unique domain of the children. If the children have different domains then raise an error

new_copy ()
See pybamm. Symbol.new_copy ().

class pybamm.SpecificFunction (function, child)
Parent class for the specific functions, which implement their own diff operators directly.

Parameters

* function (method)— Function to be applied to child

* child (pybamm. Symbol) — The child to apply the function to

3.1. Expression Tree

35

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

class pybamm.Cos (child)
Cosine function

pybamm. cos (child)
Returns cosine function of child.

class pybamm.Cosh (child)
Hyberbolic cosine function

pybamm. cosh (child)
Returns hyperbolic cosine function of child.

class pybamm.Exponential (child)
Exponential function

pybamm. exp (child)
Returns exponential function of child.

class pybamm.Log (child)
Logarithmic function

pybamm. log (child, base="e’)
Returns logarithmic function of child (any base, default ‘e’).

pybamm.max (child)
Returns max function of child. Not to be confused with pybamm. maximum (), which returns the larger of two
objects.

pybamm.min (child)
Returns min function of child. Not to be confused with pybamm.minimum (), which returns the smaller of
two objects.

class pybamm.Sin (child)
Sine function

pybamm. sin (child)
Returns sine function of child.

class pybamm.Sinh (child)
Hyperbolic sine function

pybamm. sinh (child)
Returns hyperbolic sine function of child.

3.1.15 Input Parameter
class pybamm.InputParameter (name, domain=None)
A node in the expression tree representing an input parameter
This node’s value can be set at the point of solving, allowing parameter estimation and control
Parameters
* name (str)—name of the node

e domain (iterable of str, or str)-listof domains over which the node is valid
(empty list indicates the symbol is valid over all domains)

new_copy ()
See pybamm. Symbol.new_copy ().

set_expected_size (size)
Specify the size that the input parameter should be

36 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

3.1.16 Interpolant

class pybamm.Interpolant (data, child, name=None, interpolator="cubic spline’, extrapolate=True,

entries_string=None)
Interpolate data in 1D.

Parameters

* data (numpy.ndarray) — Numpy array of data to use for interpolation. Must have
exactly two columns (x and y data)

* child (pybamm. Symbol) — Node to use when evaluating the interpolant

* name (str, optional)- Name of the interpolant. Default is None, in which case the
name “interpolating function” is given.

* interpolator (str, optional) — Which interpolator to use (“pchip” or “cu-
bic spline”). Note that whichever interpolator is used must be differentiable (for
Interpolator._diff). Default is “cubic spline”. Note that “pchip” may give slow
results.

* extrapolate (bool, optional)— Whether to extrapolate for points that are out-
side of the parametrisation range, or return NaN (following default behaviour from scipy).
Default is True.

* xxExtends** (pybamm.Function)—

set_id()
See pybamm. Symbol.set_id ().

3.1.17 Operations on expression trees

Classes and functions that operate on the expression tree

Simplify

class pybamm.Simplification (simplified_symbols=None)

simplify (symbol, clear_domains=True)
This function recurses down the tree, applying any simplifications defined in classes derived from py-
bamm.Symbol. E.g. any expression multiplied by a pybamm.Scalar(0) will be simplified to a py-
bamm.Scalar(0). If a symbol has already been simplified, the stored value is returned.

Parameters
* symbol (pybamm. Symbol)— The symbol to simplify

* clear_domains (bool) — Whether to remove a symbol’s domain when simplifying.
Default is True.

Returns
* pybamm.Symbol
* Simplified symbol

pybamm.simplify if constant (symbol, keep_domains=False)
Utility function to simplify an expression tree if it evalutes to a constant scalar, vector or matrix

3.1. Expression Tree 37

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.3

pybamm.simplify addition_subtraction (myclass, left, right)

if children are associative (addition, subtraction, etc) then try to find groups of constant children (that produce a
value) and simplify them to a single term

The purpose of this function is to simplify expressions like (1 + (1 + p)), which should be simplified to (2 +
p)- The former expression consists of an Addition, with a left child of Scalar type, and a right child of another
Addition containing a Scalar and a Parameter. For this case, this function will first flatten the expression to
a list of the bottom level children (i.e. [Scalar(1l), Scalar(2), Parameter(p)]), and their operators (i.e. [None,
Addition, Addition]), and then combine all the constant children (i.e. Scalar(1) and Scalar(1)) to a single child
(i.e. Scalar(2))

Note that this function will flatten the expression tree until a symbol is found that is not either an Addition or a
Subtraction, so this function would simplify (3 - (2 + a*b*c)) to (1 + a*b*c)

This function is useful if different children expressions contain non-constant terms that prevent them from being
simplified, so for example (1 + a) + (b - 2) - (6 + ¢) will be simplified to (-7 +a+b - ¢)

Parameters

* myclass (class)—the binary operator class (pybamm.Addition or pybamm.Subtraction)
operating on children left and right

* left (derived from pybamm.Symbol) - the left child of the binary operator

* right (derived from pybamm.Symbol) - the right child of the binary operator

pybamm.simplify multiplication_division (myclass, left, right)

if children are associative (multiply, division, etc) then try to find groups of constant children (that produce a
value) and simplify them

The purpose of this function is to simplify expressions of the type (1 * ¢ / 2), which should simplify to (0.5 *
¢). The former expression consists of a Division, with a left child of a Multiplication containing a Scalar and
a Parameter, and a right child consisting of a Scalar. For this case, this function will first flatten the expression
to a list of the bottom level children on the numerator (i.e. [Scalar(1), Parameter(c)]) and their operators (i.e.
[None, Multiplication]), as well as those children on the denominator (i.e. [Scalar(2)]. After this, all the constant
children on the numerator and denominator (i.e. Scalar(1) and Scalar(2)) will be combined appropriately, in this
case to Scalar(0.5), and combined with the nonconstant children (i.e. Parameter(c))

Note that this function will flatten the expression tree until a symbol is found that is not either an Multiplication,
Division or MatrixMultiplication, so this function would simplify (3*(1 + d)*2) to (6 * (1 + d))

As well as Multiplication and Division, this function can handle MatrixMultiplication. If any MatrixMultipli-
cations are found on the numerator/denominator, no reordering of children is done to find groups of constant
children. In this case only neighbouring constant children on the numerator are simplified

Parameters

* myclass (class)— the binary operator class (pybamm.Addition or pybamm.Subtraction)
operating on children left and right

* left (derived from pybamm.Symbol) — the left child of the binary operator

* right (derived from pybamm.Symbol) — the right child of the binary operator

EvaluatorPython

class pybamm.EvaluatorPython (symbol)

Converts a pybamm expression tree into pure python code that will calculate the result of calling evaluate(t, y)
on the given expression tree.

Parameters symbol (pybamm. Symbol)— The symbol to convert to python code

38

Chapter 3. API documentation

PyBaMM Documentation, Release 0.2.3

evaluate (1=None, y=None, y_dot=None, inputs=None, known_evals=None)
Acts as a drop-in replacement for pybamm. Symbol.evaluate ()

Jacobian
class pybamm.Jacobian (known_jacs=None, clear_domain=True)
Helper class to calculate the jacobian of an expression.
Parameters
* known_jacs (dict {variable ids -> pybamm. Symbo1}) — cached jacobians
* clear_domain (bool)— wether or not the jacobian clears the domain (default True)

jac (symbol, variable)
This function recurses down the tree, computing the Jacobian using the Jacobians defined in classes derived
from pybamm.Symbol. E.g. the Jacobian of a ‘pybamm.Multiplication’ is computed via the product rule.
If the Jacobian of a symbol has already been calculated, the stored value is returned. Note: The Jacobian
is the derivative of a symbol with respect to a (slice of) a State Vector.

Parameters

e symbol (pybamm. Symbol)— The symbol to calculate the Jacobian of

e variable (pybamm. Symbol) — The variable with respect to which to differentiate
Returns Symbol representing the Jacobian

Return type pybamm. Symbol

Convert to CasADi

class pybamm.CasadiConverter (casadi_symbols=None)

convert (symbol, t, y, y_dot, inputs)
This function recurses down the tree, converting the PyBaMM expression tree to a CasADi expression tree

Parameters
e symbol (pybamm. Symbol)— The symbol to convert
* t (casadi.MX)— A casadi symbol representing time
e y (casadi.MX) — A casadi symbol representing state vectors
e y_dot (casadi.MX)— A casadi symbol representing time derivatives of state vectors
* inputs (dict)— A dictionary of casadi symbols representing parameters
Returns The converted symbol

Return type casadi.MX

Symbol Unpacker

class pybamm.SymbolUnpacker (classes_to_find, unpacked_symbols=None)
Helper class to unpack a (set of) symbol(s) to find all instances of a class. Uses caching to speed up the process.

Parameters

3.1. Expression Tree 39

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

* classes_to_find(list of pybamm classes)— Classes to identify in the equa-
tions

* unpacked_symbols (dict {variable ids -> pybamm. Symbol}) — cached unpacked
equations

unpack_list_of_symbols (list_of _symbols)
Unpack a list of symbols. See SymbolUnpacker.unpack ()

Parameters list_of_ symbols (list of pybamm. Symbol) — List of symbols to unpack
Returns List of unpacked symbols with class in self.classes_to_find
Return type list of pybamm. Symbol

unpack_symbol (symbol)
This function recurses down the tree, unpacking the symbols and saving the ones that have a class in
self.classes_to_find.

Parameters symbol (list of pybamm. Symbol) — The symbols to unpack
Returns List of unpacked symbols with class in self.classes_to_find

Return type list of pybamm. Symbol

3.2 Models

Below is an overview of all the battery models included in PyBaMM. Each of the pre-built models contains a reference
to the paper in which it is derived.

The models can be customised using the options dictionary defined in the pybamm. BaseBatteryModel (which
also provides information on which options and models are compatible) Visit our examples page to see how these
models can be solved, and compared, using PyBaMM.

3.2.1 Base Models

Base Model

class pybamm.BaseModel (name="Unnamed model’)
Base model class for other models to extend.

name
A string giving the name of the model

Type str

options
A dictionary of options to be passed to the model

Type dict

rhs
A dictionary that maps expressions (variables) to expressions that represent the rhs

Type dict

algebraic
A dictionary that maps expressions (variables) to expressions that represent the algebraic equations. The
algebraic expressions are assumed to equate to zero. Note that all the variables in the model must exist in
the keys of rhs or algebraic.

40 Chapter 3. API documentation

https://github.com/pybamm-team/PyBaMM/tree/master/examples/notebooks/models
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Type dict

initial_conditions
A dictionary that maps expressions (variables) to expressions that represent the initial conditions for the
state variables y. The initial conditions for algebraic variables are provided as initial guesses to a root
finding algorithm that calculates consistent initial conditions.

Type dict

boundary_ conditions
A dictionary that maps expressions (variables) to expressions that represent the boundary conditions

Type dict

variables
A dictionary that maps strings to expressions that represent the useful variables

Type dict

events
A list of events. Each event can either cause the solver to terminate (e.g. concentration goes negative), or
be used to inform the solver of the existance of a discontinuity (e.g. discontinuity in the input current)

Type list of pybamm. Event

concatenated_rhs
After discretisation, contains the expressions representing the rhs equations concatenated into a single
expression

Type pybamm.Concatenation

concatenated_algebraic
After discretisation, contains the expressions representing the algebraic equations concatenated into a sin-
gle expression

Type pybamm.Concatenation

concatenated_initial_conditions
After discretisation, contains the vector of initial conditions

Type numpy.array

mass_matrix
After discretisation, contains the mass matrix for the model. This is computed automatically

Type pybamm.Matrix

mass_matrix inv
After discretisation, contains the inverse mass matrix for the differential (rhs) part of model. This is
computed automatically

Type pybamm.Matrix

jacobian
Contains the Jacobian for the model. If model.use_jacobian is True, the Jacobian is computed automati-
cally during solver set up

Type pybamm.Concatenation

jacobian_rhs
Contains the Jacobian for the part of the model which contains time derivatives. If model.use_jacobian is
True, the Jacobian is computed automatically during solver set up

Type pybamm.Concatenation

Models 41

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

jacobian_algebraic
Contains the Jacobian for the algebraic part of the model. This may be used by the solver when calculating
consistent initial conditions. If model.use_jacobian is True, the Jacobian is computed automatically during
solver set up

Type pybamm.Concatenation

use_jacobian
Whether to use the Jacobian when solving the model (default is True)

Type bool

use_simplify
Whether to simplify the expression tress representing the rhs and algebraic equations, Jacobain (if using)
and events, before solving the model (default is True)

Type bool

convert_ _to_format
Whether to convert the expression trees representing the rhs and algebraic equations, Jacobain (if using)
and events into a different format:

* None: keep PyBaMM expression tree structure.

e “python”: convert into pure python code that will calculate the result of calling evaluate(t, y) on the
given expression treeself.

e “casadi”: convert into CasADi expression tree, which then uses CasADi’s algorithm to calculate the
Jacobian.

Default is “casadi”.

Type str

check_algebraic_equations (post_discretisation)
Check that the algebraic equations are well-posed. Before discretisation, each algebraic equation key must
appear in the equation After discretisation, there must be at least one StateVector in each algebraic equation

check _default_ variables_dictionaries ()
Chec that the right variables are provided.

check_ics_bcs ()
Check that the initial and boundary conditions are well-posed.

check_no_repeated_keys ()
Check that no equation keys are repeated

check_well_determined (post_discretisation)
Check that the model is not under- or over-determined.

check_well_posedness (post_discretisation=False)
Check that the model is well-posed by executing the following tests: - Model is not over- or underde-
termined, by comparing keys and equations in rhs and algebraic. Overdetermined if more equations
than variables, underdetermined if more variables than equations. - There is an initial condition in
self.initial_conditions for each variable/equation pair in self.rhs - There are appropriate boundary con-
ditions in self.boundary_conditions for each variable/equation pair in self.rhs and self.algebraic

Parameters post_discretisation (boolean) — A flag indicating tests to be skipped
after discretisation

default_solver
Return default solver based on whether model is ODE model or DAE model

42 Chapter 3. API documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

info (symbol_name)
Provides helpful summary information for a symbol.

Parameters parameter_name (str)—

input_parameters
Returns all the input parameters in the model

new_copy (build=False)
Create an empty copy with identical options, or new options if specified. The ‘build’ parameter is included
for compatibility with subclasses, but unused.

parameters
Returns all the parameters in the model

timescale
Timescale of model, to be used for non-dimensionalising time when solving

update (*submodels)
Update model to add new physics from submodels

Parameters submodel (iterable of pybamm. BaseMode 1) — The submodels from which to

create new model

Base Battery Model

class pybamm.BaseBatteryModel (options=None, name="Unnamed battery model’)
Base model class with some default settings and required variables

options
A dictionary of options to be passed to the model. The options that can be set are listed below. Note that
not all of the options are compatible with each other and with all of the models implemented in PyBaMM.

“dimensionality” [int, optional] Sets the dimension of the current collector problem. Can be 0 (de-
fault), 1 or 2.

“surface form™ [bool or str, optional] Whether to use the surface formulation of the problem. Can
be False (default), “differential” or “algebraic”.

“convection” [bool or str, optional] Whether to include the effects of convection in the model. Can
be False (default), “differential” or “algebraic”. Must be ‘False’ for lithium-ion models.

“side reactions” [list, optional] Contains a list of any side reactions to include. Default is []. If this
list is not empty (i.e. side reactions are included in the model), then “surface form” cannot be
‘False’.

“interfacial surface area” [str, optional] Sets the model for the interfacial surface area. Can be
“constant” (default) or “varying”. Not currently implemented in any of the models.

“current collector” [str, optional] Sets the current collector model to use. Can be “uniform” (de-
fault), “potential pair” or “potential pair quite conductive”.

“particle” [str, optional] Sets the submodel to use to describe behaviour within the particle. Can be
“Fickian diffusion” (default) or “fast diffusion”.

“thermal” [str, optional] Sets the thermal model to use. Can be “isothermal” (default), “lumped”,
“x-lumped”, or “x-full”.

“external submodels™ [list] A list of the submodels that you would like to supply an external variable
for instead of solving in PyBaMM. The entries of the lists are strings that correspond to the
submodel names in the keys of self.submodels.

3.2. Models

43

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

* “sei” [str] Set the sei submodel to be used. Options are:
— None: pybamm. sei.NoSEI (no SEI growth)
— “constant”: pybamm. sei.Constant (constant SEI thickness)
— “reaction limited”: pybamm. sei.ReactionLimited
— “solvent-diffusion limited”: pybamm. sei.SolventDiffusionLimited
— “electron-migration limited”: pybamm. sei.ElectronMigrationLimited
— “interstitial-diffusion limited”: pybamm. sei.InterstitialDiffusionLimited
— “ecreaction limited”: pybamm. sei.EcReactionLimited

* “sei film resistance” [str] Set the submodel for additional term in the overpotential due to SEI. The
default value is “None” if the “sei” option is “None”, and “distributed” otherwise. This is because
the “distributed” model is more complex than the model with no additional resistance, which adds
unnecessary complexity if there is no SEI in the first place

— None: no additional resistance

F

nT:ﬁ*(gﬁs*Qbe*U)

— “distributed”: properly included additional resistance term

F

:ﬁ*(ﬁbs_d)e_U_RSei*Lsei*j)

Mr

— ‘“‘average”: constant additional resistance term (approximation to the true model). This model can give sir

F 1
r = 5 s e_U_Rsei Lsei -
M= g * (05 = ¢ * Loei*)
* “sei porosity change” [bool] Whether to include porosity change due to SEI formation (default
False)
Type dict
**Extends

Type ** pybamm.BaseModel

new_copy (build=True)
Create a copy of the model. Overwrites the functionality of pybamm. BaseMode1 to make sure that the
submodels are updated correctly

process_parameters_and_discretise (symbol, parameter_values, disc)
Process parameters and discretise a symbol using supplied parameter values and discretisation. Note: care
should be taken if using spatial operators on dimensional symbols. Operators in pybamm are written in
non-dimensional form, so may need to be scaled by the appropriate length scale. It is recommended to use
this method on non-dimensional symbols.

Parameters
e symbol (pybamm. Symbol)— Symbol to be processed

* parameter_values (pybamm.ParameterValues)— The parameter values to use
during processing

e disc (pybamm.Discretisation)— The discrisation to use

Returns Processed symbol

44 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Return type pybamm. Symbol

set_external_ circuit_submodel ()
Define how the external circuit defines the boundary conditions for the model, e.g. (not necessarily
constant-) current, voltage, etc

set_soc_variables ()
Set variables relating to the state of charge. This function is overriden by the base battery models

Event
class pybamm.Event (name, expression, event_type=<EventType. TERMINATION: 0>)
Defines an event for use within a pybamm model

name
A string giving the name of the event

Type str

event_type
An enum defining the type of event

Type pybamm.EventType

expression
An expression that defines when the event occurs

Type pybamm.Symbol

evaluate (1=None, y=None, y_dot=None, inputs=None, known_evals=None)
Acts as a drop-in replacement for pybamm. Symbol.evaluate ()

class pybamm.EventType
Defines the type of event, see pybamm. Event

TERMINATION indicates an event that will terminate the solver, the expression should return O when the event
is triggered

DISCONTINUITY indicates an expected discontinuity in the solution, the expression should return the time
that the discontinuity occurs. The solver will integrate up to the discontinuity and then restart just after the
discontinuity.

3.2.2 Lithium-ion Models

Base Lithium-ion Model

class pybamm.lithium_ion.BaseModel (options=None, name="Unnamed lithium-ion model’)
Overwrites default parameters from Base Model with default parameters for lithium-ion models

Extends: pybamm.BaseBatteryModel

Single Particle Model (SPM)

class pybamm.lithium_ion.SPM (options=None, name=’Single Particle Model’, build=True)
Single Particle Model (SPM) of a lithium-ion battery, from'.

! SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. Journal
of The Electrochemical Society, 166(15):A3693—-A3706, 2019

3.2. Models 45

https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

Parameters
* options (dict, optional)— A dictionary of options to be passed to the model.
* name (str, optional)- The name of the model.

e build (bool, optional)— Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

References

Extends: pybamm. l1ithium ion.BaseModel

class pybamm.lithium_ion.BasicSPM (name="Single Particle Model’)
Single Particle Model (SPM) model of a lithium-ion battery, from?.

This class differs from the pybamm. 1ithium ion.SPM model class in that it shows the whole model in a
single class. This comes at the cost of flexibility in combining different physical effects, and in general the main
SPM class should be used instead.

Parameters name (str, optional)- The name of the model.

References

Extends: pybamm. 1ithium ion.BaseModel

new_copy (build=False)
Create a copy of the model. Overwrites the functionality of pybamm. BaseModel to make sure that the
submodels are updated correctly

Single Particle Model with Electrolyte (SPMe)

class pybamm.lithium_ion.SPMe (options=None, name="Single Particle Model with electrolyte’,
build=True)
Single Particle Model with Electrolyte (SPMe) of a lithium-ion battery, from'.

Parameters
* options (dict, optional)- A dictionary of options to be passed to the model.
e name (str, optional)- The name of the model.

* build (bool, optional)— Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

References

Extends: pybamm. lithium_ion.BaseModel

2 SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. Journal
of The Electrochemical Society, 166(15):A3693—-A3706, 2019

! SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. Journal
of The Electrochemical Society, 166(15):A3693—-A3706, 2019

46 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.3

Doyle-Fuller-Newman (DFN)
class pybamm.lithium_ion.DFN (options=None, name="Doyle-Fuller-Newman model’, build=True)
Doyle-Fuller-Newman (DFN) model of a lithium-ion battery, from'.
Parameters
* options (dict, optional)— A dictionary of options to be passed to the model.
* name (str, optional)- The name of the model.

* build (bool, optional) — Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

References

Extends: pybamm. 1ithium ion.BaseModel

class pybamm.lithium_ion.BasicDFN (name=’Doyle-Fuller-Newman model’)
Doyle-Fuller-Newman (DFN) model of a lithium-ion battery, from”.

This class differs from the pybamm. 1ithium_ 1ion.DEFN model class in that it shows the whole model in a
single class. This comes at the cost of flexibility in comparing different physical effects, and in general the main
DEFEN class should be used instead.

Parameters name (str, optional)- The name of the model.

References

Extends: pybamm. 1ithium ion.BaseModel

new_copy (build=False)
Create a copy of the model. Overwrites the functionality of pybamm. BaseMode 1 to make sure that the
submodels are updated correctly

3.2.3 Lead Acid Models

Base Model

class pybamm.lead_acid.BaseModel (options=None, name="Unnamed lead-acid model’)
Overwrites default parameters from Base Model with default parameters for lead-acid models
Extends: pybamm.BaseBatteryModel

set_soc_variables ()
Set variables relating to the state of charge.

! SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. Journal
of The Electrochemical Society, 166(15):A3693—-A3706, 2019

2 SG Marquis, V Sulzer, R Timms, CP Please and SJ Chapman. “An asymptotic derivation of a single particle model with electrolyte”. Journal
of The Electrochemical Society, 166(15):A3693—-A3706, 2019

3.2. Models 47

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

Leading-Order Quasi-Static Model
class pybamm.lead_acid.LOQS (options=None, name="LOQS model’, build=True)
Leading-Order Quasi-Static model for lead-acid, from!.
Parameters
* options (dict, optional)— A dictionary of options to be passed to the model.
* name (str, optional)- The name of the model.

* build (bool, optional) — Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

References

Extends: pybamm. lead_acid.BaseModel

set_external circuit_submodel ()
Define how the external circuit defines the boundary conditions for the model, e.g. (not necessarily
constant-) current, voltage, etc

Higher-Order Models

class pybamm.lead_acid.BaseHigherOrderModel (options=None, name='Composite model’,
build=True)
Base model for higher-order models for lead-acid, from'. Uses leading-order model from pybamm.

lead _acid.LOQS
Parameters
* options (dict, optional)— A dictionary of options to be passed to the model.
* name (str, optional)- The name of the model.

* build (bool, optional)— Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

References

Extends: pybamm. lead_acid.BaseModel

set_full convection_submodel ()
Update convection submodel, now that we have the spatially heterogeneous interfacial current densities

set_full interface_submodel ()
Set full interface submodel, to get spatially heterogeneous interfacial current densities

set_full porosity submodel ()
Update porosity submodel, now that we have the spatially heterogeneous interfacial current densities

'V Sulzer, ST Chapman, CP Please, DA Howey, and CW Monroe. Faster lead-acid battery simulations from porous-electrode theory: Part II.
Asymptotic analysis. Journal of The Electrochemical Society 166.12 (2019), A2372-A2382.

'V Sulzer, ST Chapman, CP Please, DA Howey, and CW Monroe. Faster lead-acid battery simulations from porous-electrode theory: Part II.
Asymptotic analysis. Journal of The Electrochemical Society 166.12 (2019), A2372-A2382.

48 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.3

class pybamm.lead_acid.FOQS (options=None, name="FOQS model’, build=True)
First-order quasi-static model for lead-acid, from!. Uses leading-order model from pybamm. lead acid.
LOQS

Parameters
* options (dict, optional)- A dictionary of options to be passed to the model.
* name (str, optional)- The name of the model.

* build (bool, optional)— Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

e ¥xxExtends (** pybamm. lead acid.BaseHigherOrderModel) —

set_full porosity submodel ()
Update porosity submodel, now that we have the spatially heterogeneous interfacial current densities

class pybamm.lead_acid.Composite (options=None, name="Composite model’, build=True)
Composite model for lead-acid, from'. Uses leading-order model from pybamm. lead_acid.LOOS

Extends: pybamm. lead _acid.BaseHigherOrderModel

set_full_ porosity_submodel ()
Update porosity submodel, now that we have the spatially heterogeneous interfacial current densities

class pybamm.lead_acid.CompositeExtended (options=None, name='Extended composite

model (distributed)’, build=True)
Extended composite model for lead-acid. Uses leading-order model from pybamm. lead_acid.LOQS

Parameters
* options (dict, optional)— A dictionary of options to be passed to the model.
* name (str, optional)- The name of the model.

e build (bool, optional)— Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

Extends: pybamm. lead _acid.BaseHigherOrderModel

Full Model

class pybamm.lead_acid.Full (options=None, name="Full model’, build=True)
Porous electrode model for lead-acid, from', based on the Newman-Tiedemann model.

Parameters
* options (dict, optional)- A dictionary of options to be passed to the model.
* name (str, optional)- The name of the model.

* build (bool, optional)— Whether to build the model on instantiation. Default is
True. Setting this option to False allows users to change any number of the submodels
before building the complete model (submodels cannot be changed after the model is built).

!V Sulzer, ST Chapman, CP Please, DA Howey, and CW Monroe. Faster lead-acid battery simulations from porous-electrode theory: Part II.
Asymptotic analysis. Journal of The Electrochemical Society 166.12 (2019), A2372-A2382.

3.2. Models 49

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.3

References

Extends: pybamm. lead _acid.BaseModel

class pybamm.lead_acid.BasicFull (name=’Basic full model’)
Porous electrode model for lead-acid, from?.

This class differs from the pybamm. lead _acid.Full model class in that it shows the whole model in a
single class. This comes at the cost of flexibility in comparing different physical effects, and in general the main
DEFN class should be used instead.

Parameters name (str, optional)-— The name of the model.

References

Extends: pybamm. lead_acid.BaseModel

new_copy (build=False)
Create a copy of the model. Overwrites the functionality of pybamm. BaseMode1 to make sure that the
submodels are updated correctly

3.2.4 Submodels

Base Submodel

class pybamm.BaseSubModel (param, domain=None, name="Unnamed submodel’, external=False)
The base class for all submodels. All submodels inherit from this class and must only provide public methods
which overwrite those in this base class. Any methods added to a submodel that do not overwrite those in this
bass class are made private with the prefix ‘_’, providing a consistent public interface for all submodels.

Parameters param (parameter class)— The model parameter symbols

param
The model parameter symbols

Type parameter class

rhs
A dictionary that maps expressions (variables) to expressions that represent the rhs

Type dict

algebraic
A dictionary that maps expressions (variables) to expressions that represent the algebraic equations. The
algebraic expressions are assumed to equate to zero. Note that all the variables in the model must exist in
the keys of rhs or algebraic.

Type dict

initial conditions
A dictionary that maps expressions (variables) to expressions that represent the initial conditions for the
state variables y. The initial conditions for algebraic variables are provided as initial guesses to a root
finding algorithm that calculates consistent initial conditions.

Type dict

2V Sulzer, ST Chapman, CP Please, DA Howey, and CW Monroe. Faster lead-acid battery simulations from porous-electrode theory: Part IL.
Asymptotic analysis. Journal of The Electrochemical Society 166.12 (2019), A2372-A2382..

50 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

boundary_conditions
A dictionary that maps expressions (variables) to expressions that represent the boundary conditions

Type dict

variables
A dictionary that maps strings to expressions that represent the useful variables

Type dict

events
A list of events. Each event can either cause the solver to terminate (e.g. concentration goes negative), or
be used to inform the solver of the existance of a discontinuity (e.g. discontinuity in the input current)

Type list

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_external_variables ()
A public method that returns the variables in a submodel which are supplied by an external source.

Returns A list of the external variables in the model.
Return type list

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic (variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_events (variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

. Models S

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Parameters variables (dict)— The variables in the whole model.

set_initial_conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

Current Collector

Base Model

class pybamm.current_collector.BaseModel (param)
Base class for current collector submodels

Parameters param (parameter class)— The parameters to use for this submodel

Extends: pybamm.BaseSubModel

Composite Potential Pair models

class pybamm.current_collector.BaseCompositePotentialPair (param)
Composite potential pair model for the current collectors. This is identical to the BasePotentialPair model,
except the name of the fundamental variables are changed to avoid clashes with leading order.

Parameters param (parameter class)— The parameters to use for this submodel
Extends: pybamm. current_collector.BasePotentialPair

get_fundamental_ variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict
class pybamm.current_collector.CompositePotentialPair2pluslD (param)

class pybamm.current_collector.CompositePotentialPairlpluslD (param)

Effective Current collector Resistance models

class pybamm.current_collector.EffectiveResistance (options=None, name="Effective
resistance in current collector

model’)
A model which calculates the effective Ohmic resistance of the current collectors in the limit of large electrical

52 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

conductivity. For details see'. Note that this formulation assumes uniform potential across the tabs. See
pybamm.AlternativeEffectiveResistance2D for the formulation that assumes a uniform current
density at the tabs (in 1D the two formulations are equivalent).

Parameters

* options (dict)— A dictionary of options to be passed to the model. The options that can
be set are listed below.

— ”dimensionality” [int, optional] Sets the dimension of the current collector problem.
Can be 1 (default) or 2.

e name (str, optional)- The name of the model.

References

Extends: pybamm. BaseMode 1

default_solver
Return default solver based on whether model is ODE model or DAE model

post_process (solution, param_values, V_av, I_av)
Calculates the potentials in the current collector and the terminal voltage given the average voltage and
current. Note: This takes in the processed V_av and I_av from a 1D simulation representing the average
cell behaviour and returns a dictionary of processed potentials.

class pybamm.current_collector.AlternativeEffectiveResistance2D
A model which calculates the effective Ohmic resistance of the 2D current collectors in the limit of large elec-
trical conductivity. This model assumes a uniform current density at the tabs and the solution is computed by
first solving and auxilliary problem which is the related to the resistances.

Extends: pybamm. BaseModel

default_solver
Return default solver based on whether model is ODE model or DAE model

post_process (solution, param_values, V_av, I_av)
Calculates the potentials in the current collector given the average voltage and current. Note: This takes in
the processed V_av and I_av from a 1D simulation representing the average cell behaviour and returns a
dictionary of processed potentials.

Uniform

class pybamm.current_collector.Uniform (param)
A submodel for uniform potential in the current collectors which is valid in the limit of fast conductivity in the
current collectors.

Parameters param (parameter class)— The parameters to use for this submodel
Extends: pybamm. current_collector.BaseModel

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.

I' R Timms, SG Marquis, V Sulzer, CP Please and SJ Chapman. “Asymptotic Reduction of a Lithium-ion Pouch Cell Model”. Submitted, 2020.

3.2. Models 53

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Potential Pair models

class pybamm.current_collector.BasePotentialPair (param)
A submodel for Ohm’s law plus conservation of current in the current collectors. For details on the potential

. . 2
pair formulation see' and”.

Parameters param (parameter class)— The parameters to use for this submodel

References

Extends: pybamm. current_collector.BaseModel

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent

of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic (variables)
A method to set the differential equations which do not contain a time derivative. Note: this method

modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubMode 1.

Parameters variables (dict)— The variables in the whole model.

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of

self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

class pybamm.current_collector.PotentialPair2pluslD (param)
Base class for a 2+1D potential pair model

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of

self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

class pybamm.current_collector.PotentialPairlpluslD (param)
Base class for a 1+1D potential pair model.

I R Timms, SG Marquis, V Sulzer, CP Please and SJ Chapman. “Asymptotic Reduction of a Lithium-ion Pouch Cell Model”. Submitted, 2020.
2 SG Marquis, R Timms, V Sulzer, CP Please and SJ Chapman. “A Suite of Reduced-Order Models of a Single-Layer Lithium-ion Pouch Cell”.

In preparation, 2020.

54 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

Quite Conductive Potential Pair models

class pybamm.current_collector.BaseQuiteConductivePotentialPair (param)
A submodel for Ohm’s law plus conservation of current in the current collectors, in the limit of quite conductive
electrodes.

Parameters param (parameter class)— The parameters to use for this submodel
Extends: pybamm. current_collector.BaseModel

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic (variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) — The variables in the whole model.
class pybamm.current_collector.QuiteConductivePotentialPairlpluslD (param)

class pybamm.current_collector.QuiteConductivePotentialPair2pluslD (param)

Convection

The convection submodels are split up into “through-cell”, which is the x-direction problem in the electrode domains,
and “transverse”, which is the z-direction problem in the separator domain

Base Convection

class pybamm.convection.BaseModel (param)
Base class for convection submodels.

Parameters param (parameter class)— The parameters to use for this submodel

3.2. Models 55

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Extends: pybamm. BaseSubModel

Through-cell Convection
Base Model

class pybamm.convection.through_cell.BaseThroughCellModel (param)
Base class for convection submodels in the through-cell direction.

Parameters
* param (parameter class)— The parameters to use for this submodel

* x*xExtends (** pybamm. convection.BaseModel)—

No Convection

class pybamm.convection.through_cell.NoConvection (param)
A submodel for case where there is no convection.

Parameters param (parameter class)— The parameters to use for this submodel
Extends: pybamm. convection.through _cell.BaseThroughCellModel

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_ variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Leading-Order Through-cell Model

class pybamm.convection.through_cell.Explicit (param)
A submodel for the leading-order approximation of pressure-driven convection

Parameters param (parameter class)— The parameters to use for this submodel

Extends: pybamm. convection.through_cell.BaseThroughCellModel

56 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Full Through-cell Model

class pybamm.convection.through_cell.Full (param)
Submodel for the full model of pressure-driven convection

Parameters param (parameter class)— The parameters to use for this submodel
Extends: pybamm. convection.through cell.BaseThroughCellModel

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic (variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of

3.2. Models 57

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

Transverse Convection
Base Model

class pybamm.convection.transverse.BaseTransverseModel (param)
Base class for convection submodels in transverse directions.

Parameters
* param (parameter class)— The parameters to use for this submodel

* xxExtends (** pybamm. convection.BaseModel) —

No Transverse Convection

class pybamm.convection.transverse.NoConvection (param)
Submodel for no convection in transverse directions

Parameters
* param (parameter class)— The parameters to use for this submodel

* xxExtends (*¥* pybamm.convection.through_cell.
BaseTransverseModel) —

get_fundamental_ variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Uniform Transverse Model

class pybamm.convection.transverse.Uniform (param)
Submodel for uniform convection in transverse directions

Parameters param (parameter class)— The parameters to use for this submodel
Extends: pybamm.convection.through_cell.BaseTransverseModel

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.

58 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_ variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Full Transverse Convection

class pybamm.convection.transverse.Full (param)
Submodel for the full model of pressure-driven convection in transverse directions

Parameters
* param (parameter class)— The parameters to use for this submodel

* *xxExtends (*¥* pybamm.convection.through_cell.
BaseTransverseModel) —

get_fundamental_ variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic (variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

3.2. Models 59

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Electrode

Electrode Base Model

class pybamm.electrode.BaseElectrode (param, domain, set_positive_potential=True)
Base class for electrode submodels.

Parameters

* param (parameter class)— The parameters to use for this submodel
* domain (str) — Either ‘Negative’ or ‘Positive’

* set_positive_potential (bool, optional)-If True the battery model sets the

positve potential based on the current. If False, the potential is specified by the user. Default
is True.

* xxExtends (** pybamm. BaseSubModel) —

Ohmic

Base Model

class pybamm.electrode.ohm.BaseModel (param, domain, set_positive_potential=True)
A base class for electrode submodels that employ Ohm’s law.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (str) — Either ‘Negative’ or ‘Positive’
Extends: pybamm.electrode.BaseElectrode

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of

self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.
Leading Order Model

class pybamm.electrode.ohm.LeadingOrder (param, domain, set_positive_potential=True)
An electrode submodel that employs Ohm’s law the leading-order approximation to governing equations.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (str) — Either ‘Negative’ or ‘Positive’

* set_positive_potential (bool, optional)-If True the battery model sets the

positve potential based on the current. If False, the potential is specified by the user. Default
is True.

* xxExtends (** pybamm.electrode.ohm.BaseModel) —

get_coupled_variables (variables)
Returns variables which are derived from the fundamental variables in the model.

60 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.3

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

Composite Model

class pybamm.electrode.ohm.Composite (param, domain)
An explicit composite leading and first order solution to solid phase current conservation with ohm’s law. Note
that the returned current density is only the leading order approximation.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (st r)— Either ‘Negative electrode’ or ‘Positive electrode’
* xxExtends (** pybamm.BaseOhm) —

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

Full Model

class pybamm.electrode.ohm.Full (param, domain)
Full model of electrode employing Ohm’s law.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (str) — Either ‘Negative’ or ‘Positive’
Extends: pybamm.electrode.ohm.BaseModel

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.

3.2. Models 61

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_ variables ()
A public method that creates and returns the variables in a submodel which can be created independent

of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic (variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is

used as implemented in pybamm. BaseSubModel.
Parameters variables (dict) - The variables in the whole model.

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a

implemented in pybamm. BaseSubModel.
Parameters variables (dict) - The variables in the whole model.

set_initial_ conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of

self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

Surface Form

class pybamm.electrode.ohm.SurfaceForm (param, domain)
A submodel for the electrode with Ohm’s law in the surface potential formulation.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (str) - Either ‘Negative’ or ‘Positive’
Extends: pybamm.electrode.ohm.BaseModel

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

62 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Electrolyte Conductivity

Base Electrolyte Conductivity Submodel

class pybamm.electrolyte_conductivity.BaseElectrolyteConductivity (param, do-

)) main=None)
Base class for conservation of charge in the electrolyte.

Parameters

* param (parameter class)— The parameters to use for this submodel
* domain (str, optional)- The domain in which the model holds

* reactions (dict, optional)- Dictionary of reaction terms

e ¥xExtends (** pybamm.BaseSubModel) —

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of

self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.
Leading Order Model

class pybamm.electrolyte_conductivity.LeadingOrder (param, domain=None)
Leading-order model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive
equations. (Leading refers to leading-order in the asymptotic reduction)

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (str, optional)- The domain in which the model holds
* reactions (dict, optional)- Dictionary of reaction terms

* x*Extends (k* pybamm.electrolyte conductivity.
BaseElectrolyteConductivity)—

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict
Composite Model

class pybamm.electrolyte_conductivity.Composite (param, domain=None,

higher_order_terms="composite’)
Base class for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations.

3.2. Models 63

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Parameters
* param (parameter class)— The parameters to use for this submodel

* higher order_ terms (str)— What kind of higher-order terms to use (‘composite’ or
“first-order’)

e domain (str, optional)- The domain in which the model holds

* xxExtends (** pybamm.electrolyte conductivity.
BaseElectrolyteConductivity)—

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Full Model

class pybamm.electrolyte_conductivity.Full (param)
Full model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations.
(Full refers to unreduced by asymptotic methods)

Parameters
* param (parameter class)— The parameters to use for this submodel
* reactions (dict) - Dictionary of reaction terms

* x*Extends (k* pybamm.electrolyte conductivity.
BaseElectrolyteConductivity)—

check_algebraic_equations (post_discretisation)
Check that the algebraic equations are well-posed. Before discretisation, each algebraic equation key must
appear in the equation After discretisation, there must be at least one StateVector in each algebraic equation

check_default_variables_dictionaries ()
Chec that the right variables are provided.

check_ics_bcs ()
Check that the initial and boundary conditions are well-posed.

check_no_repeated_keys ()
Check that no equation keys are repeated

check_well_determined (post_discretisation)
Check that the model is not under- or over-determined.

check_well_posedness (post_discretisation=False)
Check that the model is well-posed by executing the following tests: - Model is not over- or underde-
termined, by comparing keys and equations in rhs and algebraic. Overdetermined if more equations
than variables, underdetermined if more variables than equations. - There is an initial condition in
self.initial_conditions for each variable/equation pair in self.rhs - There are appropriate boundary con-
ditions in self.boundary_conditions for each variable/equation pair in self.rhs and self.algebraic

64 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Parameters post_discretisation (boolean) — A flag indicating tests to be skipped
after discretisation

default_solver
Return default solver based on whether model is ODE model or DAE model

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_external_variables ()
A public method that returns the variables in a submodel which are supplied by an external source.

Returns A list of the external variables in the model.
Return type list

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

info (symbol_name)
Provides helpful summary information for a symbol.

Parameters parameter name (str)—

input_parameters
Returns all the input parameters in the model

new_copy (build=False)
Create an empty copy with identical options, or new options if specified. The ‘build’ parameter is included
for compatibility with subclasses, but unused.

parameters
Returns all the parameters in the model

set_algebraic (variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict) — The variables in the whole model.

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

3.2.

Models 65

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

set_events (variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of

self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-

plemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is

used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

timescale
Timescale of model, to be used for non-dimensionalising time when solving

update (*submodels)
Update model to add new physics from submodels

Parameters submodel (iterable of pybamm. BaseMode 1) — The submodels from which to
create new model

Surface Form

Full Model

class pybamm.electrolyte_conductivity.surface_potential_form.FullDifferential (param,
do-
main)

Full model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations
and where capacitance is present. (Full refers to unreduced by asymptotic methods)

Parameters param (parameter class)— The parameters to use for this submodel
Extends: pybamm.electrolyte_conductivity.surface_potential_form.BaseFull

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this

method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

class pybamm.electrolyte_conductivity.surface_potential_form.FullAlgebraic (param,
do-
main)
Full model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive equations.
(Full refers to unreduced by asymptotic methods)

Parameters param — The parameters to use for this submodel

66 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

set_algebraic (variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is

used as implemented in pybamm. BaseSubModel.
Parameters variables (dict)— The variables in the whole model.

Leading Order Model

class pybamm.electrolyte_conductivity.surface_potential_ form.LeadingOrderDifferential (param
do-
main)

Leading-order model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive
equations employing the surface potential difference formulation and where capacitance is present.

Parameters param (parameter class)— The parameters to use for this submodel

Extends: BaselLeadingOrderSurfaceForm
set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is

used as implemented in pybamm. BaseSubModel.
Parameters variables (dict) - The variables in the whole model.
class pybamm.electrolyte_conductivity.surface_potential_form.LeadingOrderAlgebraic (param,
do-

main)
Leading-order model for conservation of charge in the electrolyte employing the Stefan-Maxwell constitutive

equations employing the surface potential difference formulation.
Parameters param (parameter class)— The parameters to use for this submodel

Extends: BaselLeadingOrderSurfaceForm
set_algebraic (variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is

used as implemented in pybamm. BaseSubModel.
Parameters variables (dict)— The variables in the whole model.

Electrolyte Diffusion
Base Electrolyte Diffusion Submodel

class pybamm.electrolyte_diffusion.BaseElectrolyteDiffusion (param)

Base class for conservation of mass in the electrolyte.

Parameters
* param (parameter class)— The parameters to use for this submodel

* reactions (dict, optional)- Dictionary of reaction terms

* *xExtends (** pybamm.BaseSubModel) —

67

3.2. Models

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

set_events (variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of
self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

Constant Concentration

class pybamm.electrolyte_diffusion.ConstantConcentration (param)
Class for constant concentration of electrolyte

Parameters param (parameter class)— The parameters to use for this submodel
Extends: pybamm.electrolyte_diffusion.BaseElectrolyteDiffusion

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Leading Order Model

class pybamm.electrolyte_diffusion.LeadingOrder (param)
Class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations. (Leading
refers to leading order of asymptotic reduction)

Parameters
* param (parameter class)— The parameters to use for this submodel
* reactions (dict) - Dictionary of reaction terms

* x*Extends (F* pybamm.electrolyte diffusion.
BaseElectrolyteDiffusion)—

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

68 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

Composite Model

class pybamm.electrolyte_diffusion.Composite (param, extended=False)
Class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations. (Com-
posite refers to composite model by asymptotic methods)

Parameters
* param (parameter class)— The parameters to use for this submodel
* reactions (dict) — Dictionary of reaction terms
¢ extended (bool)— Whether to include feedback from the first-order terms

e *»xExtends (** pybamm.electrolyte_diffusion.
BaseElectrolyteDiffusion)—

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of

3.2. Models 69

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_rhs (variables)
Composite reaction-diffusion with source terms from leading order

Full Model

class pybamm.electrolyte_diffusion.Full (param)
Class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations. (Full
refers to unreduced by asymptotic methods)

Parameters
* param (parameter class)— The parameters to use for this submodel
* reactions (dict) - Dictionary of reaction terms

* xxExtends (** pybamm.electrolyte _diffusion.
BaseElectrolyteDiffusion)—

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_boundary conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

70 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

External circuit

Models to enforce different boundary conditions (as imposed by an imaginary external circuit) such as constant current,
constant voltage, constant power, or any other relationship between the current and voltage. “Current control” enforces
these directly through boundary conditions, while “Function control” submodels add an algebraic equation (for the
current) and hence can be used to set any variable to be constant.

Current control external circuit

class pybamm.external_circuit.CurrentControl (param)
External circuit with current control.

get_fundamental_ variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Function control external circuit

class pybamm.external_circuit.FunctionControl (param, external_circuit_function)
External circuit with an arbitrary function.

get_fundamental_ variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic (variables)
A method to set the differential equations which do not contain a time derivative. Note: this method

3.2. Models 71

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubMode 1.

Parameters variables (dict) - The variables in the whole model.

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

class pybamm.external_circuit.VoltageFunctionControl (param)
External circuit with voltage control, implemented as an extra algebraic equation.

class pybamm.external_ circuit.PowerFunctionControl (param)
External circuit with power control.

Experiment events

class pybamm.external_circuit.ExperimentEvents (param)
Model to impose the events for experiments.

set_events (variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of

self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

Parameters variables (dict) — The variables in the whole model.

Interface

Interface Base Model

class pybamm.interface.BaseInterface (param, domain, reaction)
Base class for interfacial currents

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (str) - The domain to implement the model, either: ‘Negative’ or ‘Positive’.
* reaction (str)— The name of the reaction being implemented

* x**Extends (** pybamm.BaseSubModel) —
Kinetics

class pybamm.interface.BaseKinetics (param, domain, reaction, options=None)
Base submodel for kinetics

Parameters
* param — model parameters
* domain (st r)— The domain to implement the model, either: ‘Negative’ or ‘Positive’.

* reaction (str)— The name of the reaction being implemented

72 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

* options (dict)— A dictionary of options to be passed to the model. In this case “sei film
resistance” is the important option. See pybamm.BaseBatteryModel

* xxExtends (** pybamm. interface.Baselnterface)—

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_ variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic (variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

class pybamm.interface.ButlerVolmer (param, domain, reaction, options=None)
Base submodel which implements the forward Butler-Volmer equation:

Jj =2x%jo(c) x sinh((ne/(2 * (1 4+ OT)) *n-(c))

Parameters
* param — model parameters
* domain (str)— The domain to implement the model, either: ‘Negative’ or ‘Positive’.
* reaction (str)— The name of the reaction being implemented

* options (dict)— A dictionary of options to be passed to the model. In this case “sei film
resistance” is the important option. See pybamm. BaseBatteryModel

* xxExtends (** pybamm.interface.kinetics.BaseKinetics)—

class pybamm.interface.NoReaction (param, domain, reaction)
Base submodel for when no reaction occurs

Parameters

3.2. Models 73

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

* param — model parameters

* domain (str)— The domain to implement the model, either: ‘Negative’ or ‘Positive’.
* reaction (str)— The name of the reaction being implemented

* x*Extends (** pybamm. interface.kinetics.BaseKinetics)—

class pybamm.interface.ForwardTafel (param, domain, reaction, options=None)
Base submodel which implements the forward Tafel equation:

J = Jo(c) x exp((ne/(2 % (1 + OT)) * n:(c))
Parameters
* param — model parameters
* domain (st r)— The domain to implement the model, either: ‘Negative’ or ‘Positive’.
* reaction (str)— The name of the reaction being implemented

* options (dict)— A dictionary of options to be passed to the model. In this case “sei film
resistance” is the important option. See pybamm.BaseBatteryModel

* x**Extends (** pybamm. interface.kinetics.BaseKinetics)—
class pybamm.interface.BackwardTafel (param, domain, reaction)
Base submodel which implements the backward Tafel equation:
j = —jo(c) x exp(—nr(c))
Parameters
* param — model parameters
* domain (st r)— The domain to implement the model, either: ‘Negative’ or ‘Positive’.

Extends: pybamm.interface.kinetics.BaseKinetics

Inverse Kinetics

class pybamm.interface.inverse_kinetics.InverseButlerVolmer (param, domain,
reaction, op-
tions=None)
A submodel that implements the inverted form of the Butler-Volmer relation to solve for the reaction overpoten-
tial.
Parameters

e param — Model parameters

* domain (iter of str, optional)- The domain(s)in which to compute the inter-
facial current. Default is None, in which case j.domain is used.

* reaction (str)— The name of the reaction being implemented

* options (dict)— A dictionary of options to be passed to the model. In this case “sei film
resistance” is the important option. See pybamm. BaseBatteryModel

* xxExtends (** pybamm. interface.BaselInterface)—

74 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

First-order Kinetics

class pybamm.interface.FirstOrderKinetics (param, domain, leading_order_model)
First-order kinetics

Parameters
* param — model parameters
* domain (str)— The domain to implement the model, either: ‘Negative’ or ‘Positive’.

* leading order_model (pybamm.interface.kinetics.BaseKinetics) —
The leading-order model with respect to which this is first-order

* xxExtends (** pybamm. interface.Baselnterface)—

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

class pybamm.interface.InverseFirstOrderKinetics (param, domain, lead-

ing_order_models)
Base inverse first-order kinetics. This class needs to consider all of the leading-order submodels simultaneously

in order to find the first-order correction to the potentials
Parameters
* param — model parameters
* domain (st r)— The domain to implement the model, either: ‘Negative’ or ‘Positive’.

* leading_order_models (pybamm.interface.kinetics.BaseKinetics)—
The leading-order models with respect to which this is first-order

* xxExtends (** pybamm. interface.Baselnterface)—

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.

3.2. Models 75

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

Diffusion-limited

class pybamm.interface.DiffusionLimited (param, domain, reaction, order)
Submodel for diffusion-limited kinetics

Parameters
* param — model parameters
* domain (str)— The domain to implement the model, either: ‘Negative’ or ‘Positive’.
* reaction (str)— The name of the reaction being implemented
* order (str)— The order of the model (“leading” or “full”)
e ¥xxExtends (** pybamm. interface.BaselInterface)—

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

SEIl models

class pybamm.sei.BaseModel (param, domain)
Base class for SEI models.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (st r)— The domain to implement the model, either: ‘Negative’ or ‘Positive’.
e »xExtends (** pybamm. interface.Baselnterface)—

class pybamm.sei.ConstantSEI (param, domain)
Base class for SEI with constant thickness.

Note that there is no SEI current, so we don’t need to update the “sum of interfacial current densities” variables
from pybamm. interface.BaseInterface

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (str)— The domain of the model either ‘Negative’ or ‘Positive’

* xxExtends (** pybamm. sei.BaseModel) —

76 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

class pybamm.sei.ElectronMigrationLimited (param, domain)
Base class for electron-migration limited SEI growth.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (st r)— The domain of the model either ‘Negative’ or ‘Positive’
* x*Extends (** pybamm. sei.BaseModel) —

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

3.2. Models 77

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

class pybamm.sei.InterstitialDiffusionLimited (param, domain)
Base class for interstitial-diffusion limited SEI growth.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (st r)— The domain of the model either ‘Negative’ or ‘Positive’
* xxExtends (** pybamm. sei.BaseModel) —

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_ variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

class pybamm.sei .NoSEI (param, domain)
Base class for no SEI.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (str)— The domain of the model either ‘Negative’ or ‘Positive’

* x**Extends (** pybamm. sei.BaseModel) —

78 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

class pybamm.sei.ReactionLimited (param, domain)
Base class for reaction limited SEI growth.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (st r)— The domain of the model either ‘Negative’ or ‘Positive’
* x*Extends (** pybamm. sei.BaseModel) —

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

3.2. Models 79

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

class pybamm.sei.SolventDiffusionLimited (param, domain)
Base class for solvent-diffusion limited SEI growth.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (st r)— The domain of the model either ‘Negative’ or ‘Positive’
* xxExtends (** pybamm. sei.BaseModel) —

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_ variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial_conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

class pybamm.sei.EcReactionLimited (param, domain)
Base class for reaction limited SEI growth.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (str)— The domain of the model either ‘Negative’ or ‘Positive’

* x**Extends (** pybamm. sei.BaseModel) —

80 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_algebraic (variables)
A method to set the differential equations which do not contain a time derivative. Note: this method
modifies the state of self.algebraic. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubMode 1.

Parameters variables (dict) - The variables in the whole model.

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

Oxygen Diffusion

Base Model

class pybamm.oxygen_diffusion.BaseModel (param)
Base class for conservation of mass of oxygen.

Parameters
* param (parameter class)— The parameters to use for this submodel
* reactions (dict, optional)— Dictionary of reaction terms

* xxExtends (** pybamm. BaseSubModel) —

3.2. Models 81

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Composite Model

class pybamm.oxygen_diffusion.Composite (param, extended=False)
Class for conservation of mass of oxygen. (Composite refers to composite expansion in asymptotic methods) In
this model, extremely fast oxygen kinetics in the negative electrode imposes zero oxygen concentration there,
and so the oxygen variable only lives in the separator and positive electrode. The boundary condition at the
negative electrode/ separator interface is homogeneous Dirichlet.

Parameters
* param (parameter class)— The parameters to use for this submodel
* reactions (dict) - Dictionary of reaction terms
* extended (bool)— Whether to include feedback from the first-order terms
* x*xExtends (** pybamm.oxygen_diffusion.Full)—

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

set_rhs (variables)
Composite reaction-diffusion with source terms from leading order

First-Order Model

class pybamm.oxygen_diffusion.FirstOrder (param)
Class for conservation of mass of oxygen. (First-order refers to first-order expansion in asymptotic methods) In
this model, extremely fast oxygen kinetics in the negative electrode imposes zero oxygen concentration there,
and so the oxygen variable only lives in the separator and positive electrode. The boundary condition at the
negative electrode/ separator interface is homogeneous Dirichlet.

Parameters
* param (parameter class)— The parameters to use for this submodel
* reactions (dict) — Dictionary of reaction terms
e ¥xExtends (** pybamm.oxygen diffusion.BaseModel)—

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

82 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Full Model

class pybamm.oxygen_diffusion.Full (param)
Class for conservation of mass of oxygen. (Full refers to unreduced by asymptotic methods) In this model,
extremely fast oxygen kinetics in the negative electrode imposes zero oxygen concentration there, and so the
oxygen variable only lives in the separator and positive electrode. The boundary condition at the negative
electrode/ separator interface is homogeneous Dirichlet.

Parameters
* param (parameter class)— The parameters to use for this submodel
* reactions (dict) - Dictionary of reaction terms
* xxExtends (** pybamm. oxygen diffusion.BaseModel)—

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict) — The variables in the whole model.

3.2. Models 83

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Leading Order Model

class pybamm.oxygen_diffusion.LeadingOrder (param)
Class for conservation of mass of oxygen. (Leading refers to leading order of asymptotic reduction)

Parameters
* param (parameter class)— The parameters to use for this submodel
* reactions (dict) — Dictionary of reaction terms
* x»xExtends (** pybamm.oxgen_diffusion.BaseModel) -

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

No Oxygen

class pybamm.oxygen_diffusion.NoOxygen (param)
Class for when there is no oxygen

Parameters param (parameter class)— The parameters to use for this submodel
Extends: pybamm. oxygen_diffusion.BaseModel

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of

84 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Particle

Particle Base Model

class pybamm.particle.BaseParticle (param, domain)
Base class for molar conservation in particles.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (str) - The domain of the model either ‘Negative’ or ‘Positive’
Extends: pybamm. BaseSubModel

set_events (variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of

self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in
pybamm.BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

Fickian Single Particle

class pybamm.particle.FickianSingleParticle (param, domain)
Base class for molar conservation in a single x-averaged particle which employs Fick’s law.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (st r)— The domain of the model either ‘Negative’ or ‘Positive’
Extends: pybamm.particle.BaseParticle

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

3.2. Models 85

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_boundary_ conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_initial conditions (variables)
For single particle models, initial conditions can’t depend on x so we arbitrarily set the initial values of the
single particles to be given by the values at x=0 in the negative electrode and x=1 in the positive electrode.
Typically, supplied initial conditions are uniform x.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

Fickian Many Particles

class pybamm.particle.FickianManyParticles (param, domain)
Base class for molar conservation in many particles which employs Fick’s law.

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (str)— The domain of the model either ‘Negative’ or ‘Positive’
Extends: pybamm.particle.BaseParticle

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

86 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

Fast Single Particle

class pybamm.particle.FastSingleParticle (param, domain)
Base class for molar conservation in a single x-averaged particle with uniform concentration in r (i.e. infinitely
fast diffusion within particles).

Parameters
* param (parameter class)— The parameters to use for this submodel
* domain (str)— The domain of the model either ‘Negative’ or ‘Positive’
Extends: pybamm.particle.BaseParticle

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial conditions (variables)
For single particle models, initial conditions can’t depend on x so we arbitrarily evaluate them at x=0 in
the negative electrode and x=1 in the positive electrode (they will usually be constant)

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

3.2. Models 87

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Fast Many Particles

class pybamm.particle.FastManyParticles (param, domain)
Base class for molar conservation in many particles with uniform concentration in r (i.e. infinitely fast diffusion

within particles).

Parameters
* param (parameter class)— The parameters to use for this submodel

* domain (st r)— The domain of the model either ‘Negative’ or ‘Positive’

Extends: pybamm.particle.BaseParticle

get_fundamental_ variables ()
A public method that creates and returns the variables in a submodel which can be created independent

of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without

variables from other submodels, then it should be placed in this method.
Returns The variables created by the submodel which are independent of variables in other

submodels.

Return type dict

set_initial_ conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-

plemented in pybamm. BaseSubModel.
Parameters variables (dict) - The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is

used as implemented in pybamm. BaseSubModel.
Parameters variables (dict) - The variables in the whole model.

Porosity
Base Model

class pybamm.porosity.BaseModel (param)

Base class for porosity
Parameters param (parameter class)— The parameters to use for this submodel

Extends: pybamm. BaseSubMode 1

set_events (variables)
A method to set events related to the state of submodel variable. Note: this method modifies the state of

self.events. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a implemented in

pybamm.BaseSubModel.
Parameters variables (dict) - The variables in the whole model.

88 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Constant Porosity

class pybamm.porosity.Constant (param)
Submodel for constant porosity

Parameters param (parameter class)— The parameters to use for this submodel
Extends: pybamm.porosity.BaseModel

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Leading-Order Model

class pybamm.porosity.LeadingOrder (param)
Leading-order model for reaction-driven porosity changes

Parameters param (parameter class)— The parameters to use for this submodel
Extends: pybamm.porosity.BaseModel

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this

3.2. Models 89

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubMode 1.

Parameters variables (dict) - The variables in the whole model.

Full Model

class pybamm.porosity.Full (param)
Full model for reaction-driven porosity changes

Parameters param (parameter class)— The parameters to use for this submodel
Extends: pybamm.porosity.BaseModel

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.
Thermal

Base Thermal

class pybamm.thermal .BaseThermal (param, cc_dimension=0)
Base class for thermal effects

Parameters

920 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

* param (parameter class)— The parameters to use for this submodel

* cc_dimension (int, optional)— The dimension of the current collectors. Can be
0 (default), 1 or 2.

* x*xExtends (** pybamm.BaseSubModel) —

Isothermal Model

class pybamm.thermal.isothermal.Isothermal (param)
Class for isothermal submodel.

Parameters param (parameter class)— The parameters to use for this submodel
Extends: pybamm.thermal.BaseThermal

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

Lumped Model

class pybamm.thermal.lumped.Lumped (param, cc_dimension=0, geometry="arbitrary’)
Class for lumped thermal submodel

Parameters
* param (parameter class)— The parameters to use for this submodel

* cc_dimension (int, optional)—- The dimension of the current collectors. Can be
0 (default), 1 or 2.

* geometry (string, optional)— The geometry for the lumped thermal submodel.
Can be “arbitrary” (default) or pouch.

* xxExtends (** pybamm. thermal.BaseThermal)—

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

3.2. Models 91

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

PyBaMM Documentation, Release 0.2.3

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

One Dimensional Model

class pybamm.thermal.x_full.OneDimensionalX (param)
Class for one-dimensional (x-direction) thermal submodel. Note: this model assumes infinitely large electrical
and thermal conductivity in the current collectors, so that the contribution to the Ohmic heating from the current
collectors is zero and the boundary conditions are applied at the edges of the electrodes (at x=0 and x=1, in
non-dimensional coordinates).

Parameters
* param (parameter class)— The parameters to use for this submodel
* xxExtends (** pybamm.thermal.BaseThermal) —

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.
Return type dict

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of

92 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_boundary_conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_initial_conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

Pouch Cell
Thermal Model for “1+1D” Pouch Cell

class pybamm.thermal.pouch_cell.CurrentCollectorlD (param)
Class for one-dimensional thermal submodel for use in the “1+1D” pouch cell model. The thermal model is
averaged in the x-direction and is therefore referred to as ‘x-lumped’. For more information see' and”.

Parameters param (parameter class)— The parameters to use for this submodel

References

Extends: pybamm. thermal.BaseThermal

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

' R Timms, SG Marquis, V Sulzer, CP Please and SJ Chapman. “Asymptotic Reduction of a Lithium-ion Pouch Cell Model”. In preparation,
2020.

2 SG Marquis, R Timms, V Sulzer, CP Please and ST Chapman. “A Suite of Reduced-Order Models of a Single-Layer Lithium-ion Pouch Cell”.
In preparation, 2020.

3.2. Models 93

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_boundary_ conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

Thermal Model for “2+1D” Pouch Cell

class pybamm.thermal.pouch_cell.CurrentCollector2D (param)
Class for two-dimensional thermal submodel for use in the “2+1D” pouch cell model. The thermal model is
averaged in the x-direction and is therefore referred to as ‘x-lumped’. For more information see' and’.

Parameters param (parameter class)— The parameters to use for this submodel

References

Extends: pybamm. thermal.BaseThermal

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

Parameters variables (dict) - The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

'R Timms, SG Marquis, V Sulzer, CP Please and SJ Chapman. “Asymptotic Reduction of a Lithium-ion Pouch Cell Model”. In preparation,
2020.

2 SG Marquis, R Timms, V Sulzer, CP Please and ST Chapman. “A Suite of Reduced-Order Models of a Single-Layer Lithium-ion Pouch Cell”.
In preparation, 2020.

94 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

get_fundamental_variables ()
A public method that creates and returns the variables in a submodel which can be created independent
of other submodels. For example, the electrolyte concentration variables can be created independent of
whether any other variables have been defined in the model. As a rule, if a variable can be created without
variables from other submodels, then it should be placed in this method.

Returns The variables created by the submodel which are independent of variables in other
submodels.

Return type dict

set_boundary_ conditions (variables)
A method to set the boundary conditions for the submodel. Note: this method modifies the state of
self.boundary_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a
implemented in pybamm. BaseSubModel.

Parameters variables (dict) - The variables in the whole model.

set_initial conditions (variables)
A method to set the initial conditions for the submodel. Note: this method modifies the state of
self.initial_conditions. Unless overwritten by a submodel, the default behaviour of ‘pass’ is used a im-
plemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

set_rhs (variables)
A method to set the right hand side of the differential equations which contain a time derivative. Note: this
method modifies the state of self.rhs. Unless overwritten by a submodel, the default behaviour of ‘pass’ is
used as implemented in pybamm. BaseSubModel.

Parameters variables (dict)— The variables in the whole model.

Tortuosity

Base Model

class pybamm.tortuosity.BaseModel (param, phase)
Base class for tortuosity

Parameters
* param (parameter class)— The parameters to use for this submodel
* phase (str)— The material for the model (‘electrolyte’ or ‘electrode’).

* xxExtends (** pybamm.BaseSubModel) —

Bruggeman Model

class pybamm.tortuosity.Bruggeman (param, phase, set_leading_order=False)
Submodel for Bruggeman tortuosity

Extends: pybamm. tortuosity.BaseModel

get_coupled_variables (variables)
A public method that creates and returns the variables in a submodel which require variables in other
submodels to be set first. For example, the exchange current density requires the concentration in the elec-
trolyte to be created before it can be created. If a variable can be created independent of other submodels
then it should be created in ‘get_fundamental_variables’ instead of this method.

3.2. Models 95

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

Parameters variables (dict)— The variables in the whole model.
Returns The variables created in this submodel which depend on variables in other submodels.

Return type dict

3.3 Parameters

3.3.1 Base Parameter Values

class pybamm.ParameterValues (values=None, chemistry=None)
The parameter values for a simulation.

Note that this class does not inherit directly from the python dictionary class as this causes issues with saving
and loading simulations.

Parameters

* values (dict or string) — Explicit set of parameters, or reference to a file of pa-
rameters If string, gets passed to read_parameters_csv to read a file.

* chemistry (dict) — Dict of strings for default chemistries. Must be of the form:
{“base chemistry”: base_chemistry, “cell”: cell_properties_authorYear, “anode”: an-
ode_chemistry_authorYear, “separator’”: separator_chemistry_authorYear, “cathode”: cath-
ode_chemistry_authorYear, “electrolyte”: electrolyte_chemistry_authorYear, “experiment’:
experimental_conditions_authorYear}. Then the anode chemistry is loaded from the file
inputs/parameters/base_chemistry/anodes/anode_chemistry_authorYear, etc. Parameters in
“cell” should include geometry and current collector properties. Parameters in “experiment”
should include parameters relating to experimental conditions, such as initial conditions and
currents.

Examples

>>> import pybamm

>>> values = {"some parameter": 1, "another parameter": 2}
>>> param = pybamm.ParameterValues (values)

>>> param["some parameter"]

1
>>> file = "input/parameters/lithium-ion/cells/kokam Marquis2019/parameters.csv"
>>> values_path = pybamm.get_parameters_filepath(file)

>>> param = pybamm.ParameterValues (values=values_path)

>>> param["Negative current collector thickness [m]"]

2.5e-05

>>> param = pybamm.ParameterValues (chemistry=pybamm.parameter_sets.Marquis2019)
>>> param["Reference temperature [K]"]

298.15

copy ()
Returns a copy of the parameter values. Makes sure to copy the internal dictionary.

evaluate (symbol)
Process and evaluate a symbol.

Parameters symbol (pybamm. Symbol)— Symbol or Expression tree to evaluate

Returns The evaluated symbol

96 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

Return type number of array

static find_parameter (path)
Look for parameter file in the different locations in PARAMETER_PATH

get (key, default=None)
Return item correspoonding to key if it exists, otherwise return default

items ()
Get the items of the dictionary

keys ()
Get the keys of the dictionary

print_evaluated_parameters (evaluated_parameters, output_file)
Print a dictionary of evaluated parameters to an output file

Parameters

* evaluated_parameters (defaultdict) — The evaluated parameters, for further
processing if needed

* output_file (string, optional)— The file to print parameters to. If None, the
parameters are not printed, and this function simply acts as a test that all the parameters
can be evaluated

print_parameters (parameters, output_file=None)
Return dictionary of evaluated parameters, and optionally print these evaluated parameters to an output
file. For dimensionless parameters that depend on the C-rate, the value is given as a function of the C-rate
(either x * Crate or x / Crate depending on the dependence)

Parameters

* parameters (class or dict containing pybamm.Parameter objects) — Class or dic-
tionary containing all the parameters to be evaluated

* output_file (string, optional)— The file to print parameters to. If None, the
parameters are not printed, and this function simply acts as a test that all the parameters
can be evaluated, and returns the dictionary of evaluated parameters.

Returns evaluated_parameters — The evaluated parameters, for further processing if needed

Return type defaultdict

Notes
A C-rate of 1 C is the current required to fully discharge the battery in 1 hour, 2 C is current to discharge
the battery in 0.5 hours, etc

process_boundary_conditions (model)
Process boundary conditions for a model Boundary conditions are dictionaries {“left”: left bc, “right™:
right be} in general, but may be imposed on the tabs (or not on the tab) for a small number of variables,
e.g. {“negative tab”: neg. tab bc, “positive tab”’: pos. tab bc “no tab”: no tab bc}.

process_geometry (geometry)
Assign parameter values to a geometry (inplace).

Parameters geometry (dict)— Geometry specs to assign parameter values to

process_model (unprocessed_model, inplace=True)
Assign parameter values to a model. Currently inplace, could be changed to return a new model.

Parameters

3.3.

Parameters 97

https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

* unprocessed_model (pybamm.BaseModel) — Model to assign parameter values
for

* inplace (bool, optional)-If True, replace the parameters in the model in place.
Otherwise, return a new model with parameter values set. Default is True.

Raises pybamm.ModelError — If an empty model is passed (model.rhs = {} and
model.algebraic = {} and model.variables = {})

process_symbol (symbol)
Walk through the symbol and replace any Parameter with a Value. If a symbol has already been processed,
the stored value is returned.

Parameters symbol (pybamm. Symbol)— Symbol or Expression tree to set parameters for
Returns symbol — Symbol with Parameter instances replaced by Value
Return type pybamm. Symbol

read_parameters_csv (filename)
Reads parameters from csv file into dict.

Parameters filename (st r)— The name of the csv file containing the parameters.
Returns {name: value} pairs for the parameters.
Return type dict

search (key, print_values=True)
Search dictionary for keys containing ‘key’.

See pybamm.FuzzyDict.search().

update (values, check_conflict=False, check_already_exists=True, path="")
Update parameter dictionary, while also performing some basic checks.

Parameters
* values (dict) — Dictionary of parameter values to update parameter dictionary with

* check_conflict (bool, optional)- Whethertocheck thata parameter in values
has not already been defined in the parameter class when updating it, and if so that its value
does not change. This is set to True during initialisation, when parameters are combined
from different sources, and is False by default otherwise

* check_already_exists (bool, optional)— Whether tocheck thata parameter
in values already exists when trying to update it. This is to avoid cases where an intended
change in the parameters is ignored due a typo in the parameter name, and is True by
default but can be manually overridden.

e path (string, optional)- Path from which to load functions

update_from_chemistry (chemistry)
Load standard set of components from a ‘chemistry’ dictionary

values ()
Get the values of the dictionary

3.3.2 Geometric Parameters

Standard geometric parameters

98 Chapter 3. API documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.3

3.3.3 Electrical Parameters
3.3.4 Thermal Parameters

3.3.5 Standard Lithium-ion Parameters

Standard parameters for lithium-ion battery models

3.3.6 Standard Lead-Acid Parameters

Standard Parameters for lead-acid battery models

3.3.7 Parameters Sets

Parameter sets from papers. The ‘citation’ entry provides a reference to the appropriate paper in the file “py-
bamm/CITATIONS.txt”. To see which parameter sets have been used in your simulation, add the line “py-
bamm.print_citations()” to your script.

Lithium-ion parameter sets

¢ Chen2020 : C.-H. Chen, F. Brosa Planella, K. O’Regan, D. Gastol, W. D. Widanage, and E. Kendrick. “De-
velopment of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models.”
Journal of the Electrochemical Society, 167(8), 080534 (2020).

Ecker2015 : M. Ecker, T. K. D. Tran, P. Dechent, S. Kibitz, A. Warnecke, and D. U. Sauer. “Parameterization
of a Physico-Chemical Model of a Lithium-Ion Battery. I. Determination of Parameters.” Journal of the
Electrochemical Society, 162(9), A1836-A1848 (2015).

e Marquis2019 : S. G. Marquis, V. Sulzer, R. Timms, C. P. Please and S. J. Chapman. “An asymptotic
derivation of a single particle model with electrolyte.” Journal of the Electrochemical Society, 166(15),
A3693-A3706 (2019).

Mohtat2020 : Submitted for publication.

NCA_Kim2011 : G. H. Kim, K. Smith, K. J. Lee, S. Santhanagopalan, and A. Pesaran. “Multi-domain mod-
eling of lithium-ion batteries encompassing multi-physics in varied length scales.” Journal of The Electro-
chemical Society, 158(8), A955-A969 (2011).

¢ Ramadass 2004 : P. Ramadass, B. Haran, P. M. Gomadam, R. White, and B. N. Popov. “Development of
First Principles Capacity Fade Model for Li-Ion Cells.” Journal of the Electrochemical Society, 151(2),
A196-A203 (2004).

Lead-acid parameter sets

* Sulzer2019 : V. Sulzer, S. J. Chapman, C. P. Please, D. A. Howey, and C. W. Monroe, “Faster lead-acid battery
simulations from porous-electrode theory: Part I. Physical model.” Journal of the Electrochemical Society,
166(12), 2363 (2019).

3.3. Parameters 99

PyBaMM Documentation, Release 0.2.3

3.4 Geometry

3.4.1 Geometry

class pybamm.Geometry (geometry)
A geometry class to store the details features of the cell geometry.

The values assigned to each domain are dictionaries containing the spatial variables in that domain, along with
expression trees giving their min and maximum extents. For example, the following dictionary structure would
represent a Geometry with a single domain “negative electrode”, defined using the variable x_n which has a
range from O to the pre-defined parameter /_n.

{"negative electrode": {x_n: {"min": pybamm.Scalar (0), "max": 1l_n}}}

Extends: dict
Parameters geometries (dict)— The dictionary to create the geometry with

parameters
Returns all the parameters in the geometry

3.4.2 Battery Geometry
pybamm.battery geometry (include_particles=True, current_collector_dimension=0)
A convenience function to create battery geometries.
Parameters
* include_particles (bool)— Whether to include particle domains

e current_collector_dimensions (int, default)- The dimensions of the cur-
rent collector. Should be 0 (default), 1 or 2

Returns A geometry class for the battery

Return type pybamm.Geometry

3.5 Meshes

3.5.1 Meshes

class pybamm.Mesh (geometry, submesh_types, var_pts)
Mesh contains a list of submeshes on each subdomain.

Extends: dict
Parameters
* geometry — contains the geometry of the problem.

* submesh_types (dict) — contains the types of submeshes to use (e.g. Uni-
form1DSubMesh)

* submesh_pts (dict)— contains the number of points on each subdomain

add_ghost_meshes ()
Create meshes for potential ghost nodes on either side of each submesh, using self.submeshclass This will
be useful for calculating the gradient with Dirichlet BCs.

100 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

combine_submeshes (*submeshnames)
Combine submeshes into a new submesh, using self.submeshclass Raises pybamm.DomainError if sub-
meshes to be combined do not match up (edges are not aligned).

Parameters submeshnames (1ist of str)-Thenames of the submeshes to be combined
Returns submesh — A new submesh with the class defined by self.submeshclass
Return type self.submeshclass

class pybamm.SubMesh
Base submesh class. Contains the position of the nodes, the number of mesh points, and (optionally) information
about the tab locations.

class pybamm.MeshGenerator (submesh_type, submesh_params=None)
Base class for mesh generator objects that are used to generate submeshes.

Parameters

* submesh_type (pybamm.SubMesh) — The type of submesh to use (e.g. Uni-
form1DSubMesh).

* submesh_params (dict, optional)-Containsany parameters required by the sub-
mesh.

3.5.2 0D Sub Mesh

class pybamm.SubMeshOD (position, npts=None)
0D submesh class. Contains the position of the node.

Parameters

* position (dict) — A dictionary that contains the position of the OD submesh (a signle
point) in space

* npts (dict, optional)— Number of points to be used. Included for compatibility
with other meshes, but ignored by this mesh class

* xxExtends (‘“”: pybamm. SubMesh) —

3.5.3 1D Sub Meshes

class pybamm.SubMeshlD (edges, coord_sys, tabs=None)
1D submesh class. Contains the position of the nodes, the number of mesh points, and (optionally) information
about the tab locations.

Parameters

* edges (array_1like)— An array containing the points corresponding to the edges of the
submesh

* coord_sys (string) - The coordinate system of the submesh

* tabs (dict, optional) — A dictionary that contains information about the size and
location of the tabs

o,

* xxExtends (‘“: pybamm. SubMesh) —

class pybamm.UniformlDSubMesh (lims, npts)
A class to generate a uniform submesh on a 1D domain

Parameters

3.5. Meshes 101

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

* lims (dict)— A dictionary that contains the limits of the spatial variables

* npts (dict)— A dictionary that contains the number of points to be used on each spatial
variable. Note: the number of nodes (located at the cell centres) is npts, and the number of
edges is npts+1.

* xxExtends (*”: pybamm. SubMeshlD) —

class pybamm.ExponentiallDSubMesh (lims, npts, side="symmetric’, stretch=None)
A class to generate a submesh on a 1D domain in which the points are clustered close to one or both of boundaries
using an exponential formula on the interval [a,b].

If side is “left”, the gridpoints are given by

+afork=1,..., N, where N is the number of nodes.

Is side is “right”, the gridpoints are given by

+afork=1,...,N.

If side is “symmetric”, the first half of the interval is meshed using the gridpoints

+afork=1,...,N. The grid spacing is then reflected to contruct the grid on the full interval [a,b].

In the above, alpha is a stretching factor. As the number of gridpoints tends to infinity, the ratio of the largest and
smallest grid cells tends to exp(alpha).

Parameters
* lims (dict)— A dictionary that contains the limits of the spatial variables

* npts (dict)— A dictionary that contains the number of points to be used on each spatial variable.
Note: the number of nodes (located at the cell centres) is npts, and the number of edges is npts+1.

* side (str, optional)- Whether the points are clustered near to the left or right boundary,
or both boundaries. Can be “left”, “right” or “symmetric”. Default is “symmetric”

e stretch (float, optional)— The factor (alpha) which appears in the exponential. If side
is “symmetric” then the default stretch is 1.15. If side is “left” or “right” then the default stretch is
2.3.

* xxExtends (*”: pybamm. SubMeshlD) —

class pybamm.ChebyshevlDSubMesh (lims, npts, tabs=None)
A class to generate a submesh on a 1D domain using Chebyshev nodes on the interval (a, b), given by
2k —1)
oN

T = %(a +b)+ %(b —a) cos(

fork=1,..., N, where N is the number of nodes. Note: this mesh then appends the boundary edges, so that the
mesh edges are given by

a<x <..<zy<b.

Parameters

* lims (dict)— A dictionary that contains the limits of the spatial variables

102 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

* npts (dict)— A dictionary that contains the number of points to be used on each spatial
variable. Note: the number of nodes (located at the cell centres) is npts, and the number of
edges is npts+1.

* tabs (dict, optional) — A dictionary that contains information about the size and
location of the tabs

e ¥xExtends (‘“”: pybamm. SubMesh1D) —

class pybamm.UserSuppliedlDSubMesh (lims, npts, edges=None)
A class to generate a submesh on a 1D domain from a user supplied array of edges.

Parameters
* lims (dict) — A dictionary that contains the limits of the spatial variables

* npts (dict)— A dictionary that contains the number of points to be used on each spatial
variable. Note: the number of nodes (located at the cell centres) is npts, and the number of
edges is npts+1.

* edges (array_like)— The array of points which correspond to the edges of the mesh.

* xxExtends (‘”: pybamm. SubMesh1D) —

3.5.4 2D Sub Meshes

class pybamm.ScikitSubMesh2D (edges, coord_sys, tabs)
2D submesh class. Contains information about the 2D finite element mesh. Note: This class only allows for the
use of piecewise-linear triangular finite elements.

Parameters

* edges (array_like)— An array containing the points corresponding to the edges of the
submesh

* coord_sys (string) — The coordinate system of the submesh

* tabs (dict, optional) — A dictionary that contains information about the size and
location of the tabs

@,

* x*xExtends (*”: pybamm. SubMesh) —

on_boundary (y, z, tab)
A method to get the degrees of freedom corresponding to the subdomains for the tabs.

class pybamm.ScikitUniform2DSubMesh (lims, npts)
Contains information about the 2D finite element mesh with uniform grid spacing (can be different spacing in y
and z). Note: This class only allows for the use of piecewise-linear triangular finite elements.

Parameters
* lims (dict)— A dictionary that contains the limits of each spatial variable

* npts (dict) — A dictionary that contains the number of points to be used on each spatial
variable

* xxExtends (‘“”: pybamm. ScikitSubMesh2D)—

class pybamm.ScikitExponential2DSubMesh (lims, npts, side="top’, stretch=2.3)
Contains information about the 2D finite element mesh generated by taking the tensor product of a uniformly
spaced grid in the y direction, and a unequally spaced grid in the z direction in which the points are clustered

3.5. Meshes 103

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

close to the top boundary using an exponential formula on the interval [a,b]. The gridpoints in the z direction
are given by

+afork=1,..., N, where N is the number of nodes. Here alpha is a stretching factor. As the number of gridpoints
tends to infinity, the ratio of the largest and smallest grid cells tends to exp(alpha).

Note: in the future this will be extended to allow points to be clustered near any of the boundaries.
Parameters
e lims (dict)— A dictionary that contains the limits of each spatial variable
* npts (dict)— A dictionary that contains the number of points to be used on each spatial variable

* side (str, optional)— Whether the points are clustered near to a particular boundary. At
present, can only be “top”. Default is “top”.

* stretch(float, optional)- The factor (alpha) which appears in the exponential. Default
is 2.3.

¢ ¥xExtends (“: pybamm. ScikitSubMesh2D)—

class pybamm.ScikitChebyshev2DSubMesh (lims, npts)
Contains information about the 2D finite element mesh generated by taking the tensor product of two 1D meshes
which use Chebyshev nodes on the interval (a, b), given by

1 1 2k —1
xk—g(a+b)+§(b—a)cos(5N),
fork =1, ..., N, where N is the number of nodes. Note: this mesh then appends the boundary edgess, so that

the 1D mesh edges are given by
a<z <..<zN<b
Note: This class only allows for the use of piecewise-linear triangular finite elements.
Parameters
* lims (dict)— A dictionary that contains the limits of each spatial variable

* npts (dict)— A dictionary that contains the number of points to be used on each spatial
variable

* xxExtends (‘: pybamm. ScikitSubMesh2D)—

class pybamm.UserSupplied2DSubMesh (lims, npts, y_edges=None, 7_edges=None)
A class to generate a tensor product submesh on a 2D domain by using two user supplied vectors of
edges: one for the y-direction and one for the z-direction. Note: this mesh should be created using
UserSupplied2DSubMeshGenerator.

Parameters
* lims (dict)— A dictionary that contains the limits of the spatial variables

* npts (dict)— A dictionary that contains the number of points to be used on each spatial
variable. Note: the number of nodes (located at the cell centres) is npts, and the number of
edges is npts+1.

* y_edges (array_1like)— The array of points which correspond to the edges in the y
direction of the mesh.

* z_edges (array_like) — The array of points which correspond to the edges in the z
direction of the mesh.

* x*xExtends (*”: pybamm. ScikitSubMesh2D)—

104 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

3.6 Discretisation and spatial methods

3.6.1 Discretisation

class pybamm.Discretisation (mesh=None, spatial_methods=None)
The discretisation class, with methods to process a model and replace Spatial Operators with Matrices and
Variables with StateVectors

Parameters
* mesh (pybamm.Mesh) — contains all submeshes to be used on each domain

* spatial_methods (dict) — a dictionary of the spatial methods to be used on each
domain. The keys correspond to the model domains and the values to the spatial method.

check_initial conditions (model)
Check initial conditions are a numpy array

check_initial_ conditions_rhs (model)
Check initial conditions and rhs have the same shape

check_model (model)
Perform some basic checks to make sure the discretised model makes sense.

check_tab_conditions (symbol, bcs)
Check any boundary conditions applied on “negative tab”, “positive tab” and “no tab”. For 1D current
collector meshes, these conditions are converted into boundary conditions on “left” (tab at z=0) or “right”
(tab at z=I_z) depending on the tab location stored in the mesh. For 2D current collector meshes, the
boundary conditions can be applied on the tabs directly.

Parameters

¢ symbol (pybamm.expression_tree.symbol.Symbol)— The symbol on which
the boundary conditions are applied.

* bes (dict) — The dictionary of boundary conditions (a dict of {side: equation}).

Returns The dictionary of boundary conditions, with the keys changed to “left” and “right”
where necessary.

Return type dict

check_variables (model)
Check variables in variable list against rhs Be lenient with size check if the variable in model.variables is
broadcasted, or a concatenation (if broadcasted, variable is a multiplication with a vector of ones)

create_jacobian (model)
Creates Jacobian of the discretised model. Note that the model is assumed to be of the form M*y_dot =
f(t,y), where M is the (possibly singular) mass matrix. The Jacobian is df/dy.

Note: At present, calculation of the Jacobian is deferred until after simplification, since it is much faster to
compute the Jacobian of the simplified model. However, in some use cases (e.g. running the same model
multiple times but with different parameters) it may be more efficient to compute the Jacobian once, before
simplification, so that parameters in the Jacobian can be updated (see PR #670).

Parameters model (pybamm.BaseModel) — Discretised model. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns The expression trees corresponding to the Jacobian of the model

Return type pybamm.Concatenation

3.6. Discretisation and spatial methods 105

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

create_mass_matrix (model)
Creates mass matrix of the discretised model. Note that the model is assumed to be of the form M*y_dot
= f(t,y), where M is the (possibly singular) mass matrix.

Parameters model (pybamm.BaseModel) — Discretised model. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns
* pybamm.Matrix — The mass matrix

e pybamm.Mat rix — The inverse of the ode part of the mass matrix (required by solvers
which only accept the ODEs in explicit form)

process_boundary_conditions (model)
Discretise model boundary_conditions, also converting keys to ids

Parameters model (pybamm.BaseModel) — Model to dicretise. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns Dictionary of processed boundary conditions
Return type dict

process_dict (var_eqn_dict)
Discretise a dictionary of {variable: equation}, broadcasting if necessary (can be model.rhs,
model.algebraic, model.initial_conditions or model.variables).

Parameters var_eqn_dict (dict)— Equations ({variable: equation} dict) to dicretise (can
be model.rhs, model.algebraic, model.initial_conditions or model.variables)

Returns new_var_eqn_dict — Discretised equations
Return type dict

process_initial_conditions (model)
Discretise model initial _conditions.

Parameters model (pybamm.BaseModel) — Model to dicretise. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns Tuple of processed_initial_conditions (dict of initial conditions) and concate-
nated_initial_conditions (numpy array of concatenated initial conditions)

Return type tuple

process_model (model, inplace=True, check_model=True)
Discretise a model. Currently inplace, could be changed to return a new model.

Parameters

e model (pybamm.BaseModel) — Model to dicretise. Must have attributes rhs, ini-
tial_conditions and boundary_conditions (all dicts of {variable: equation})

e inplace (bool, optional) — If True, discretise the model in place. Otherwise,
return a new discretised model. Default is True.

* check_model (bool, optional) - If True, model checks are performed after dis-
cretisation. For large systems these checks can be slow, so can be skipped by setting this
option to False. When developing, testing or debugging it is recommened to leave this
option as True as it may help to identify any errors. Default is True.

Returns model_disc — The discretised model. Note that if inplace is True, model will have
also been discretised in place so model == model_disc. If inplace is False, model !=
model_disc

106 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.3

Return type pybamm.BaseModel

Raises pybamm.ModelError — If an empty model is passed (model.rhs = {} and
model.algebraic = {} and model.variables = {})

process_rhs_and_algebraic (model)
Discretise model equations - differential (‘rhs’) and algebraic.

Parameters model (pybamm.BaseModel) — Model to dicretise. Must have attributes rhs,
initial_conditions and boundary_conditions (all dicts of {variable: equation})

Returns Tuple of processed_rhs (dict of processed differential equations), pro-
cessed_concatenated_rhs, processed_algebraic (dict of processed algebraic equations)
and processed_concatenated_algebraic

Return type tuple

process_symbol (symbol)
Discretise operators in model equations. If a symbol has already been discretised, the stored value is
returned.

Parameters symbol (pybamm.expression_tree.symbol.Symbol)— Symbol to dis-
cretise

Returns Discretised symbol
Return type pybamm.expression_tree.symbol.Symbol

set_external_ variables (model)
Add external variables to the list of variables to account for, being careful about concatenations

set_internal boundary conditions (model)
A method to set the internal boundary conditions for the submodel. These are required to properly calculate
the gradient. Note: this method modifies the state of self.boundary_conditions.

set_variable_slices (variables)
Sets the slicing for variables.

Parameters variables (iterable of pybamm.Variables) — The variables for which to set
slices

3.6.2 Spatial Method

class pybamm.SpatialMethod (options=None)
A general spatial methods class, with default (trivial) behaviour for some spatial operations. All spatial methods
will follow the general form of SpatialMethod in that they contain a method for broadcasting variables onto a
mesh, a gradient operator, and a divergence operator.

Parameters mesh — Contains all the submeshes for discretisation

boundary_integral (child, discretised_child, region)
Implements the boundary integral for a spatial method.

Parameters
e child (pybamm. Symbol) — The symbol to which is being integrated

* discretised_child (pybamm.Symbol) — The discretised symbol of the correct
size

* region (str) — The region of the boundary over which to integrate. If region is None
(default) the integration is carried out over the entire boundary. If region is negative tab

3.6. Discretisation and spatial methods 107

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

or positive tab then the integration is only carried out over the appropriate part of the
boundary corresponding to the tab.

Returns Contains the result of acting the discretised boundary integral on the child discre-
tised_symbol

Return type class: pybamm.Array

boundary_value_or_flux (symbol, discretised_child, bcs=None)
Returns the boundary value or flux using the approriate expression for the spatial method. To do this, we
create a sparse vector ‘bv_vector’ that extracts either the first (for side="left”) or last (for side="right”)
point from ‘discretised_child’.

Parameters
e symbol (pybamm. Symbol)— The boundary value or flux symbol

* discretised_child (pybamm.StateVector) — The discretised variable from
which to calculate the boundary value

* bes (dict (optional))— The boundary conditions. If these are supplied and “use
bes” is True in the options, then these will be used to improve the accuracy of the extrap-
olation.

Returns The variable representing the surface value.
Return type pybamm.MatrixMultiplication

broadcast (symbol, domain, auxiliary_domains, broadcast_type)
Broadcast symbol to a specified domain.

Parameters
e symbol (pybamm. Symbol)— The symbol to be broadcasted
e domain (iterable of strings)- The domain to broadcast to

* auxiliary domains (dict of strings)- The auxiliary domains for broadcast-
ing

* broadcast_type (str) — The type of broadcast: ‘primary to node’, ‘primary to
edges’, ‘secondary to nodes’, ‘secondary to edges’, ‘full to nodes’ or ‘full to edges’

Returns broadcasted_symbol — The discretised symbol of the correct size for the spatial
method

Return type class: pybamm.Symbol

concatenation (disc_children)
Discrete concatenation object.

Parameters disc_children (1ist) — List of discretised children
Returns Concatenation of the discretised children
Return type pybamm.DomainConcatenation

delta_function (symbol, discretised_symbol)
Implements the delta function on the approriate side for a spatial method.

Parameters
e symbol (pybamm. Symbol)— The symbol to which is being integrated

* discretised_symbol (pybamm.Symbol) — The discretised symbol of the correct
size

108 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 0.2.3

divergence (symbol, discretised_symbol, boundary_conditions)
Implements the divergence for a spatial method.

Parameters

e symbol (pybamm. Symbol)— The symbol that we will take the gradient of.

* discretised_symbol (pybamm. Symbol) — The discretised symbol of the correct
size

* boundary_conditions (dict)—The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right be}})

Returns Contains the result of acting the discretised divergence on the child discretised_symbol
Return type class: pybamm.Array

gradient (symbol, discretised_symbol, boundary_conditions)
Implements the gradient for a spatial method.

Parameters

e symbol (pybamm. Symbol)— The symbol that we will take the gradient of.

* discretised_symbol (pybamm.Symbol) — The discretised symbol of the correct
size

* boundary_conditions (dict)-The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right bc}})

Returns Contains the result of acting the discretised gradient on the child discretised_symbol
Return type class: pybamm.Array

gradient_squared (symbol, discretised_symbol, boundary_conditions)
Implements the inner product of the gradient with itself for a spatial method.

Parameters
e symbol (pybamm. Symbol)— The symbol that we will take the gradient of.

* discretised_symbol (pybamm. Symbol) — The discretised symbol of the correct
size

* boundary_conditions (dict)—The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right be}})

Returns Contains the result of taking the inner product of the result of acting the discretised
gradient on the child discretised_symbol with itself

Return type class: pybamm.Array

indefinite_integral (child, discretised_child, direction)
Implements the indefinite integral for a spatial method.

Parameters
* child (pybamm. Symbol) — The symbol to which is being integrated

* discretised_child (pybamm.Symbol) — The discretised symbol of the correct
size

e direction (str) - The direction of integration

Returns Contains the result of acting the discretised indefinite integral on the child discre-
tised_symbol

3.6. Discretisation and spatial methods 109

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

Return type class: pybamm.Array

integral (child, discretised_child, integration_dimension)
Implements the integral for a spatial method.

Parameters
* child (pybamm. Symbol) — The symbol to which is being integrated

e discretised_child (pybamm.Symbol) — The discretised symbol of the correct
size

e integration_dimension (str, optional) — The dimension in which to inte-
grate (default is “primary’)

Returns Contains the result of acting the discretised integral on the child discretised_symbol
Return type class: pybamm.Array

internal_ neumann_condition (left_symbol_disc, right_symbol_disc, left_mesh, right_mesh)
A method to find the internal neumann conditions between two symbols on adjacent subdomains.

Parameters

* left_symbol_disc (pybamm. Symbol) — The discretised symbol on the left subdo-
main

* right_symbol_disc (pybamm. Symbol)— The discretised symbol on the right sub-
domain

¢ left_mesh (I ist)— The mesh on the left subdomain
e right_mesh (11st)— The mesh on the right subdomain

laplacian (symbol, discretised_symbol, boundary_conditions)
Implements the laplacian for a spatial method.

Parameters
e symbol (pybamm. Symbol)— The symbol that we will take the gradient of.

* discretised_symbol (pybamm. Symbol) — The discretised symbol of the correct
size

* boundary_conditions (dict)—The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right be}})

Returns Contains the result of acting the discretised laplacian on the child discretised_symbol
Return type class: pybamm.Array

mass_matrix (symbol, boundary_conditions)
Calculates the mass matrix for a spatial method.

Parameters

* symbol (pybamm. Variable)— The variable corresponding to the equation for which
we are calculating the mass matrix.

* boundary_conditions (dict)-The boundary conditions of the model ({symbol.id:
{“left”: left bc, “right”: right bc}})

Returns The (sparse) mass matrix for the spatial method.

Return type pybamm.Matrix

110 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

process_binary_ operators (bin_op, left, right, disc_left, disc_right)
Discretise binary operators in model equations. Default behaviour is to return a new binary operator with
the discretised children.

Parameters

* bin_op (pybamm.BinaryOperator) — Binary operator to discretise

e left (pybamm. Symbol) — The left child of bin_op

* right (pybamm. Symbol)— The right child of bin_op

e disc_left (pybamm. Symbol)— The discretised left child of bin_op

* disc_right (pybamm. Symbol) — The discretised right child of bin_op
Returns Discretised binary operator
Return type pybamm.BinaryOperator

spatial_variable (symbol)
Convert a pybamm. SpatialVariable node to a linear algebra object that can be evaluated (here, a
pybamm. Vector on either the nodes or the edges).

Parameters symbol (pybamm. SpatialVariable)—The spatial variable to be discretised.
Returns Contains the discretised spatial variable

Return type pybamm.Vector

3.6.3 Finite Volume

class pybamm.FiniteVolume (options=None)
A class which implements the steps specific to the finite volume method during discretisation.

For broadcast and mass_matrix, we follow the default behaviour from SpatialMethod.
Parameters
* mesh (pybamm. Mesh) — Contains all the submeshes for discretisation

* x*xExtends (‘“”: pybamm. SpatialMethod)—

add_ghost_nodes (symbol, discretised_symbol, bcs)
Add ghost nodes to a symbol.

For Dirichlet bes, for a boundary condition “y = a at the left-hand boundary”, we concatenate a ghost node
to the start of the vector y with value “2*a - y1” where y1 is the value of the first node. Similarly for the
right-hand boundary condition.

For Neumann bcs no ghost nodes are added. Instead, the exact value provided by the boundary
condition is used at the cell edge when calculating the gradient (see pybamm.FiniteVolume.
add_neumann_values ()).

Parameters
e symbol (pybamm. SpatialVariable)— The variable to be discretised
* discretised_symbol (pybamm. Vector) — Contains the discretised variable

* bes (dict of tuples (pybamm. Scalar, str)) — Dictionary (with keys “left” and “right’)
of boundary conditions. Each boundary condition consists of a value and a flag indicating
its type (e.g. “Dirichlet”)

3.6. Discretisation and spatial methods 111

PyBaMM Documentation, Release 0.2.3

Returns Matrix @ discretised_symbol + bcs_vector. When evaluated, this gives the discre-
tised_symbol, with appropriate ghost nodes concatenated at each end.

Return type pybamm.Symbol

add_neumann_values (symbol, discretised_gradient, bcs, domain)
Add the known values of the gradient from Neumann boundary conditions to the discretised gradient.

Dirichlet bcs are implemented wusing ghost nodes, see pybamm.FiniteVolume.
add_ghost_nodes ().

Parameters
e symbol (pybamm. SpatialVariable)— The variable to be discretised

* discretised_gradient (pybamm. Vector)— Contains the discretised gradient of
symbol

* bes (dict of tuples (pybamm. Scalar, str)) — Dictionary (with keys “left” and “right’)
of boundary conditions. Each boundary condition consists of a value and a flag indicating
its type (e.g. “Dirichlet”)

* domain (Iist of strings)— The domain of the gradient of the symbol (may in-
clude ghost nodes)

Returns Matrix @ discretised_gradient + bcs_vector. When evaluated, this gives the discre-
tised_gradient, with the values of the Neumann boundary conditions concatenated at each

end (if given).
Return type pybamm.Symbol

boundary value_or_flux (symbol, discretised_child, bcs=None)
Uses extrapolation to get the boundary value or flux of a variable in the Finite Volume Method.

See pybamm. SpatialMethod.boundary_value ()

concatenation (disc_children)
Discrete concatenation, taking edge_to_node for children that evaluate on edges. See pybamm.

SpatialMethod.concatenation ()

definite_integral_matrix (child, vector_type="row’, integration_dimension="primary’)
Matrix for finite-volume implementation of the definite integral in the primary dimension

I= / ' f(s) ds

for where a and b are the left-hand and right-hand boundaries of the domain respectively
Parameters
* child (pybamm. Symbol) — The symbol being integrated

* vector_type (str, optional) - Whether to return a row or column vector in the
primary dimension (default is row)

* integration_dimension (str, optional) — The dimension in which to inte-
grate (default is “primary”)

Returns The finite volume integral matrix for the domain
Return type pybamm.Matrix

delta_function (symbol, discretised_symbol)
Delta function. Implemented as a vector whose only non-zero element is the first (if symbol.side = “left”)

112 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

or last (if symbol.side = “right”), with appropriate value so that the integral of the delta function across the
whole domain is the same as the integral of the discretised symbol across the whole domain.

See pybamm. SpatialMethod.delta_ function ()

divergence (symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the divergence operator. See pybamm. SpatialMethod.
divergence ()

divergence_matrix (domains)
Divergence matrix for finite volumes in the appropriate domain. Equivalent to div(N) = (N[1:] - N[:-1])/dx

Parameters domains (dict)— The domain(s) and auxiliary domain in which to compute the
divergence matrix

Returns The (sparse) finite volume divergence matrix for the domain
Return type pybamm.Matrix

edge_to_node (discretised_symbol, method="arithmetic’)
Convert a discretised symbol evaluated on the cell edges to a discretised symbol evaluated on the cell
nodes. See pybamm.FiniteVolume.shift ()

gradient (symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the gradient operator. See pybamm. SpatialMethod.
gradient ()

gradient_matrix (domain, auxiliary_domains)
Gradient matrix for finite volumes in the appropriate domain. Equivalent to grad(y) = (y[1:] - y[:-1])/dx

Parameters

* domains (Iist)— The domain(s) in which to compute the gradient matrix, including
ghost nodes

* auxiliary domains (dict)— The auxiliary domains in which to compute the gradi-
ent matrix

Returns The (sparse) finite volume gradient matrix for the domain
Return type pybamm.Matrix

indefinite_integral (child, discretised_child, direction)
Implementation of the indefinite integral operator.

indefinite_integral_matrix_edges (domains, direction)
Matrix for finite-volume implementation of the indefinite integral where the integrand is evaluated on mesh
edges (shape (n+1, 1)). The integral will then be evaluated on mesh nodes (shape (n, 1)).

Parameters

* domains (dict)— The domain(s) and auxiliary domains of integration

e direction (str)— The direction of integration (forward or backward). See notes.
Returns The finite volume integral matrix for the domain

Return type pybamm.Matrix

Notes

Forward integral

3.6.

Discretisation and spatial methods 113

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

The indefinite integral must satisfy the following conditions:
* F(0)=0
* f@) =4
or, in discrete form,
* BoundaryValue(F, “left”) = 0,i.e. 3x Fy — F1 =0
* fiviye = (Fip1 — Fy)/dzip1)0
Hence we must have
e Iy = du1/2 * fl/2/2
* Fiy1 =Fi +duiy1)2 * fiz1)2

Note that f_; /5 and fe,441/2 are included in the discrete integrand vector f, so we add a column of zeros
at each end of the indefinite integral matrix to ignore these.

Backward integral

F(z) = /m " ndf (u) du

The indefinite integral must satisfy the following conditions:
e Flend) =0
o) =%
or, in discrete form,
* BoundaryValue(F, “right”) = 0,i.e. 3% Fopg — Fena—1 =0
* fi+1/2 = —(Fiy1 — Fi)/d$i+1/2
Hence we must have
* Fend = dUendi1)2 * fend—1/2/2
e Fii=F,+duj_1/2% fi_1)2

Note that f_; /5 and f.,,441/2 are included in the discrete integrand vector f, so we add a column of zeros
at each end of the indefinite integral matrix to ignore these.

indefinite_integral_matrix_nodes (domains, direction)
Matrix for finite-volume implementation of the (backward) indefinite integral where the integrand is eval-
uated on mesh nodes (shape (n, 1)). The integral will then be evaluated on mesh edges (shape (n+1, 1)).
This is just a straightforward (backward) cumulative sum of the integrand

Parameters
* domains (dict)— The domain(s) and auxiliary domains of integration
e direction (str)— The direction of integration (forward or backward)
Returns The finite volume integral matrix for the domain
Return type pybamm.Matrix

integral (child, discretised_child, integration_dimension)
Vector-vector dot product to implement the integral operator.

internal_neumann_condition (left_symbol_disc, right_symbol_disc, left_mesh, right_mesh)
A method to find the internal neumann conditions between two symbols on adjacent subdomains.

Parameters

114 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

* left_symbol_disc (pybamm. Symbol)— The discretised symbol on the left subdo-
main

* right_symbol_disc (pybamm. Symbol)— The discretised symbol on the right sub-
domain

¢ left_mesh (I1st)— The mesh on the left subdomain
e right_mesh (11st)— The mesh on the right subdomain

laplacian (symbol, discretised_symbol, boundary_conditions)
Laplacian operator, implemented as div(grad(.)) See pybamm. SpatialMethod. laplacian ()

node_to_edge (discretised_symbol, method="arithmetic’)
Convert a discretised symbol evaluated on the cell nodes to a discretised symbol evaluated on the cell
edges. See pybamm.FiniteVolume.shift ()

preprocess_external_variables (var)
For finite volumes, we need the boundary fluxes for discretising properly. Here, we extrapolate and then
add them to the boundary conditions.

Parameters var (pybamm.Variable or pybamm.Concatenat ion)— The external vari-
able that is to be processed

Returns new_bcs — A dictionary containing the new boundary conditions
Return type dict

process_binary_ operators (bin_op, left, right, disc_left, disc_right)
Discretise binary operators in model equations. Performs appropriate averaging of diffusivities if one
of the children is a gradient operator, so that discretised sizes match up. For this averaging we use the
harmonic mean [1].

[1] Recktenwald, Gerald. “The control-volume finite-difference approximation to the diffusion equation.”
(2012).

Parameters

* bin_op (pybamm.BinaryOperator) — Binary operator to discretise

e left (pybamm. Symbol) — The left child of bin_op

e right (pybamm. Symbol)— The right child of bin_op

e disc_left (pybamm. Symbol)— The discretised left child of bin_op

e disc_right (pybamm. Symbol) — The discretised right child of bin_op
Returns Discretised binary operator
Return type pybamm.BinaryOperator

shift (discretised_symbol, shift_key, method)
Convert a discretised symbol evaluated at edges/nodes, to a discretised symbol evaluated at nodes/edges.
Can be the arithmetic mean or the harmonic mean.

Note: when computing fluxes at cell edges it is better to take the harmonic mean based on [1].

[1] Recktenwald, Gerald. “The control-volume finite-difference approximation to the diffusion equation.”
(2012).

Parameters

* discretised_symbol (pybamm.Symbol) — Symbol to be averaged. @~ When
evaluated, this symbol returns either a scalar or an array of shape (n,) or (n+l,),

3.6.

Discretisation and spatial methods 115

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

where n is the number of points in the mesh for the symbol’s domain (n =
self.mesh[symbol.domain].npts)

* shift_key (str) — Whether to shift from nodes to edges (“node to edge”), or from
edges to nodes (“edge to node”)

¢ method (st r)— Whether to use the “arithmetic” or “harmonic” mean

Returns Averaged symbol. When evaluated, this returns either a scalar or an array of shape
(n+1,) (if shift_key = “node to edge”) or (n,) (if shift_key = “edge to node”)

Return type pybamm. Symbol

spatial_variable (symbol)
Creates a discretised spatial variable compatible with the FiniteVolume method.

Parameters symbol (pybamm. SpatialVariable)—The spatial variable to be discretised.
Returns Contains the discretised spatial variable

Return type pybamm.Vector

3.6.4 Scikit Finite Elements

class pybamm.ScikitFiniteElement (options=None)
A class which implements the steps specific to the finite element method during discretisation. The class uses
scikit-fem to discretise the problem to obtain the mass and stiffness matrices. At present, this class is only used
for solving the Poisson problem -grad"2 u = f in the y-z plane (i.e. not the through-cell direction).

For broadcast we follow the default behaviour from SpatialMethod.
Parameters
e mesh (pybamm.Mesh) — Contains all the submeshes for discretisation

* x*xExtends (‘“”: pybamm. SpatialMethod)—

assemble_mass_form (symbol, boundary_conditions, region="interior’)
Assembles the form of the finite element mass matrix over the domain interior or boundary.

Parameters

* symbol (pybamm. Variable)— The variable corresponding to the equation for which
we are calculating the mass matrix.

* boundary_conditions (dict)—The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

* region (str, optional) — The domain over which to assemble the mass matrix
form. Can be “interior” (default) or “boundary”.

Returns The (sparse) mass matrix for the spatial method.
Return type pybamm.Matrix

be_apply (M, boundary, zero=False)
Adjusts the assemled finite element matrices to account for boundary conditons.

Parameters
* M(scipy.sparse.coo_matrix)— The assemled finite element matrix to adjust.

* boundary (numpy .array) — Array of the indicies which correspond to the boundary.

116 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix

PyBaMM Documentation, Release 0.2.3

* zero (bool, optional) - If True, the rows of M given by the indicies in boundary
are set to zero. If False, the diagonal element is set to one. default is False.

boundary_integral (child, discretised_child, region)
Implementation of the boundary integral operator. See pybamm.SpatialMethod.
boundary_integral ()

boundary_integral_vector (domain, region)
A node in the expression tree representing an integral operator over the boundary of a domain

I= | f(u)du,
da

where Oa is the boundary of the domain, and « € domain boundary.
Parameters
* domain (11ist)— The domain(s) of the variable in the integrand

* region (str) — The region of the boundary over which to integrate. If region is entire
the integration is carried out over the entire boundary. If region is negative tab or posi-
tive tab then the integration is only carried out over the appropriate part of the boundary
corresponding to the tab.

Returns The finite element integral vector for the domain
Return type pybamm.Matrix

boundary_mass_matrix (symbol, boundary_conditions)
Calculates the mass matrix for the finite element method assembled over the boundary.

Parameters

e symbol (pybamm. Variable)— The variable corresponding to the equation for which
we are calculating the mass matrix.

* boundary_conditions (dict)—The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns The (sparse) mass matrix for the spatial method.
Return type pybamm.Matrix

boundary_value_or_flux (symbol, discretised_child, bcs=None)
Returns the average value of the symbol over the negative tab (“negative tab”) or the positive tab (“positive
tab”) in the Finite Element Method.

Overwrites the default pybamm. SpatialMethod.boundary_value ()

definite_integral_matrix (child, vector_type="row’)
Matrix for finite-element implementation of the definite integral over the entire domain

I=/Qf(5)dx

for where (2 is the domain.
Parameters
* child (pybamm. Symbol) — The symbol being integrated

* vector_type (str, optional)— Whether toreturnarow or column vector (default
1S TOW)

Returns The finite element integral vector for the domain

3.6.

Discretisation and spatial methods 117

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

Return type pybamm.Matrix

divergence (symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the divergence operator. See pybamm. SpatialMethod.
divergence ()

gradient (symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the gradient operator. The gradient w of the function u is
approximated by the finite element method using the same function space as u, i.e. we solve w = grad(u),
which corresponds to the weak form w*v*dx = grad(u)*v*dx, where v is a suitable test function.

Parameters
e symbol (pybamm. Symbol)— The symbol that we will take the laplacian of.

* discretised_symbol (pybamm.Symbol) — The discretised symbol of the correct
size

* boundary_conditions (dict)-The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns A concatenation that contains the result of acting the discretised gradient on the child
discretised_symbol. The first column corresponds to the y-component of the gradient and
the second column corresponds to the z component of the gradient.

Return type class: pybamm.Concatenation

gradient_matrix (symbol, boundary_conditions)
Gradient matrix for finite elements in the appropriate domain.

Parameters

e symbol (pybamm. Symbol) — The symbol for which we want to calculate the gradient
matrix

* boundary_conditions (dict)—The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns The (sparse) finite element gradient matrix for the domain
Return type pybamm.Matrix

gradient_squared (symbol, discretised_symbol, boundary_conditions)
Multiplication to implement the inner product of the gradient operator with itself. See pybamm.
SpatialMethod.gradient_squared()

indefinite_integral (child, discretised_child, direction)
Implementation of the indefinite integral operator. The input discretised child must be defined on the
internal mesh edges. See pybamm. SpatialMethod.indefinite_integral ()

integral (child, discretised_child, integration_dimension)
Vector-vector dot product to implement the integral operator. See pybamm.SpatiallMethod.
integral ()

laplacian (symbol, discretised_symbol, boundary_conditions)
Matrix-vector multiplication to implement the laplacian operator.

Parameters
e symbol (pybamm. Symbol)— The symbol that we will take the laplacian of.

* discretised_symbol (pybamm.Symbol) — The discretised symbol of the correct
size

118 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

* boundary_conditions (dict)-The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns Contains the result of acting the discretised gradient on the child discretised_symbol

Return type class: pybamm.Array

mass_matrix (symbol, boundary_conditions)
Calculates the mass matrix for the finite element method.

Parameters
e symbol (pybamm. Variable)— The variable corresponding to the equation for which

we are calculating the mass matrix.
* boundary_conditions (dict)—The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns The (sparse) mass matrix for the spatial method.

Return type pybamm.Matrix

spatial_variable (symbol)
Creates a discretised spatial variable compatible with the FiniteElement method.

Parameters symbol (pybamm. SpatialVariable)-The spatial variable to be discretised.
Returns Contains the discretised spatial variable

Return type pybamm.Vector

stiffness_matrix (symbol, boundary_conditions)
Laplacian (stiffness) matrix for finite elements in the appropriate domain.

Parameters
e symbol (pybamm. Symbol)— The symbol for which we want to calculate the laplacian

matrix
* boundary_conditions (dict)-The boundary conditions of the model ({symbol.id:
{“negative tab”: neg. tab bc, “positive tab”: pos. tab bc}})

Returns The (sparse) finite element stiffness matrix for the domain

Return type pybamm.Matrix

3.6.5 Zero Dimensional Spatial Method

class pybamm.ZeroDimensionalSpatialMethod (options=None)
A discretisation class for the zero dimensional mesh

Parameters
* mesh — Contains all the submeshes for discretisation

* x*Extendsx*x* (pybamm. SpatialMethod)—

boundary_value_or_flux (symbol, discretised_child, bcs=None)
In OD, the boundary value 1is the identity operator.

boundary value or._flux/()

See SpatialMethod.

indefinite_integral (child, discretised_child, direction)
Calculates the zero-dimensional indefinite integral. If ‘direction’ is forward, this is the identity operator.

If “direction’ is backward, this is the negation operator.

3.6. Discretisation and spatial methods 119

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

integral (child, discretised_child, integration_dimension)
Calculates the zero-dimensional integral, i.e. the identity operator

mass_matrix (symbol, boundary_conditions)
Calculates the mass matrix for a spatial method. Since the spatial method is zero dimensional, this is
simply the number 1.

3.7 Solvers

3.7.1 Base Solver

class pybamm.BaseSolver (method=None, rtol=1e-06, atol=1e-06, root_method=None, root_tol=1e-
06, max_steps="deprecated’)
Solve a discretised model.

Parameters
* method (str, optional)-The method to use for integration, specific to each solver
e rtol (float, optional)- The relative tolerance for the solver (default is 1e-6).
* atol (float, optional)- The absolute tolerance for the solver (default is 1e-6).

* root_method (str or pybamm algebraic solver class, optional) —
The method to use to find initial conditions (for DAE solvers). If a solver class, must be
an algebraic solver class. If “casadi”, the solver uses casadi’s Newton rootfinding algorithm
to find initial conditions. Otherwise, the solver uses ‘scipy.optimize.root’ with method spec-
ified by ‘root_method’ (e.g. “Im”, “hybr”, ...)

e root_tol (float, optional)- The tolerance for the initial-condition solver (default
is le-6).

calculate_consistent_state (model, time=0, inputs=None)
Calculate consistent state for the algebraic equations through root-finding. model.y0 is used as the initial
guess for rootfinding

Parameters
* model (pybamm.BaseModel) — The model for which to calculate initial conditions.
e time (fIloat) - The time at which to calculate the states
* inputs(dict, optional)- Any inputparameters to pass to the model when solving

Returns y0_consistent — Initial conditions that are consistent with the algebraic equations (roots
of the algebraic equations)

Return type array-like, same shape as y0_guess

copy ()
Returns a copy of the solver

get_termination_reason (solution, events)
Identify the cause for termination. In particular, if the solver terminated due to an event, (try to) pinpoint
which event was responsible. Note that the current approach (evaluating all the events and then finding
which one is smallest at the final timestep) is pretty crude, but is the easiest one that works for all the
different solvers.

Parameters

* solution (pybamm. Solution)— The solution object

120 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

* events (dict)— Dictionary of events

set_up (model, inputs=None)
Unpack model, perform checks, simplify and calculate jacobian.

Parameters

¢ model (pybamm.BaseModel) — The model whose solution to calculate. Must have
attributes rhs and initial_conditions

* inputs(dict, optional)- Any inputparameters to pass to the model when solving

solve (model, t_eval=None, external_variables=None, inputs=None)
Execute the solver setup and calculate the solution of the model at specified times.

Parameters

* model (pybamm.BaseModel) — The model whose solution to calculate. Must have
attributes rhs and initial_conditions

* t_eval (numeric type)— The times (in seconds) at which to compute the solution

* external_variables (dict) — A dictionary of external variables and their corre-
sponding values at the current time

e inputs(dict, optional)- Any input parameters to pass to the model when solving

Raises pybamm.ModelError — If an empty model is passed (model.rhs = ([} and
model.algebraic={} and model.variables = {})

step (old_solution, model, dt, npts=2, external_variables=None, inputs=None, save=True)
Step the solution of the model forward by a given time increment. The first time this method is called it
executes the necessary setup by calling self.set_up(model).

Parameters

* 0ld_solution (pybamm. Solution or None) — The previous solution to be added
to. If None, a new solution is created.

e model (pybamm.BaseModel) — The model whose solution to calculate. Must have
attributes rhs and initial_conditions

e dt (numeric type)- The timestep (in seconds) over which to step the solution

e npts (int, optional)-The number of points at which the solution will be returned
during the step dt. default is 2 (returns the solution at t0 and tO + dt).

* external_variables (dict) — A dictionary of external variables and their corre-
sponding values at the current time

* inputs(dict, optional)- Any inputparameters to pass to the model when solving
* save (bool)— Turn on to store the solution of all previous timesteps

Raises pybamm.ModelError — If an empty model is passed (model.rhs = {} and
model.algebraic = {} and model.variables = {})

3.7.2 Dummy Solver

class pybamm.DummySolver
Dummy solver class for empty models.

3.7. Solvers 121

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.3

3.7.3 Scipy Solver
class pybamm.ScipySolver (method="BDF’, rtol=1e-06, atol=1e-06, extra_options=None)
Solve a discretised model, using scipy.integrate.solve_ivp.
Parameters
* method (str, optional) - The method to use in solve_ivp (default is “BDF”)
e rtol (float, optional)- The relative tolerance for the solver (default is 1e-6).
* atol (float, optional)- The absolute tolerance for the solver (default is 1e-6).

* extra_options (dict, optional)— Any options to pass to the solver. Please con-
sult SciPy documentation for details.

3.7.4 Scikits.odes Solvers

class pybamm.ScikitsOdeSolver (method="cvode’, rtol=1e-06, atol=1e-06, linsolver="deprecated’,

extra_options=None)
Solve a discretised model, using scikits.odes.

Parameters
* method (str, optional)- The method to use in solve_ivp (default is “BDF”)
e rtol (float, optional)- The relative tolerance for the solver (default is 1e-6).
* atol (float, optional)- The absolute tolerance for the solver (default is 1e-6).

* extra_options (dict, optional)— Any options to pass to the solver. Please con-
sult scikits.odes documentation for details. Some common keys:

— ’linsolver’: can be ‘dense’ (= default), ‘lapackdense’, ‘spgmr’, ‘spbcgs’, ‘sptfqmr’

class pybamm.ScikitsDaeSolver (method=’ida’, rtol=1e-06, atol=1e-06, root_method=’casadi’,

root_tol=1e-00, extra_options=None, max_steps=’deprecated’)
Solve a discretised model, using scikits.odes.

Parameters
* method (str, optional) - The method to use in solve_ivp (default is “BDF”)
e rtol (float, optional)- The relative tolerance for the solver (default is 1e-6).
* atol (float, optional)- The absolute tolerance for the solver (default is 1e-6).

* root_method (str or pybamm algebraic solver class, optional) —
The method to use to find initial conditions (for DAE solvers). If a solver class, must be
an algebraic solver class. If “casadi”, the solver uses casadi’s Newton rootfinding algorithm
to find initial conditions. Otherwise, the solver uses ‘scipy.optimize.root’” with method spec-
ified by ‘root_method’ (e.g. “Ilm”, “hybr”, ...)

e root_tol (float, optional)- The tolerance for the initial-condition solver (default
is le-6).

* extra_options (dict, optional)- Any options to pass to the solver. Please con-
sult scikits.odes documentation for details. Some common keys:

— ’max_steps’: maximum (int) number of steps the solver can take

122 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://tinyurl.com/yafgqg9y
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://bmcage.github.io/odes/dev/index.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://bmcage.github.io/odes/dev/index.html

PyBaMM Documentation, Release 0.2.3

3.7.5 Casadi Solver

class pybamm.CasadiSolver (mode="safe’, rtol=1e-06, atol=1e-006, root_method="casadi’,
root_tol=1e-06, max_step_decrease_count=5, dt_max=None, ex-
tra_options_setup=None, extra_options_call=None)
Solve a discretised model, using CasADi.

Extends: pybamm.BaseSolver
Parameters
* mode (str)— How to solve the model (default is “safe”):

— “fast”: perform direct integration, without accounting for events. Recommended when
simulating a drive cycle or other simulation where no events should be triggered.

— 7safe”: perform step-and-check integration in global steps of size dt_max, checking
whether events have been triggered. Recommended for simulations of a full charge or
discharge.

— 7old safe”: perform step-and-check integration in steps of size dt for each dt in t_eval,
checking whether events have been triggered.

e rtol (float, optional)- The relative tolerance for the solver (default is 1e-6).
* atol (float, optional)- The absolute tolerance for the solver (default is 1e-6).

* root_method (str or pybamm algebraic solver class, optional) —
The method to use to find initial conditions (for DAE solvers). If a solver class, must be
an algebraic solver class. If “casadi”, the solver uses casadi’s Newton rootfinding algorithm
to find initial conditions. Otherwise, the solver uses ‘scipy.optimize.root” with method spec-
ified by ‘root_method’ (e.g. “Im”, “hybr”, ...)

* root_tol (float, optional)- The tolerance for root-finding. Default is 1e-6.

* max_step_decrease_counts (float, optional) — The maximum number of
times step size can be decreased before an error is raised. Default is 5.

e dt_max (float, optional) — The maximum global step size (in seconds) used in
“safe” mode. If None the default value corresponds to a non-dimensional time of 0.01 (i.e.
0.01 * model.timescale_eval).

* extra_options_setup (dict, optional)— Any options to pass to the CasADi
integrator when creating the integrator. Please consult CasADi documentation for details.
Some typical options:

— ”max_num_steps”: Maximum number of integrator steps

* extra_options_call (dict, optional)-— Any options to pass to the CasADi in-
tegrator when calling the integrator. Please consult CasADi documentation for details.

3.7.6 Algebraic Solvers

class pybamm.AlgebraicSolver (method="lm’, tol=1e-06, extra_options=None)
Solve a discretised model which contains only (time independent) algebraic equations using a root finding
algorithm. Uses scipy.optimize.root. Note: this solver could be extended for quasi-static models, or models in
which the time derivative is manually discretised and results in a (possibly nonlinear) algebaric system at each
time level.

Parameters

3.7. Solvers 123

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://tinyurl.com/y5rk76os
https://docs.python.org/3/library/stdtypes.html#dict
https://tinyurl.com/y5rk76os

PyBaMM Documentation, Release 0.2.3

* method (str, optional)-The method to use to solve the system (default is “Im”). If
it starts with “Isq”, least-squares minimization is used. The method for least-squares can be
specified in the form “lsq_methodname”

e tol (float, optional)- The tolerance for the solver (default is 1e-6).

* extra_options (dict, optional) — Any options to pass to the rootfinder. Vary
depending on which method is chosen. Please consult SciPy documentation for details.

class pybamm.CasadiAlgebraicSolver (tol=1e-00, extra_options=None)
Solve a discretised model which contains only (time independent) algebraic equations using CasADi’s root
finding algorithm. Note: this solver could be extended for quasi-static models, or models in which the time
derivative is manually discretised and results in a (possibly nonlinear) algebaric system at each time level.

Parameters
* tol (float, optional)- The tolerance for the solver (default is 1e-6).

* extra_options (dict, optional)-— Any options to pass to the CasADi rootfinder.
Please consult CasADi documentation for details.

3.7.7 Solutions

class pybamm._BaseSolution (t, y, t_event=None, Yy_event=None, termination="final time’,

copy_this=None)
(Semi-private) class containing the solution of, and various attributes associated with, a PyBaMM model. This

class is automatically created by the Solution class, and should never be called from outside the Solution class.
Parameters

* t (numpy.array, size (n,)) — A one-dimensional array containing the times at which the
solution is evaluated

* y (numpy.array, size (m, n)) — A two-dimensional array containing the values of the
solution. y([i, :] is the vector of solutions at time t[i].

* t_event (numpy.array, size (1,)) — A zero-dimensional array containing the time at
which the event happens.

* y_event (numpy.array, size (m,)) — A one-dimensional array containing the value of
the solution at the time when the event happens.

* termination (str) — String to indicate why the solution terminated

* copy_this (pybamm. Solution, optional) — A solution to copy, if provided. Default
is None.

inputs
Values of the inputs

model
Model used for solution

save (filename)
Save the whole solution using pickle

save_data (filename, variables=None, to_format="pickle’)
Save solution data only (raw arrays)

Parameters

e filename (st r)— The name of the file to save data to

124 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://tinyurl.com/ybr6cfqs
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://tinyurl.com/y7hrxm7d
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

e variables (1ist, optional)— List of variables to save. If None, saves all of the
variables that have been created so far

* to_format (str, optional)- The format to save to. Options are:
— ’pickle’ (default): creates a pickle file with the data dictionary
— ’matlab’: creates a .mat file, for loading in matlab

— ’csv’: creates a csv file (1D variables only)

Times at which the solution is evaluated

t_event
Time at which the event happens

termination
Reason for termination

update (variables)
Add Processed Variables to the dictionary of variables in the solution

y
Values of the solution

y_event
Value of the solution at the time of the event

class pybamm.Solution (¢, Yy, t_event=None, y_event=None, termination="final time’)
Class extending the base solution, with additional functionality for concatenating different solutions together

Extends: BaseSolution

append (solution, start_index=1, create_sub_solutions=False)
Appends solution.t and solution.y onto self.t and self.y.

Note: by default this process removes the initial time and state of solution to avoid duplicate times and
states being stored (self.t[-1] is equal to solution.t[0], and self.y[:, -1] is equal to solution.y[:, 0]). Set the
optional argument start_index to override this behavior

sub_solutions
List of sub solutions that have been concatenated to form the full solution

3.7.8 Post-Process Variables

class pybamm.ProcessedVariable (base_variable, solution, known_evals=None, warn=True)
An object that can be evaluated at arbitrary (scalars or vectors) t and x, and returns the (interpolated) value of
the base variable at that t and x.

Parameters

* base_variable (pybamm. Symbol)— A base variable with a method evaluate(t,y) that
returns the value of that variable. Note that this can be any kind of node in the expression
tree, not just a pybamm. Variable. When evaluated, returns an array of size (m,n)

* solution (pybamm. Solut ion)—The solution object to be used to create the processed
variables

* known_evals (dict) — Dictionary of known evaluations, to be used to speed up finding
the solution

3.7. Solvers 125

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

* warn (bool, optional)— Whether to raise warnings when trying to evaluate time and
length scales. Default is True.

call 1D (t,x,1,2)
Evaluate a 1D variable

call_2D(t,x,r,Y,2)
Evaluate a 2D variable

data
Same as entries, but different name

get_spatial_scale (name, domain)
Returns the spatial scale for a named spatial variable

initialise_ 2D ()
Initialise a 2D object that depends on x and 1, or X and z.

class pybamm.ProcessedSymbolicVariable (base_variable, solution)
An object that can be evaluated at arbitrary (scalars or vectors) t and x, and returns the (interpolated) value of
the base variable at that t and x.

Parameters

* base_variable (pybamm. Symbol)— A base variable with a method evaluate(t,y) that
returns the value of that variable. Note that this can be any kind of node in the expression
tree, not just a pybamm. Variable. When evaluated, returns an array of size (m,n)

* solution (pybamm. Solut ion)—The solution object to be used to create the processed
variables

data
Same as entries, but different name

initialise_ 0D ()
Create a 0D variable

initialise_ 1D ()
Create a 1D variable

sensitivity (inputs=None, check_inputs=True)
Returns the sensitivity of the variable to the symbolic inputs at the specified input values

Parameters inputs (dict)— The inputs at which to evaluate the variable.

value (inputs=None, check_inputs=True)
Returns the value of the variable at the specified input values

Parameters inputs (dict) - The inputs at which to evaluate the variable.

value_and_sensitivity (inputs=None)
Returns the value of the variable and its sensitivity to the symbolic inputs at the specified input values

Parameters inputs (dict)— The inputs at which to evaluate the variable.

3.8 Experiments

Classes to help set operating conditions for some standard battery modelling experiments

126 Chapter 3. API documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PyBaMM Documentation, Release 0.2.3

3.8.1 Base Experiment Class

class pybamm.Experiment (operating_conditions, parameters=None, period="1 minute’)

Base class for experimental conditions under which to run the model. In general, a list of operating conditions
should be passed in. Each operating condition should be of the form “Do this for this long” or “Do this until
this happens”. For example, “Charge at 1 C for 1 hour”, or “Charge at 1 C until 4.2 V”, or “Charge at 1 C for 1
hour or until 4.2 V”. The instructions can be of the form “(Dis)charge at x A/C/W”, “Rest”, or “Hold at x V”.
The running time should be a time in seconds, minutes or hours, e.g. “10 seconds”, “3 minutes” or “I hour”.
The stopping conditions should be a circuit state, e.g. “1 A”, “C/50” or “3 V.

Parameters
* operating_conditions (1ist)— List of operating conditions

* parameters (dict) — Dictionary of parameters to use for this experiment, replacing
default parameters as appropriate

* period (string, optional)— Period (1/frequency) at which to record outputs. De-
fault is 1 minute. Can be overwritten by individual operating conditions.

convert_electric (electric)
Convert electrical instructions to consistent output

convert_ time to_seconds (time_and_units)
Convert a time in seconds, minutes or hours to a time in seconds

read_operating conditions (operating_conditions)
Convert operating conditions to the appropriate format

Parameters operating_conditions (1ist)— List of operating conditions
Returns operating_conditions — Operating conditions in the tuple format
Return type list

read_string (cond)
Convert a string to a tuple of the right format

Parameters cond (st r)— String of appropriate form for example “Charge at x C for y hours”.
x and y must be numbers, ‘C’ denotes the unit of the external circuit (can be A for current,
C for C-rate, V for voltage or W for power), and ‘hours’ denotes the unit of time (can be
second(s), minute(s) or hour(s))

3.9 Simulation

class pybamm.Simulation (model, experiment=None, geometry=None, parameter_values=None, sub-

mesh_types=None, var_pts=None, spatial_methods=None, solver=None,

quick_plot_vars=None, C_rate=None)
A Simulation class for easy building and running of PyBaMM simulations.

Parameters
¢ model (pybamm.BaseModel) — The model to be simulated

* experiment (pybamm.Experiment (optional)) — The experimental conditions under
which to solve the model

* geometry (pybamm.Geometry (optional)) — The geometry upon which to solve the
model

3.9. Simulation 127

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

* parameter_values (pybamm.ParameterValues (optional)) — Parameters and
their corresponding numerical values.

* submesh_types (dict (optional))— A dictionary of the types of submesh to use
on each subdomain

* var_pts (dict (optional)) — A dictionary of the number of points used by each
spatial variable

* spatial methods (dict (optional))-— A dictionary of the types of spatial method
to use on each domain (e.g. pybamm.FiniteVolume)

* solver (pybamm.BaseSolver (optional)) — The solver to use to solve the model.
* quick_plot_vars (list (optional))— A listof variables to plot automatically

* C_rate (float (optional))- The C_rate at which you would like to run a constant
current (dis)charge at.

build (check_model=True)
A method to build the model into a system of matrices and vectors suitable for performing numerical
computations. If the model has already been built or solved then this function will have no effect. This
method will automatically set the parameters if they have not already been set.

Parameters check_model (bool, optional)-IfTrue, model checks are performed after
discretisation (see pybamm.Discretisation.process_model ()). Default is True.

get_variable_array (*variables)
A helper function to easily obtain a dictionary of arrays of values for a list of variables at the latest timestep.

Parameters variable (str) — The name of the variable/variables you wish to obtain the
arrays for.

Returns variable_arrays — A dictionary of the variable names and their corresponding arrays.
Return type dict

plot (quick_plot_vars=None, testing=False)
A method to quickly plot the outputs of the simulation.

Parameters
* quick_plot_vars (list, optional)— A listof the variables to plot.
* bool, optional (testing,)— If False the plot will not be displayed

save (filename)
Save simulation using pickle

set_parameters ()
A method to set the parameters in the model and the associated geometry.

set_up_experiment (model, experiment)
Set up a simulation to run with an experiment. This creates a dictionary of inputs (current/voltage/power,
running time, stopping condition) for each operating condition in the experiment. The model will then be
solved by integrating the model successively with each group of inputs, one group at a time.

solve (t_eval=None, solver=None, external_variables=None, inputs=None, check_model=True)
A method to solve the model. This method will automatically build and set the model parameters if not
already done so.

Parameters

* t_eval (numeric type, optional)-The times (in seconds) at which to compute
the solution. Can be provided as an array of times at which to return the solution, or as

128 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

PyBaMM Documentation, Release 0.2.3

a list (10, tf] where 10 is the initial time and ¢f is the final time. If provided as a list the
solution is returned at 100 points within the interval [0, tf].

If not using an experiment or running a drive cycle simulation (current provided as data)
t_eval must be provided.

If running an experiment the values in 7_eval are ignored, and the solution times are spec-
ified by the experiment.

If None and the parameter “Current function [A]” is read from data (i.e. drive cycle simu-
lation) the model will be solved at the times provided in the data.

¢ solver (pybamm.BaseSolver)— The solver to use to solve the model.

* external_variables (dict) — A dictionary of external variables and their corre-
sponding values at the current time. The variables must correspond to the variables that
would normally be found by solving the submodels that have been made external.

e inputs(dict, optional)- Any input parameters to pass to the model when solving

* check_model (bool, optional) - If True, model checks are performed after dis-
cretisation (see pybamm.Discretisation.process_model ()). Defaultis True.

specs (geometry=None, parameter_values=None, submesh_types=None, var_pts=None, spa-

tial_methods=None, solver=None, quick_plot_vars=None, C_rate=None)
Deprecated method for setting specs

step (dt, solver=None, npts=2, external_variables=None, inputs=None, save=True)
A method to step the model forward one timestep. This method will automatically build and set the model
parameters if not already done so.

Parameters
e dt (numeric type) - The timestep over which to step the solution
e solver (pybamm.BaseSolver)— The solver to use to solve the model.

* npts (int, optional)-The number of points at which the solution will be returned
during the step dt. Default is 2 (returns the solution at t0 and t0 + dt).

* external_variables (dict) — A dictionary of external variables and their corre-
sponding values at the current time. The variables must correspond to the variables that
would normally be found by solving the submodels that have been made external.

e inputs(dict, optional)- Any input parameters to pass to the model when solving

* save (bool)— Turn on to store the solution of all previous timesteps

3.10 Plotting

3.10.1 Quick Plot

class pybamm.QuickPlot (solutions, output_variables=None, labels=None, colors=None,
linestyles=None, figsize=None, time_unit=None, spatial_unit="um’,
variable_limits="fixed’)
Generates a quick plot of a subset of key outputs of the model so that the model outputs can be easily assessed.

Parameters

* solutions ((iter of) pybamm. Solutionor pybamm. Simulat ion)—The numerical
solution(s) for the model(s), or the simulation object(s) containing the solution(s).

3.10. Plotting 129

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

PyBaMM Documentation, Release 0.2.3

* output_variables (list of str, optional)- Listof variables to plot

e labels (list of str, optional) - Labels for the different models. Defaults to
model names

* colors (list of str, optional)— The colors to loop over when plotting. De-
faults t() [Gér’7, 66b?” ‘6k7” 6‘g’7’ 64m’7’ “C”]

* linestyles (1ist of str, optional) - The linestyles to loop over when plot-

IR I I T L TR L

ting. Defaults to [“-*, “:”, R]
» figsize (tuple of floats, optional)— The size of the figure to make

EE I3

* time_unit (str, optional) — Format for the time output (“hours”, “minutes” or
“seconds”)

EEINT3

* spatial_unit (str, optional)- Format for the spatial axes (“m”, “mm” or “um”)

e variable_limits (str or dict of str, optional) - How to set the axis
limits (for OD or 1D variables) or colorbar limits (for 2D variables). Options are:

— fixed” (default): keep all axes fixes so that all data is visible
— 7tight”: make axes tight to plot at each time

— dictionary: fine-grain control for each variable, can be either “fixed” or “tight” or a spe-
cific tuple (lower, upper).

dynamic_plot (testing=False, step=None)
Generate a dynamic plot with a slider to control the time.

Parameters

* step (float) — For notebook mode, size of steps to allow in the slider. Defaults to
1/100th of the total time.

* testing (bool)— Whether to actually make the plot (turned off for unit tests)

get_spatial_var (key, variable, dimension)
Return the appropriate spatial variable(s)

plot (1)
Produces a quick plot with the internal states at time t.

Parameters t (£1oat)— Dimensional time (in ‘time_units’) at which to plot.

reset_axis ()
Reset the axis limits to the default values. These are calculated to fit around the minimum and maximum
values of all the variables in each subplot

slider_update (?)
Update the plot in self.plot() with values at new time

3.10.2 Dynamic Plot

pybamm.dynamic_plot (*args, **kwargs)
Creates a pybamm.QuickPlot object (with arguments ‘args’ and keyword arguments ‘kwargs’) and then
calls pybamm.QuickPlot.dynamic_plot (). The key-word argument ‘testing’ is passed to the ‘dy-
namic_plot’ method, not the QuickPlot class.

Returns plot — The ‘QuickPlot’ object that was created

Return type pybamm.QuickPlot

130 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

PyBaMM Documentation, Release 0.2.3

3.10.3 Plot

pybamm.plot (x, y, xlabel=None, ylabel=None, title=None, testing=False, **kwargs)
Generate a simple 1D plot. Calls matplotlib.pyplot.plot with keyword arguments ‘kwargs’. For a list of ‘kwargs’
see the matplotlib plot documentation

Parameters
* x (pybamm.Array) — The array to plot on the x axis
* y (pybamm. Array) — The array to plot on the y axis
e xlabel (str, optional)- The label for the x axis
* ylabel (str, optional)— The label for the y axis

* testing (bool, optional)— Whether to actually make the plot (turned off for unit
tests)

3.10.4 Plot 2D

pybamm.plot2D (x, y, z, xlabel=None, ylabel=None, title=None, testing=False, **kwargs)
Generate a simple 2D plot. Calls matplotlib.pyplot.contourf with keyword arguments ‘kwargs’. For a list of
‘kwargs’ see the matplotlib contourf documentation

Parameters
* x (pybamm.Array)— The array to plot on the x axis. Can be of shape (M, N) or (N, 1)
* v (pybamm.Array) — The array to plot on the y axis. Can be of shape (M, N) or (M, 1)
* z (pybamm.Array) — The array to plot on the z axis. Is of shape (M, N)
* xlabel (str, optional)- The label for the x axis
* ylabel (str, optional)- The label for the y axis
* title(str, optional)- The title for the plot

* testing (bool, optional)— Whether to actually make the plot (turned off for unit
tests)

3.11 Utility functions

pybamm.get_infinite_nested _dict ()
Return a dictionary that allows infinite nesting without having to define level by level.

See: https://stackoverflow.com/questions/651794/whats-the-best-way-to-initialize-a-dict-of-dicts-in-python/
652226#652226

Example

>>> import pybamm
>>> d = pybamm.get_infinite_nested_dict ()

>>> d["a"] =1
>>> d["a"]
1

>5>> d["b"] [HCH] [lld"] =2

(continues on next page)

3.11. Utility functions 131

https://tinyurl.com/ycblw9bx
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://tinyurl.com/y8mnadtn
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://stackoverflow.com/questions/651794/whats-the-best-way-to-initialize-a-dict-of-dicts-in-python/652226#652226
https://stackoverflow.com/questions/651794/whats-the-best-way-to-initialize-a-dict-of-dicts-in-python/652226#652226

PyBaMM Documentation, Release 0.2.3

(continued from previous page)

>>> d[llbll]["cll] e {lldﬂ: 2}
True

pybamm.load_function (filename)
Load a python function from a file “function_name.py” called “function_name”. The filename might either be

an absolute path, in which case that specific file will be used, or the file will be searched for relative to PyBaMM
root.

Parameters filename (st r)— The name of the file containing the function of the same name.
Returns The python function loaded from the file.
Return type function

pybamm. rmse (x, y)
Calculate the root-mean-square-error between two vectors X and y, ignoring NaNs

pybamm.root_dir ()
return the root directory of the PyBaMM install directory

class pybamm.Timer
Provides accurate timing.

Example

timer = pybamm. Timer() print(timer.format(timer.time()))

format (time=None)

Formats a (non-integer) number of seconds, returns a string like “5 weeks, 3 days, 1 hour, 4 minutes, 9
seconds”, or “0.0019 seconds”.

Parameters time (float, optional)- The time to be formatted.
Returns The string representation of t ime in human-readable form.
Return type string

reset ()
Resets this timer’s start time.

time ()
Returns the time (float, in seconds) since this timer was created, or since meth:reset() was last called.

3.12 Citations

class pybamm.Citations
Entry point to citations management. This object may be used to record Bibtex citation information and then

register that a particular citation is relevant for a particular simulation. For a list of all possible citations, see
pybamm/CITATIONS. txt

Examples

>>> import pybamm
>>> pybamm.citations.register ("sulzer2020python™)
>>> pybamm.print_citations ("citations.txt")

132 Chapter 3. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

PyBaMM Documentation, Release 0.2.3

print (filename=None)
Print all citations that were used for running simulations.

Parameters filename (str, optional)— Filename to which to print citations. If None,
citations are printed to the terminal.

read_citations ()
Read the citations text file

register (key)
Register a paper to be cited. The intended use is that register () should be called only when the
referenced functionality is actually being used.

Parameters key (st r)— The key for the paper to be cited

pybamm.print_citations (filename=None)
See Citations.print ()

3.13 Parameters command line interface

PyBaMM comes with a small command line interface that can be used to manage parameter sets. By default, Py-
BaMM provides parameters in the “input” directory located in the pybamm package directory. If you wish to add
new parameters, you can first pull a given parameter directory into the current working directory using the com-
mand pybamm_edit_parameter for manual editing. By default, PyBaMM first looks for parameter defined in
the current working directory before falling back the package directory if nothing is found locally. If you wish to
access a newly defined parameter set from anywhere in your system, you can use pybamm_add_parameter to
copy a given parameter directory to the package directory. To get a list of currently available parameter sets, use
pybamm_list_parameters.

pybamm.parameters_cli.add_parameter (arguments=None)
Add a parameter directory to package input directory. This allows the parameters to be used from anywhere in
the system.

Example: “add_parameter foo lithium-ion anodes” will copy directory foo in
“pybamm/input/parameters/lithium-ion/anodes”.

pybamm.parameters_cli.remove_parameter (arguments=None)
Remove a parameter directory from package input directory.

Example: “rm_parameter foo lithium-ion anodes” will remove directory foo in
“pybamm/input/parameters/lithium-ion/anodes”.

pybamm.parameters_cli.edit_parameter (arguments=None)
Copy a given default parameter directory to the current working directory for editing. For example

edit_param(["lithium-ion"])

will create the directory structure:

lithium-ion/
anodes/
graphite_Chen2020

cathodes/

in the current working directory.

3.13. Parameters command line interface 133

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyBaMM Documentation, Release 0.2.3

134 Chapter 3. APl documentation

CHAPTER 4

Examples

Detailed examples can be viewed on the GitHub examples page, and run locally using jupyter notebook, or
online through Binder.

135

https://github.com/pybamm-team/PyBaMM/tree/master/examples/notebooks
https://mybinder.org/v2/gh/pybamm-team/PyBaMM/master?filepath=examples%2Fnotebooks

PyBaMM Documentation, Release 0.2.3

136 Chapter 4. Examples

CHAPTER B

Contributing

There are many ways to contribute to PyBaMM:

5.1 Adding Parameter Values

As with any contribution to PyBaMM, please follow the workflow in CONTRIBUTING.md. In particular, start by
creating an issue to discuss what you want to do - this is a good way to avoid wasted coding hours!

5.1.1 The role of parameter values

All models in PyBaMM are implemented as expression trees. At the stage of creating a model, we use pybamm.
Parameter and pybamm. FunctionParameter objects to represent parameters and functions respectively.

We then create a ParameterValues class, using a specific set of parameters, to iterate through the model and
replace any pybamm.Parameter objects with a pybamm. Scalar and any pybamm. FunctionParameter
objects with a pybamm. Function.

For an example of how the parameter values work, see the parameter values notebook.

5.1.2 Adding a set of parameters values

Parameter sets are split by material into anodes, separators, cathodes, electrolytes, cells (for cell
geometries and thermal properties) and experiments (for initial conditions and charge/discharge rates). To add
a new parameter set in one of these subcategories, first create a new folder in the appropriate chemistry folder: for
example, to add a new anode chemistry for lithium-ion, add a subfolder input /parameters/lithium-ion/
anodes/new_anode_chemistry_AuthorYear. This subfolder should then contain:

e acsvfile parameters.csv with all the relevant scalar parameters. The expected structure of the csv file is:

Name [Units] | Value | Reference | Notes
Example [m] 13 AuthorYear | an example

137

https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression-tree.ipynb
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/parameter-values.ipynb

PyBaMM Documentation, Release 0.2.3

Empty lines, and lines starting with #, will be ignored.
* a README . md file with information on where these parameters came from

* python files for any functions, which should be referenced from the parameters.csv file (see Adding a
Function below)

* csv files for any data to be interpolated, which should be referenced from the parameters.csv file (see
Adding data for interpolation below)

The easiest way to start is to copy an existing file (e.g. * " input/parameters/lithium-ion/anodes/
graphite_mcmb2528_Marquis2019) and replace all entries in all files as appropriate

5.1.3 Adding a function

Functions should be added as Python functions under a file with the same name in the appropriate chemistry
folder in input/parameters/. These Python functions should be documented with references explaining where
they were obtained. For example, we would put the following Python function in a file input/parameters/
lithium_ion/anodes/new_anode_chemistry_AuthorYear/diffusivity_AuthorYear.py

def diffusivity_AuthorYear (c_e):

mmn

Dimensional Fickian diffusivity in the electrolyte [m2.s-1], from [1]_, as a
function of the electrolyte concentration c_e [mol.m-3].

References

[1] J Bloggs, AN Other. A set of parameters. A Chemistry Journal,
123(4) :567-573, 20109.

mmn

return (1.75 + 260e-6 * c_e) » le-9

Then, these functions should be added to the parameter file from which they will be called (must be in the same folder),
with the tag [function], for example:

Name [Units] Value Reference | Notes
Example [m2.s-1] | [function]diffusivity_AuthorYear | AuthorYear | a function

5.1.4 Adding data for interpolation

Data should be added as as csv file in the appropriate chemistry folder in input/parameters/. For
example, we would put the following data in a file input/parameters/lithium_ion/anodes/
new_anode_chemistry_AuthorYear/diffusivity_AuthorYear.csv

concentration [mol/m3] Diffusivity [m2/s]

0.000000000000000000e+00 4.714135898019971016e+00
2.040816326530612082¢e- 4.708899441575220557e+00
02 4.081632653061224164e- | 4.702448345762175741e+00
02 6.122448979591836593e- | 4.694558534379876136e+00
02 8.163265306122448328¢- | 4.684994372928071193e+00
02 1.020408163265306006e- | 4.673523893805322516e+00
01 1.224489795918367319¢-01 | 4.659941254449398329¢+00
1.428571428571428492e-01 4.644096031712390271e+00

138 Chapter 5. Contributing

PyBaMM Documentation, Release 0.2.3

Empty lines, and lines starting with #, will be ignored.

Then, this data should be added to the parameter file from which it will be called (must be in the same folder), with
the tag [data], for example:

Name [Units] Value Reference | Notes
Example [m2.s-1] | [data]diffusivity_AuthorYear | AuthorYear | some data

5.1.5 Using new parameters

If you have added a whole new set of parameters, then you can create a new parameter set in pybamm/parameters/
parameter_sets.py, by just adding a new dictionary to that file, for example

AuthorYear = {

"chemistry": "lithium-ion",

"cell": "new_cell_ AuthorYear",

"anode": "new_anode_AuthorYear",
"separator": "new_separator_AuthorYear",
"cathode": "new_cathode_AuthorYear",
"electrolyte": "new_electrolyte_AuthorYear",
"experiment": "new_experiment_AuthorYear",

Then, to use these new parameters, use:

param = pybamm.ParameterValues (chemistry=pybamm.parameter_sets.AuthorYear)

Note that you can re-use existing parameter subsets instead of creating new ones (for example, you could just replace
“experiment”: “new_experiment_AuthorYear” with “experiment”: “1C_discharge_from_full_Marquis2019” in the
above dictionary).

It’s also possible to add parameters for a single material (e.g. anode) and then re-use existing parameters for the other
materials, without adding a parameter set to pybamm/parameters/parameter_sets.py.

param = pybamm.ParameterValues (
chemistry={

"chemistry": "lithium-ion",

"cell": "kokam_Marquis2019",

"anode": "new_anode_chemistry_AuthorYear",
"separator": "separator_Marquis2019",

"cathode": "lico2_Marquis2019",

"electrolyte": "lipf6_Marquis2019",

"experiment": "1C_discharge_from_full_ Marquis2019",

or, equivalently in this case (since the only difference from the standard parameters from Marquis et al. is the set of
anode parameters),

param = pybamm.ParameterValues (
chemistry={
**pybamm.parameter_sets.Marquis2019,
"anode": "new_anode_chemistry_AuthorYear",

See the “Getting Started” tutorial for examples of setting parameters in action.

5.1. Adding Parameter Values 139

https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/Getting%20Started/Tutorial%202%20-%20Setting%20Parameter%20Values.ipynb

PyBaMM Documentation, Release 0.2.3

5.1.6 Unit tests for the new class

You might want to add some unit tests to show that the parameters combine as expected (see e.g. lithium-ion parameter
tests), but this is not crucial.

5.1.7 Test on the models

In theory, any existing model can now be solved using the new parameters instead of their default parameters, with no
extra work from here. To test this, add something like the following test to one of the model test files (e.g. DFN):

def test_my_new_parameters (self):
model = pybamm.lithium_ion.DFN ()
parameter_values = pybamm.ParameterValues (chemistry=pybamm.parameter_sets.
—~AuthorYear)
modeltest = tests.StandardModelTest (model, parameter_values=parameter_values)
modeltest.test_all()

This will check that the model can run with the new parameters (but not that it gives a sensible answer!).

Once you have performed the above checks, you are almost ready to merge your code into the core PyBaMM - see
CONTRIBUTING.md workflow for how to do this.

5.2 Adding a Model

As with any contribution to PyBaMM, please follow the workflow in CONTRIBUTING.md. In particular, start by
creating an issue to discuss what you want to do - this is a good way to avoid wasted coding hours!

We aim here to provide an overview of how a new model is entered into PyBaMM in a form which can be eventually
merged into the master branch of the PyBaMM project. However, we recommend that you first read through the
notebook: create a model, which goes step-by-step through the procedure for creating a model. Once you understand
that procedure, you can then formalise your model following the outline provided here.

5.2.1 The role of models

One of the main motivations for PyBaMM is to allow for new models of batteries to be easily be added, solved, tested,
and compared without requiring a detailed knowledge of sophisticated numerical methods. It has therefore been our
focus to make the process of adding a new model as simple as possible. To achieve this, all models in PyBaMM are
implemented as expression trees, which abstract away the details of computation.

The fundamental building blocks of a PyBaMM expression tree are pybamm.Symbol. There are different
types of pybamm.Symbol: pybamm.Variable, pybamm.Parameter, pybamm.Addition, pybamm.
Multiplication, pybamm.Gradient etc which have been created so that each component of a model written
out in PyBaMM mirrors exactly the written mathematics. For example, the expression:

V - (D(c)Vc) + aFj

is simply written as

div(D(c) = grad(c)) + a « F x 3

within PyBaMM. A model in PyBaMM is essentially an organised collection of expression trees.

140 Chapter 5. Contributing

https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_parameters/test_dimensionless_parameter_values_lithium_ion.py
https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_parameters/test_dimensionless_parameter_values_lithium_ion.py
https://github.com/pybamm-team/PyBaMM/blob/master/tests/integration/test_models/test_full_battery_models/test_lithium_ion/test_dfn.py
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md#c-merging-your-changes-with-pybamm
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/create-model.ipynb
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression-tree.ipynb

PyBaMM Documentation, Release 0.2.3

5.2.2 Implementing a new model

To add a new model (e.g. My New Model), first create a new file (my_new_model .py) in pybamm/models (or
the relevant subdirectory). In this file create a new class which inherits from pybamm. BaseModel (or pybamm.
LithiumIonBaseModel if you are modelling a full lithium-ion battery or pybamm.LeadAcidBaseModel if
you are modelling a full lead acid battery):

class MyNewModel (pybamm.BaseModel) :
def

and add the class to pybamm/__init__ .py:

from .models.my new _model import MyNewModel

(this line will be slightly different if you created your model in a subdirectory of models). Within your new class
MyNewModel, first create an initialisation function which calls the initialisation function of the parent class

def _ init_ (self):
super () .__init__ ()

Within the initialisation function of MyNewMode 1 you must then define the following attributes:
e self.rhs
* self.algebraic
e self.boundary_conditions
e self.initial_conditions
* self.variables
You may also optionally also provide:
* self.events
e self.default_geometry
e self.default_solver
e self.default_spatial_methods
e self.default_submesh_types
* self.default_var_pts
e self.default_parameter_values

We will go through each of these attributes in turn here for completeness but refer the user to the API documentation
or example notebooks (create-model.ipnb) if further details are required.

Governing equations

The governing equations which can either be parabolic or elliptic are entered into the self.rhs and self.
algebraic dictionaries, respectively. We associate each governing equation with a subject variable, which is the
variable that is found when the equation is solved. We use this subject variable as the key of the dictionary. For
parabolic equations, we rearrange the equation so that the time derivative of the subject variable is the only term on the
left hand side of the equation. We then simply write the resulting right hand side into the self . rhs dictionary with
the subject variable as the key. For elliptic equations, we rearrange so that the left hand side of the equation if zero
and then write the right hand side into the self.algebraic dictionary in the same way. The resulting dictionary
should look like:

5.2. Adding a Model 141

PyBaMM Documentation, Release 0.2.3

self.rhs = {parabolic_varl: parabolic_rhsl, parabolic_var2: parabolic_rhs2, ...}
self.algebraic = {elliptic_varl: elliptic_rhsl, elliptic_var2: elliptic_rhs2, ...}

Boundary conditions

Boundary conditions on a variable can either be Dirichlet or Neumann (support for mixed boundary conditions will
be added at a later date). For a variable ¢ on a one dimensional domain with a Dirichlet condition of ¢ = 1 on the left
boundary and a Neumann condition of V¢ = 2 on the right boundary, we then have:

self.boundary_conditions = {c: {"left": (1, "Dirichlet"), "right": (2, "Neumann")}}

Initial conditions

For a variable c that is initially at a value of ¢ = 1, the initial condition is included written into the model as

self.initial_conditions = {c: 1}

Output variables

PyBaMM allows users to create combinations of symbols to output from their model. For example, we might wish to
output the terminal voltage which is given by V' = ¢ p|z=1 — ¢s.n|z=0. We would first define the voltage symbol V'
and then include it into the output variables dictionary in the form:

self.variables = {"Terminal voltage [V]": V}

Note that we indicate that the quanitity is dimensional by including the dimensions, Volts in square brackets. We do
this to distinguish between dimensional and dimensionless outputs which may otherwise share the same name.

Note that if your model inherits from pybamm.StandardBatteryBaseModel, then there is a standard set of
output parameters which is enforced to ensure consistency across models so that they can be easily tested and com-
pared.

Events

Events can be added to stop computation when the event occurs. For example, we may wish to terminate our compu-
tation when the terminal voltage V' reaches some minimum voltage during a discharge V,,,;,. We do this by adding
the following to the events dictionary:

self.events["Minimum voltage cut-off"] = V - V_min

Events will stop the solver whenever they return 0.

Setting defaults

It can be useful for testing, and quickly running a model to have a default setup. Each of the defaults listed
above should adhere to the API requirements but in short, we require self.default_geometry to be a dic-
tionary of the right format (see pybamm.battery_geometry()), self.default_solver to be an in-
stance of pybamm.BaseSolver, and self.default_parameter_values to be an instance of pybamm.
ParameterValues. We also require that self.default_submesh_types is a dictionary with keys which
are strings corresponding to the regions of the battery (e.g. “negative electrode”) and values which are an instance

142 Chapter 5. Contributing

PyBaMM Documentation, Release 0.2.3

of pybamm. SubMesh1D. The self.default_spatial_methods attribute is also required to be a dictio-
nary with keys corresponding to the regions of the battery but with values which are an instance of pybamm.
SpatialMethod. Finally, self.default_var_pts is required to be a dictionary with keys which are an
instance of pybamm. SpatialVariable and values which are integers.

Using submodels

The inbuilt models in PyBaMM do not add all the model attributes within their own file. Instead, they make use of
inbuilt submodel (a particle model, an electrolyte model, etc). There are two main reasons for this. First, the code in
the submodels can then be used by multiple models cutting down on repeated code. This makes it easier to maintain the
codebase because fixing an issue in a submodel fixes that issue everywhere the submodel is called (instead of having
to track down the issue in every model). Secondly, it allows for the user to easily switch a submodel out for another
and study the effect. For example, we may be using standard diffusion in the particles but decide that we would like
to switch in particles which are phase separating. With submodels all we need to do is switch the submodel instead of
re-writing the whole sections of the model. Submodel contributions are highly encouraged so where possible, try to
divide your model into submodels.

In addition to calling submodels, common sets of variables and parameters found in lithium-ion and lead acid batter-
ies are provided in standard_variables.py, standard_parameters_lithium_ion.py, standard_parameters_lead_acid.py,
electrical_parameters.py, geometric_parameters.py, and standard_spatial_vars.py which we encourage use of to save
redefining the same parameters and variables in every model and submodel.

5.2.3 Unit tests for a MyNewModel

We strongly recommend testing your model to ensure that it is behaving correctly. To do this, first create a new file
test_my_new_model.py within tests/integration/test_models (or the appropriate subdirectory).
Within this file, add the following code

import pybamm
import unittest

class TestMyNewModel (unittest.TestCase) :
def my_first_test (self):
add test here

n n

if name == "_ main_ ":
print ("Add -v for more debug output")

import sys

if "-v" in sys.argv:
debug = True
unittest.main ()

We can now add functions such as my_ first_test () to TestMyNewModel which run specific tests. As a first
test, we recommend you make use of tests.StandardModelTest which runs a suite of basic tests. If your
new model is a full model of a battery and therefore inherits from pybamm. StandardBatteryBaseModel then
tests.StandardBatteryTest will also check the set of outputs are producing reasonable behaviour.

Please see the tests of the inbuilt models to get a further idea of how to test the your model.

5.2. Adding a Model 143

PyBaMM Documentation, Release 0.2.3

5.3 Adding a Spatial Method

As with any contribution to PyBaMM, please follow the workflow in CONTRIBUTING.md. In particular, start by
creating an issue to discuss what you want to do - this is a good way to avoid wasted coding hours!

5.3.1 The role of spatial methods

All models in PyBaMM are implemented as expression trees. After it has been created and parameters have been
set, the model is passed to the pybamm.Discretisation class, which converts it into a linear algebra form. For
example, the object:

’grad(u)

might get converted to a Matrix-Vector multiplication:

’Matrix(lOO,lOO) @ y[0:100]

(in Python 3.5+, @ means matrix multiplication, while * is elementwise product). The pybamm.Discretisation
class is a wrapper that iterates through the different parts of the model, performing the trivial conversions (e.g. Addition
—> Addition), and calls upon spatial methods to perform the harder conversions (e.g. grad(u) —> Matrix * StateVector,
Spatial Variable —> Vector, etc).

Hence SpatialMethod classes only need to worry about the specific conversions, and pybamm.Discretisation
deals with the rest.

5.3.2 Implementing a new spatial method

To add a new spatial method (e.g. My Fast Method), first create a new file (my_fast_method.py) in pybamm/
spatial_methods/, with a single class that inherits from pybamm. Spat ialMethod, such as:

’class MyFastMethod (pybamm. SpatialMethod) :

and add the class to pybamm/__init__ .py:

’from .spatial_methods.my_ fast_method import MyFastMethod

You can then start implementing the spatial method by adding functions to the class. In particular, any spatial method
must have the following functions (from the base class pybamm. Spat ialMethod):

* pybamm. SpatialMethod.gradient ()
* pybamm. SpatialMethod.divergence ()
* pybamm.SpatialMethod.integral ()
* pybamm.SpatialMethod.indefinite integral ()
* pybamm. SpatialMethod.boundary_value or_flux()
Optionally, a new spatial method can also overwrite the default behaviour for the following functions:
* pybamm.SpatialMethod.spatial_variable ()
* pybamm. SpatialMethod.broadcast ()
* pybamm. SpatialMethod.mass_matrix()

* pybamm. SpatialMethod.process_binary_operators ()

144 Chapter 5. Contributing

https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression-tree.ipynb

PyBaMM Documentation, Release 0.2.3

* pybamm. SpatialMethod.concatenation ()

For an example of an existing spatial method implementation, see the Finite Volume API docs and notebook.

5.3.3 Unit tests for the new class

For the new spatial method to be added to PyBaMM, you must add unit tests to demonstrate that it behaves as
expected (see, for example, the Finite Volume unit tests). The best way to get started would be to create a file
test_my_fast_method.pyintests/unit/test_spatial_methods/ that performs at least the follow-
ing checks:

» Operations return objects that have the expected shape
 Standard operations behave as expected, e.g. (in 1D) grad(x"2) = 2*x, integral(sin(x), 0, pi) = 2

* (more advanced) make sure that the operations converge at the correct rate to known analytical solutions as you
decrease the grid size

5.3.4 Test on the models

In theory, any existing model can now be discretised using MyFastMethod instead of their default spatial methods,
with no extra work from here. To test this, add something like the following test to one of the model test files (e.g.
DFN):

def test_my_fast_method(self):
model = pybamm.lithium_ion.DFN ()
spatial_methods = {
"macroscale": pybamm.MyFastMethod,
"negative particle": pybamm.MyFastMethod,
"positive particle": pybamm.MyFastMethod,
}
modeltest = tests.StandardModelTest (model, spatial_methods=spatial_methods)
modeltest.test_all()

This will check that the model can run with the new spatial method (but not that it gives a sensible answer!).

Once you have performed the above checks, you are almost ready to merge your code into the core PyBaMM - see
CONTRIBUTING.md workflow for how to do this.

5.4 Adding a Solver

As with any contribution to PyBaMM, please follow the workflow in CONTRIBUTING.md. In particular, start by
creating an issue to discuss what you want to do - this is a good way to avoid wasted coding hours!

5.4.1 The role of solvers
All models in PyBaMM are implemented as expression trees. After the model has been created, parameters have been
set, and the model has been discretised, the model is now a linear algebra object with the following attributes:

model.concatenated_rhs A pybamm. Symbol node that can be evaluated at a state (t, y) and returns the value of
all the differential equations at that state, concatenated into a single vector

model.concatenated_algebraic A pybamm. Symbol node that can be evaluated at a state (t, y) and returns the
value of all the algebraic equations at that state, concatenated into a single vector

5.4. Adding a Solver 145

https://pybamm.readthedocs.io/en/latest/source/spatial_methods/finite_volume.html
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/spatial_methods/finite-volumes.ipynb
https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_spatial_methods/test_finite_volume.py
https://github.com/pybamm-team/PyBaMM/blob/master/tests/integration/test_models/test_full_battery_models/test_lithium_ion/test_dfn.py
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md#c-merging-your-changes-with-pybamm
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/expression-tree.ipynb

PyBaMM Documentation, Release 0.2.3

model.concatenated_initial_conditions A numpy array of initial conditions for all the differential and algebraic
equations, concatenated into a single vector

model.events A dictionary of pybamm. Symbol nodes representing events at which the solver should terminate.
Specifically, the solver should terminate when any of the events in model.events.values () evaluate to
Zero

The role of solvers is to solve a model at a given set of time points, returning a vector of times t and a matrix of states
Y-

5.4.2 Base solver classes vs specific solver classes

There is one general base solver class, pybamm. BaseSolver, which sets up some useful solver properties such as
tolerances and implement a method self.solve () that solves a model at a given set of time points.

The solve method unpacks the model, simplifies it by removing extraneous operations, (optionally) creates or calls
the mass matrix and/or jacobian, and passes the appropriate attributes to another method, called integrate, which
does the time-stepping. The role of specific solver classes is simply to implement this integrate method for an
arbitrary set of derivative function, initial conditions etc.

The base solver class also computes a consistent set of initial conditions for the algebraic equations, using model .
concatenated_initial_conditions as an initial guess.

5.4.3 Implementing a new solver

To add a new solver (e.g. My Fast DAE Solver), first create a new file (my_fast_dae_solver.py)in pybamm/
solvers/, with a single class that inherits from pybamm. BaseSolver. For example:

’def MyFastDaeSolver (pybamm.BaseSolver) :

Also add the class to pybamm/__init__ .py:

’from .solvers.my_ fast_ dae_solver import MyFastDaeSolver

You can then start implementing the solver by adding the integrate function to the class.

For an example of an existing solver implementation, see the Scikits DAE solver API docs and notebook.

5.4.4 Unit tests for the new class

For the new solver to be added to PyBaMM, you must add unit tests to demonstrate that it behaves as expected (see, for
example, the Scikits solver tests). The best way to get started would be to create a file test_my_fast_solver.py
intests/unit/test_solvers/ that performs at least the following checks:

e The integrate method works on a simple ODE/DAE model with/without jacobian, mass matrix and/or events
as appropriate

* The solve method works on a simple model (in theory, if the integrate method works then the solve
method should always work)

If the solver is expected to converge in a certain way as the time step is changed, you could also add a convergence
testin tests/convergence/solvers/.

146 Chapter 5. Contributing

https://pybamm.readthedocs.io/en/latest/source/solvers/scikits_solvers.html
https://github.com/pybamm-team/PyBaMM/blob/master/examples/notebooks/solvers/scikits-dae-solver.ipynb
https://github.com/pybamm-team/PyBaMM/blob/master/tests/unit/test_solvers/test_scikits_solvers.py

PyBaMM Documentation, Release 0.2.3

5.4.5 Test on the models

In theory, any existing model can now be solved using MyFastDaeSolver instead of their default solvers, with no extra
work from here. To test this, add something like the following test to one of the model test files (e.g. DFN):

def test_my_fast_solver (self):
model = pybamm.lithium_ion.DFN ()
solver = pybamm.MyFastDaeSolver ()
modeltest = tests.StandardModelTest (model, solver=solver)
modeltest.test_all()

This will check that the model can run with the new solver (but not that it gives a sensible answer!).

Once you have performed the above checks, you are almost ready to merge your code into the core PyBaMM - see
CONTRIBUTING.md workflow for how to do this.

Before contributing, please read the Contribution Guidelines.

5.4. Adding a Solver 147

https://github.com/pybamm-team/PyBaMM/blob/master/tests/integration/test_models/test_full_battery_models/test_lithium_ion/test_dfn.py
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md#c-merging-your-changes-with-pybamm
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md

PyBaMM Documentation, Release 0.2.3

148 Chapter 5. Contributing

Python Module Index

P

pybamm, 15
pybamm.parameters
99
pybamm.parameters
98
pybamm.parameters
pybamm.parameters
99
pybamm.parameters
99
pybamm.parameters
99

.electrical_parameters,
.geometric_parameters,

.parameter_sets, 99
.standard_parameters_lead_acid,

.standard_parameters_lithium_ion,

.thermal_parameters,

149

PyBaMM Documentation, Release 0.2.3

150 Python Module Index

Index

Symbols

_BaseSolution (class in pybamm), 124

__abs__ () (pybamm.Symbol method), 15
__add___ () (pybamm.Symbol method), 15
__ge__ () (pybamm.Symbol method), 15
gt__ () (pybamm.Symbol method), 15
__init__ () (pybamm.Symbol method), 15
__le__ () (pybamm.Symbol method), 16
1t () (pybamm.Symbol method), 16
__matmul__ () (pybamm.Symbol method), 16
_mul__ () (pybamm Symbol method), 16
___ () (pybamm.Symbol method), 16
pow () (pybamm.Symbol method), 16
__radd__ () (pybamm.Symbol method), 16
__repr__ () (pybamm.Symbol method), 16
__rmatmul__ () (pybamm.Symbol method), 16
__rmul__ () (pybamm.Symbol method), 16
__rpow___() (pybamm.Symbol method), 16
__rsub__ () (pybamm.Symbol method), 16
__rtruediv__ () (pybamm.Symbol method), 16
__str__ () (pybamm.Symbol method), 16
__sub__ () (pybamm.Symbol method), 16
__truediv__ () (pybamm.Symbol method), 16

A

AbsoluteValue (class in pybamm), 27
add_ghost_meshes () (pybamm.Mesh method), 100
add_ghost_nodes () (pybamm. FiniteVolume
method), 111
add_neumann_values ()
method), 112
add_parameter () (in
bamm.parameters_cli), 133
Addition (class in pybamm), 25
algebraic (pybamm.BaseModel attribute), 40
algebraic (pybamm.BaseSubModel attribute), 50
AlgebraicSolver (class in pybamm), 123
AlternativeEffectiveResistance2D (class in
pybamm.current_collector), 53

(pybamm. FiniteVolume

module py-

append () (pybamm.Solution method), 125
Array (class in pybamm), 23
assemble_mass_form()
bamm.ScikitFiniteElement method), 116
auxiliary_domains (pybamm.Symbol attribute), 16

B

BackwardTafel (class in pybamm.interface), 74
BaseBatteryModel (class in pybamm), 43

(py-

BaseCompositePotentialPair (class in py-
bamm.current_collector), 52
BaseElectrode (class in pybamm.electrode), 60
BaseElectrolyteConductivity (class in py-
bamm.electrolyte_conductivity), 63
BaseElectrolyteDiffusion (class in py-
bamm.electrolyte_diffusion), 67
BaseHigherOrderModel (class in py-

bamm.lead_acid), 48
BaselInterface (class in pybamm.interface), 72
BaseKinetics (class in pybamm.interface), 72
BaseModel (class in pybamm), 40
BaseModel (class in pybamm.convection), 55
BaseModel (class in pybamm.current_collector), 52
BaseModel (class in pybamm.electrode.ohm), 60
BaseModel (class in pybamm.lead_acid), 47
BaseModel (class in pybamm.lithium_ion), 45
BaseModel (class in pybamm.oxygen_diffusion), 81
BaseModel (class in pybamm.porosity), 88
BaseModel (class in pybamm.sei), 76
BaseModel (class in pybamm.tortuosity), 95
BaseParticle (class in pybamm.particle), 85
BasePotentialPair (class in
bamm.current_collector), 54
BaseQuiteConductivePotentialPair (class in
pybamm.current_collector), 55
BaseSolver (class in pybamm), 120
BaseSubModel (class in pybamm), 50
BaseThermal (class in pybamm.thermal), 90
BaseThroughCellModel (class in
bamm.convection.through_cell), 56

py-

py-

151

PyBaMM Documentation, Release 0.2.3

BaseTransverseModel (class in
bamm.convection.transverse), 58

BasicDFN (class in pybamm.lithium_ion), 47

BasicFull (class in pybamm.lead_acid), 50

BasicSPM (class in pybamm.lithium_ion), 46

battery_geometry () (in module pybamm), 100

be_apply () (pybamm.ScikitFiniteElement method),
116

BinaryOperator (class in pybamm), 25

boundary_conditions (pybamm.BaseModel
attribute), 41

boundary_conditions (pybamm.BaseSubModel at-
tribute), 50

py-

boundary_integral () (py-
bamm.ScikitFiniteElement method), 117
boundary_integral () (pybamm.SpatialMethod
method), 107
boundary_integral_vector () (py-
bamm.ScikitFiniteElement method), 117
boundary_mass_matrix () (py-
bamm.ScikitFiniteElement method), 117
boundary_value () (in module pybamm), 32
boundary_value_or_flux() (py-
bamm. FiniteVolume method), 112
boundary_value_or_flux() (py-
bamm.ScikitFiniteElement method), 117
boundary_value_or_flux() (py-
bamm.SpatialMethod method), 108
boundary_value_or_flux () (py-

bamm.ZeroDimensionalSpatialMethod

method), 119
BoundaryGradient (class in pybamm), 31
BoundaryIntegral (class in pybamm), 30
BoundaryOperator (class in pybamm), 30
BoundaryValue (class in pybamm), 31
Broadcast (class in pybamm), 33
broadcast () (pybamm.SpatialMethod method), 108
Bruggeman (class in pybamm.tortuosity), 95
build () (pybamm.Simulation method), 128
ButlerVolmer (class in pybamm.interface), 73

C

calculate_consistent_state()
bamm.BaseSolver method), 120
call_1D () (pybamm.ProcessedVariable method), 126
call_2D () (pybamm.ProcessedVariable method), 126
CasadiAlgebraicSolver (class in pybamm), 124
CasadiConverter (class in pybamm), 39
CasadiSolver (class in pybamm), 123
Chebyshev1DSubMesh (class in pybamm), 102

(py-

check_algebraic_equations () (py-
bamm.BaseModel method), 42

check_algebraic_equations () (py-
bamm.electrolyte_conductivity.Full — method),

64
check_and_set_domains () (py-
bamm.FullBroadcast method), 34
check_and_set_domains () (py-
bamm.PrimaryBroadcast method), 34
check_and_set_domains () (py-

bamm.SecondaryBroadcast method), 34
check_default_variables_dictionaries|()
(pybamm.BaseModel method), 42
check_default_variables_dictionaries|()
(pybamme.electrolyte_conductivity.Full
method), 64
check_ics_bcs () (pybamm.BaseModel method), 42

check_ics_bcs () (py-
bamm.electrolyte_conductivity.Full — method),
64

check_initial_conditions () (py-
bamm.Discretisation method), 105

check_initial_conditions_rhs () (py-

bamm.Discretisation method), 105
check_model () (pybamm.Discretisation method),
105

check_no_repeated_keys () (py-
bamm.BaseModel method), 42

check_no_repeated_keys () (py-
bamm.electrolyte_conductivity.Full — method),
64

check_tab_conditions () (py-

bamm.Discretisation method), 105
check_variables () (pybamm.Discretisation
method), 105

check_well_determined () (pybamm.BaseModel
method), 42
check_well_determined() (py-

bamm.electrolyte_conductivity.Full — method),
64

check_well_posedness () (pybamm.BaseModel
method), 42

check_well_posedness () (py-
bamm.electrolyte_conductivity.Full — method),

64
children (pybamm.Symbol attribute), 16
Citations (class in pybamm), 132
clear_domains () (pybamm.Symbol method), 16
combine_submeshes () (pybamm.Mesh method),
101
Composite (class in pybamm.electrode.ohm), 61
Composite (class in pybamm.electrolyte_conductivity),
63
Composite (class in pybamme.electrolyte_diffusion), 69
Composite (class in pybamm.lead_acid), 49
Composite (class in pybamm.oxygen_diffusion), 82
CompositeExtended (class in pybamm.lead_acid),
49

152

Index

PyBaMM Documentation, Release 0.2.3

CompositePotentialPairlpluslD (class in py-
bamm.current_collector), 52

CompositePotentialPair2pluslD (class in py-
bamm.current_collector), 52

concatenated_algebraic (pybamm.BaseModel
attribute), 41
concatenated_initial_conditions (py-

bamm.BaseModel attribute), 41
concatenated_rhs (pybamm.BaseModel attribute),

41

Concatenation (class in pybamm), 32

concatenation () (pybamm.FiniteVolume method),
112

concatenation () (pybamm.SpatialMethod method),
108

Constant (class in pybamm.porosity), 89

ConstantConcentration (class in
bamm.electrolyte_diffusion), 68

ConstantSETI (class in pybamm.sei), 76

convert () (pybamm.CasadiConverter method), 39

convert_electric() (pybamm.Experiment
method), 127

py-

convert_time_to_seconds () (py-
bamm.Experiment method), 127
convert_to_format (pybamm.BaseModel at-

tribute), 42

copy () (pybamm.BaseSolver method), 120

copy () (pybamm.ParameterValues method), 96

copy_domains () (pybamm.Symbol method), 16

Cos (class in pybamm), 35

cos () (in module pybamm), 36

Cosh (class in pybamm), 36

cosh () (in module pybamm), 36

create_jacobian () (pybamm.Discretisation
method), 105

create_mass_matrix()
method), 105

(pybamm.Discretisation

CurrentCollectorlD (class in py-
bamm.thermal.pouch_cell), 93
CurrentCollector2D (class in py-

bamm.thermal.pouch_cell), 94
CurrentControl (class in pybamm.external_circuit),
71

D

data (pybamm.ProcessedSymbolicVariable attribute),
126
data (pybamm.ProcessedVariable attribute), 126

attribute), 53
default_solver (py-

bamm.electrolyte_conductivity.Full attribute),
65

definite_integral_matrix() (py-
bamm. FiniteVolume method), 112
definite_integral_matrix() (py-

bamm.ScikitFiniteElement method), 117
DefiniteIntegralVector (class in pybamm), 29
delta_function () (pybamm.FiniteVolume method),

112
delta_function|()

method), 108
DeltaFunction (class in pybamm), 30
DFEN (class in pybamm.lithium_ion), 47
diff () (pybamm.AbsoluteValue method), 27

(pybamm.SpatialMethod

diff () (pybamm.ExternalVariable method), 21
diff () (pybamm.Function method), 35

diff () (pybamm.FunctionParameter method), 20
diff () (pybamm.Heaviside method), 26

diff () (pybamm.MatrixMultiplication method), 25
diff () (pybamm.Sign method), 27

diff () (pybamm.SpatialOperator method), 28
diff () (pybamm.StateVector method), 24

diff () (pybamm.StateVectorDot method), 24
diff () (pybamm.Symbol method), 16

diff () (pybamm.Variable method), 20

diff () (pybamm.VariableDot method), 21

DiffusionLimited (class in pybamm.interface), 76

Discretisation (class in pybamm), 105

div () (in module pybamm), 31

Divergence (class in pybamm), 28

divergence () (pybamm.FiniteVolume method), 113

divergence () (pybamm.ScikitFiniteElement method),
118

divergence () (pybamm.SpatialMethod method), 108

divergence_matrix () (pybamm. FiniteVolume
method), 113

Division (class in pybamm), 26

domain (pybamm.Symbol attribute), 17

DomainConcatenation (class in pybamm), 33

DummySolver (class in pybamm), 121

dynamic_plot () (in module pybamm), 130

dynamic_plot () (pybamm.QuickPlot method), 130

E

EcReactionLimited (class in pybamm.sei), 80
edge_to_node () (pybamm.FiniteVolume method),

default_solver (pybamm.BaseModel attribute), 42 113

default_solver (py- edit_parameter () (in module py-
bamm.current_collector.AlternativeEffectiveResistance2D bamm.parameters_cli), 133
attribute), 53 EffectiveResistance (class in py-

default_solver (py- bamm.current_collector), 52
bamm.current_collector. EffectiveResistance

Index 153

PyBaMM Documentation, Release 0.2.3

ElectronMigrationLimited (class in
bamm.sei), 77
EqualHeaviside (class in pybamm), 26

evaluate () (pybamm.BinaryOperator method), 25

py-

evaluate () (pybamm.Concatenation method), 32

evaluate () (pybamm.EvaluatorPython method), 38

evaluate () (pybamm.Event method), 45

evaluate () (pybamm.Function method), 35

evaluate () (pybamm.ParameterValues method), 96

evaluate () (pybamm.Symbol method), 17

evaluate () (pybamm.UnaryOperator method), 277

evaluate_for_shape () (pybamm.DeltaFunction
method), 30

evaluate_for_shape () (pybamm.Symbol method),
17

evaluate_ignoring_errors () (pybamm.Symbol
method), 17

evaluates_on_edges () (pybamm.BinaryOperator
method), 25

evaluates_on_edges () (py-

bamm.Boundarylntegral method), 30

evaluates_on_edges () (pybamm.DeltaFunction
method), 30

evaluates_on_edges () (pybamm.Divergence
method), 28

evaluates_on_edges () (py-
bamm.FullBroadcastToEdges method), 34

evaluates_on_edges () (pybamm.Function

method), 35

evaluates_on_edges () (pybamm.Gradient
method), 28

evaluates_on_edges () (py-

bamm.Gradient_Squared method), 29
evaluates_on_edges () (pybamm.Index method),

28

evaluates_on_edges () (pybamm.Inner method),
26

evaluates_on_edges () (pybamm.Integral
method), 29

evaluates_on_edges () (pybamm.Laplacian
method), 28

evaluates_on_edges () (py-

Event (class in pybamm), 45
event_type (pybamm.Event attribute), 45
events (pybamm.BaseModel attribute), 41
events (pybamm.BaseSubModel attribute), 51
EventType (class in pybamm), 45
exp () (in module pybamm), 36
Experiment (class in pybamm), 127
ExperimentEvents (class in
bamm.external_circuit), 72
Explicit (class in pybamm.convection.through_cell),
56
Exponential (class in pybamm), 36
ExponentiallDSubMesh (class in pybamm), 102
expression (pybamm.Event attribute), 45
ExternalVariable (class in pybamm), 21

F

FastManyParticles (class in pybamm.particle), 88
FastSingleParticle (class in pybamm.particle),
87

py-

FickianManyParticles (class in py-
bamm.particle), 86
FickianSingleParticle (class in py-

bamm.particle), 85

find_parameter () (pybamm.ParameterValues static
method), 97

FiniteVolume (class in pybamm), 111

FirstOrder (class in pybamm.oxygen_diffusion), 82

FirstOrderKinetics (class in pybamm.interface),
75

FOQS (class in pybamm.lead_acid), 48

format () (pybamm.BinaryOperator method), 25

format () (pybamm.Timer method), 132

ForwardTafel (class in pybamm.interface), 74

Full (class in pybamm.convection.through_cell), 57

Full (class in pybamm.convection.transverse), 59

Full (class in pybamm.electrode.ohm), 61

Full (class in pybamm.electrolyte_conductivity), 64

Full (class in pybamm.electrolyte_diffusion), 70

Full (class in pybamm.lead_acid), 49

Full (class in pybamm.oxygen_diffusion), 83

Full (class in pybamm.porosity), 90

bamm.PrimaryBroadcastToEdges method), Fyl1lalgebraic (class in py-

35 bamm.electrolyte_conductivity.surface_potential_form),
evaluates_on_edges () (py- 66

bamm.SecondaryBroadcastToEdges method), pullBroadcast (class in pybamm), 34

35 FullBroadcastToEdges (class in pybamm), 34
evaluates_on_edges () (pybamm.Symbol method), ¥11Differential (class in py-

17 bamm.electrolyte_conductivity.surface_potential_form),
evaluates_on_edges () (pybamm.UnaryOperator 66

method), 27 Function (class in pybamm), 35
evaluates_to_number () (pybamm.Symbol wyunctionControl (class in py-

method), 18 bamm.external_circuit), 71
EvaluatorPython (class in pybamm), 38 FunctionParameter (class in pybamm), 19
154 Index

PyBaMM Documentation, Release 0.2.3

G

Geometry (class in pybamm), 100
get () (pybamm.ParameterValues method), 97

get_children_auxiliary_domains () (py-
bamm.Symbol method), 18
get_children_domains () (py-

bamm.BinaryOperator method), 25
get_children_domains () (pybamm.Function
method), 35

get_children_domains () (py-
bamm.FunctionParameter method), 20

get_coupled_variables () (py-
bamm.BaseSubModel method), 51

get_coupled_variables () (py-
bamm.convection.through_cell. Explicit
method), 56

get_coupled_variables () (py-
bamm.convection.through_cell. Full — method),
57

get_coupled_variables () (py-

bamm.convection.through_cell. NoConvection
method), 56

get_coupled_variables () (py-
bamm.convection.transverse.Uniform method),
58

get_coupled_variables () (py-
bamm.current_collector. Uniform method),
53

get_coupled_variables () (py-
bamm.electrode.ohm.Composite method),
61

get_coupled_variables () (py-
bamm.electrode.ohm.Full method), 61

get_coupled_variables|() (py-
bamm.electrode.ohm.LeadingOrder method),
60

get_coupled_variables () (py-
bamm.electrode.ohm.SurfaceForm method),
62

get_coupled_variables () (py-

bamm.electrolyte_conductivity. Composite
method), 64

get_coupled_variables () (py-
bamm.electrolyte_conductivity.Full — method),
65

get_coupled_variables () (py-

bamm.electrolyte_conductivity.LeadingOrder

get_coupled_variables () (py-
bamm.electrolyte_diffusion.LeadingOrder
method), 68

get_coupled_variables () (py-
bamm.interface.BaseKinetics method), 73

get_coupled_variables () (py-
bamm.interface.DiffusionLimited method),
76

get_coupled_variables () (py-
bamm.interface.FirstOrderKinetics — method),
75

get_coupled_variables () (py-

bamm.interface.inverse_kinetics.InverseButlerVolmer

method), 74

get_coupled_variables () (py-
bamm.interface.InverseFirstOrderKinetics
method), 75

get_coupled_variables () (py-
bamm.oxygen_diffusion.Composite ~ method),
82

get_coupled_variables () (py-
bamm.oxygen_diffusion.FirstOrder — method),
82

get_coupled_variables () (py-
bamm.oxygen_diffusion. Full method), 83

get_coupled_variables () (py-
bamm.oxygen_diffusion.LeadingOrder
method), 84

get_coupled_variables () (py-

bamm.particle.FickianManyParticles method),
86

get_coupled_variables () (py-
bamm.particle. FickianSingleParticle method),
85

get_coupled_variables () (py-
bamm.porosity. Full method), 90
get_coupled_variables () (py-
bamm.porosity.Leading Order method), 89
get_coupled_variables () (py-
bamm.sei.ConstantSEI method), 76
get_coupled_variables () (py-
bamm.sei.EcReactionLimited method), 80
get_coupled_variables () (py-

bamm.sei.ElectronMigrationLimited method),
77

get_coupled_variables () (py-
bamm.sei.InterstitialDiffusionLimited method),

method), 63 78
get_coupled_variables () (py- get_coupled_variables () (pybamm.sei.NoSEI
bamm.electrolyte_diffusion. Composite method), 78
method), 69 get_coupled_variables () (py-
get_coupled_variables () (py- bamm.sei.ReactionLimited method), 79
bamm.electrolyte_diffusion. Full method), 9et_coupled_variables () (py-
70 bamm.sei.SolventDiffusionLimited method),
Index 155

PyBaMM Documentation, Release 0.2.3

get_

get_

get_

get_

get_

get_

get_

get_

get_

get_

get_

get_

get_

80

coupled_variables () (py-
bamm.thermal.isothermal.Isothermal method),
91

get_fundamental_variables () (py-
bamme.electrolyte_diffusion. Composite
method), 69

get_fundamental_variables|() (py-

coupled_variables () (py- bamm.electrolyte_diffusion. ConstantConcentration
bamm.thermal. lumped. Lumped method), method), 68
91 get_fundamental_variables () (py-
coupled_variables () (py- bamm.electrolyte_diffusion. Full method),
bamm.thermal.pouch_cell. CurrentCollectorlD 70
method), 93 get_fundamental_variables () (py-
coupled_variables () (py- bamm.electrolyte_diffusion.LeadingOrder
bamm.thermal.pouch_cell. CurrentCollector2D method), 68
method), 94 get_fundamental_variables () (py-
coupled_variables () (py- bamm.external_circuit. CurrentControl
bamm.thermal.x_full. OneDimensionalX method), 71
method), 92 get_fundamental_variables () (py-
coupled_variables () (py- bamm.external_circuit. FunctionControl
bamm.tortuosity. Bruggeman method), 95 method), 71
external_variables () (py- get_fundamental_variables () (py-
bamm.BaseSubModel method), 51 bamm.interface.BaseKinetics method), 73
external_variables () (py- get_fundamental_variables () (py-
bamm.electrolyte_conductivity.Full — method), bamm.oxygen_diffusion. Full method), 83
65 get_fundamental_variables () (py-
fundamental_variables () (py- bamm.oxygen_diffusion.LeadingOrder
bamm.BaseSubModel method), 51 method), 84
fundamental_variables() (py- get_fundamental_variables () (py-
bamm.convection.through_cell. Full — method), bamm.oxygen_diffusion.NoOxygen method),
57 84
fundamental_variables () (py- get_fundamental_variables () (py-
bamm.convection.through_cell. NoConvection bamm.particle. FastManyParticles method),
method), 56 88
fundamental_variables () (py- get_fundamental_variables () (py-
bamm.convection.transverse.Full method), bamm.particle. FastSingleParticle method),
59 87
fundamental_variables () (py- get_fundamental_variables () (py-

bamm.convection.transverse.NoConvection bamm.particle.FickianManyParticles method),

method), 58 86

get_fundamental_variables () (py- get_fundamental_variables () (py-
bamm.convection.transverse.Uniform method), bamm.particle.FickianSingleParticle method),
59 85
get_fundamental_variables () (py- get_fundamental_variables() (py-
bamm.current_collector. BaseCompositePotential Pair bamm.porosity.Constant method), 89
method), 52 get_fundamental_variables () (py-
get_fundamental_variables () (py- bamm.porosity.Full method), 90
bamm.current_collector. BasePotential Pair get_fundamental_variables () (py-
method), 54 bamm.porosity.LeadingOrder method), 89
get_fundamental_variables() (py- get_fundamental_variables () (py-
bamm.current_collector.BaseQuiteConductivePotential Pair bamm.sei. ConstantSEI method), 77
method), 55 get_fundamental_variables () (py-
get_fundamental_variables () (py- bamm.sei.EcReactionLimited method), 81
bamm.electrode.ohm.Full method), 62 get_fundamental_variables () (py-
get_fundamental_variables () (py- bamm.sei.ElectronMigrationLimited method),
bamm.electrolyte_conductivity.Full — method), 77
65 get_fundamental_variables () (py-
156 Index

PyBaMM Documentation, Release 0.2.3

bamm.sei.InterstitialDiffusionLimited method),
78

get_fundamental_variables() (py-
bamm.sei. NoSEI method), 79

get_fundamental_variables() (py-
bamm.sei.ReactionLimited method), 79

get_fundamental_variables () (py-
bamm.sei.SolventDiffusionLimited method),
80

get_fundamental_variables() (py-

bamm.thermal.isothermal.Isothermal method),
91

get_fundamental_variables () (py-
bamm.thermal.lumped. Lumped method),
92

get_fundamental_variables () (py-

bamm.thermal.pouch_cell. CurrentCollector1 D

method), 93
get_fundamental_variables () (py-

bamm.thermal.pouch_cell. CurrentCollector2D

method), 94

get_fundamental_variables () (py-
bamm.thermal . x_full. OneDimensionalX
method), 92

get_infinite_nested_dict () (in module py-
bamm), 131

get_spatial_scale () (py-
bamm.ProcessedVariable method), 126

get_spatial_var () (pybamm.QuickPlot method),
130

get_termination_reason ()
bamm.BaseSolver method), 120

get_variable () (pybamm.VariableDot method), 21

get_variable_array () (pybamm.Simulation
method), 128

grad () (in module pybamm), 31

grad_squared () (in module pybamm), 31

Gradient (class in pybamm), 28

gradient () (pybamm.FiniteVolume method), 113

gradient () (pybamm.ScikitFiniteElement method),
118

gradient () (pybamm.SpatialMethod method), 109

gradient_matrix () (pybamm. FiniteVolume
method), 113

gradient_matrix()
method), 118

Gradient_Squared (class in pybamm), 28

gradient_squared () (pybamm.ScikitFiniteElement

(py-

(pybamm.ScikitFiniteElement

method), 18
Heaviside (class in pybamm), 26

indefinite_integral ()
method), 113
indefinite_integral ()
bamm.ScikitFiniteElement method), 118
indefinite_integral () (pybamm.SpatialMethod
method), 109
indefinite_integral ()
bamm.ZeroDimensionalSpatialMethod
method), 119
indefinite_integral_matrix_edges ()
(pybamm. FiniteVolume method), 113
indefinite_integral_matrix_nodes()
(pybamm. FiniteVolume method), 114
IndefiniteIntegral (class in pybamm), 29
IndependentVariable (class in pybamm), 22
Index (class in pybamm), 277
info () (pybamm.BaseModel method), 42
info () (pybamme.electrolyte_conductivity. Full method),
65
initial_conditions
tribute), 41
initial_conditions (pybamm.BaseSubModel at-
tribute), 50

(pybamm. FiniteVolume

(py-

(py-

(pybamm.BaseModel at-

initialise_0D() (py-
bamm.ProcessedSymbolicVariable method),
126

initialise_1D () (py-
bamm.ProcessedSymbolicVariable method),

126

initialise_2D ()
method), 126

Inner (class in pybamm), 26

input_parameters (pybamm.BaseModel attribute),
43

input_parameters (py-
bamm.electrolyte_conductivity.Full attribute),
65

InputParameter (class in pybamm), 36

inputs (pybamm._BaseSolution attribute), 124

Integral (class in pybamm), 29

integral () (pybamm.FiniteVolume method), 114

integral () (pybamm.ScikitFiniteElement method),
118

integral () (pybamm.SpatialMethod method), 110

(pybamm.ProcessedVariable

method), 118 integral () (pybamm.ZeroDimensionalSpatialMethod
gradient_squared () (pybamm.SpatialMethod method), 119
method), 109 internal neumann_condition () (py-
bamm. FiniteVolume method), 114
H internal_neumann_condition () (py-
has_symbol_of_classes () (pybamm.Symbol bamm.SpatialMethod method), 110
Index 157

PyBaMM Documentation, Release 0.2.3

Interpolant (class in pybamm), 37
InterstitialDiffusionLimited (class in py-
bamm.sei), 78

InverseButlerVolmer (class in py-
bamm.interface.inverse_kinetics), 74
InverseFirstOrderKinetics (class in py-

bamm.interface), 75
is_constant () (pybamm.Symbol method), 18
Isothermal (class in pybamm.thermal.isothermal), 91
items () (pybamm.ParameterValues method), 97

J

jac () (pybamm.Jacobian method), 39

jac () (pybamm.Symbol method), 18

Jacobian (class in pybamm), 39

jacobian (pybamm.BaseModel attribute), 41

jacobian_algebraic (pybamm.BaseModel at-
tribute), 41

jacobian_rhs (pybamm.BaseModel attribute), 41

K

keys () (pybamm.ParameterValues method), 97

L

Laplacian (class in pybamm), 28

laplacian () (in module pybamm), 31

laplacian () (pybamm.FiniteVolume method), 115

laplacian () (pybamm.ScikitFiniteElement method),
118

laplacian () (pybamm.SpatialMethod method), 110

LeadingOrder (class in pybamm.electrode.ohm), 60

LeadingOrder (class in py-
bamm.electrolyte_conductivity), 63
LeadingOrder (class in py-

bamm.electrolyte_diffusion), 68
LeadingOrder (class in pybamm.oxygen_diffusion),
84
LeadingOrder (class in pybamm.porosity), 89

LeadingOrderAlgebraic (class in py-

bamm.electrolyte_conductivity.surface_potential_forit;=°PY

67

LeadingOrderDifferential (class in

py-

bamm.electrolyte_conductivity.surface_potential ﬁ%\%:copy()

67
linspace () (in module pybamm), 23
load_function () (in module pybamm), 132
Log (class in pybamm), 36
log () (in module pybamm), 36
LOQS (class in pybamm.lead_acid), 48
Lumped (class in pybamm.thermal.lumped), 91

M

Mass (class in pybamm), 29

mass_matrix (pybamm.BaseModel attribute), 41

mass_matrix() (pybamm.ScikitFiniteElement
method), 119

mass_matrix () (pybamm.SpatialMethod method),
110

mass_matrix ()
bamm.ZeroDimensionalSpatialMethod
method), 120

mass_matrix_inv (pybamm.BaseModel attribute),
41

Matrix (class in pybamm), 23

MatrixMultiplication (class in pybamm), 25

max () (in module pybamm), 36

Maximum (class in pybamm), 26

maximum () (in module pybamm), 26

Mesh (class in pybamm), 100

MeshGenerator (class in pybamm), 101

meshgrid () (in module pybamm), 23

min () (in module pybamm), 36

Minimum (class in pybamm), 26

minimum () (in module pybamm), 26

model (pybamm._BaseSolution attribute), 124

Multiplication (class in pybamm), 25

N

name (pybamm.BaseModel attribute), 40

name (pybamm.Event attribute), 45

name (pybamm.Symbol attribute), 18

ndim (pybamm.Array attribute), 23

Negate (class in pybamm), 27

new_copy () (pybamm.Array method), 23
(pybamm.BaseBatteryModel method), 44
(pybamm.BaseModel method), 43

(py-

new_copy ()

new_copy ()

new_copy ()
0
(

(pybamm.BinaryOperator method), 25
new_copy () (pybamm.Concatenation method), 33
new_copy () (pybamme.electrolyte_conductivity.Full

method), 65
new_copy () (pybamm.Function method), 35
new_copy () (pybamm.FunctionParameter method), 20
() (pybamm.InputParameter method), 36
()

new_copy (pybamm.lead_acid.BasicFull method),
50
(pybamm.lithium_ion.BasicDFN
method), 47
new_copy () (pybamm.lithium_ion.BasicSPM method),
46

(pybamm.Parameter method), 19
(pybamm.Scalar method), 22
(pybamm.SpatialVariable method), 22
new_copy () (pybamm.Symbol method), 18
new_copy () (pybamm.Time method), 22
new_copy () (pybamm.UnaryOperator method), 277
NoConvection (class in
bamm.convection.through_cell), 56

new_copy ()
new_copy ()
new_copy ()
()
()

py-

158

Index

PyBaMM Documentation, Release 0.2.3

NoConvection (class in
bamm.convection.transverse), 58

node_to_edge () (pybamm.FiniteVolume method),
115

NoOxygen (class in pybamm.oxygen_diffusion), 84

NoReaction (class in pybamm.interface), 73

NoSET (class in pybamm.sei), 78

NotEqualHeaviside (class in pybamm), 26

NumpyConcatenation (class in pybamm), 33

O

on_boundary () (pybamm.ScikitSubMesh2D method),
103

OneDimensionalX (class in pybamm.thermal.x_full),
92

ones_like () (in module pybamm), 35

options (pybamm.BaseBatteryModel attribute), 43

options (pybamm.BaseModel attribute), 40

orphans (pybamm.Symbol attribute), 18

P

param (pybamm.BaseSubModel attribute), 50

Parameter (class in pybamm), 19

parameters (pybamm.BaseModel attribute), 43

parameters (pybamm.electrolyte_conductivity. Full at-
tribute), 65

parameters (pybamm.Geometry attribute), 100

ParameterValues (class in pybamm), 96

plot () (in module pybamm), 131

plot () (pybamm.QuickPlot method), 130

plot () (pybamm.Simulation method), 128

plot2D () (in module pybamm), 131

post_process|()

py-

(py-

print_parameters () (pybamm.ParameterValues

method), 97

process_binary_operators() (py-
bamm. FiniteVolume method), 115
process_binary_operators() (py-
bamm.SpatialMethod method), 110
process_boundary_conditions () (py-
bamm.Discretisation method), 106
process_boundary_conditions () (py-

bamm.ParameterValues method), 97
process_dict () (pybamm.Discretisation method),
106
process_geometry ()
method), 97
process_initial_conditions ()
bamm.Discretisation method), 106
process_model () (pybamm.Discretisation method),
106
process_model ()
method), 97
process_parameters_and_discretise () (py-
bamm.BaseBatteryModel method), 44
process_rhs_and_algebraic ()
bamm.Discretisation method), 107
process_symbol () (pybamm.Discretisation
method), 107
process_symbol ()
method), 98
ProcessedSymbolicVariable (class in pybamm),
126
ProcessedVariable (class in pybamm), 125
pybamm (module), 15
pybamm.parameters

(pybamm.ParameterValues

(py-

(pybamm.ParameterValues

(py-

(pybamm.ParameterValues

.electrical_parameters

bamm.current_collector.AlternativeEffectiveResistance2D (module), 99

method), 53

post_process() (py-
bamm.current_collector. EffectiveResistance
method), 53

PotentialPairlpluslD (class in py-
bamm.current_collector), 54

PotentialPair2pluslD (class in py-
bamm.current_collector), 54

Power (class in pybamm), 25

PowerFunctionControl (class in py-
bamm.external_circuit), 72

pre_order () (pybamm.Symbol method), 18

preprocess_external_variables () (py-

bamm. FiniteVolume method), 115
PrimaryBroadcast (class in pybamm), 34
PrimaryBroadcastToEdges (class in pybamm), 34
print () (pybamm.Citations method), 132
print_citations () (in module pybamm), 133
print_evaluated_parameters ()

bamm.ParameterValues method), 97

(py-

pybamm.parameters
(module), 98
pybamm.parameters
ule), 99
pybamm.parameters
(module), 99
pybamm.parameters
(module), 99
pybamm.parameters

(module), 99

.geometric_parameters

(mod-

.parameter_sets

.thermal_parameters

Q

QuickPlot (class in pybamm), 129

QuiteConductivePotentialPairlpluslD
(class in pybamm.current_collector), 55

QuiteConductivePotentialPair2pluslD
(class in pybamm.current_collector), 55

R

r_average () (in module pybamm), 32

Index

159

.standard_parameters_lead_acid

.standard_parameters_lithium_ion

PyBaMM Documentation, Release 0.2.3

ReactionLimited (class in pybamm.sei), 79
read_citations () (pybamm.Citations method), 133

read_operating_conditions () (py-
bamm.Experiment method), 127
read_parameters_csv () (py-

bamm. ParameterValues method), 98
read_string () (pybamm.Experiment method), 127
register () (pybamm.Citations method), 133
relabel_tree () (pybamm.Symbol method), 18
remove_parameter () (in module

bamm.parameters_cli), 133
render () (pybamm.Symbol method), 19
reset () (pybamm.Timer method), 132
reset_axis () (pybamm.QuickPlot method), 130
rhs (pybamm.BaseModel attribute), 40
rhs (pybamm.BaseSubModel attribute), 50
rmse () (in module pybamm), 132
root_dir () (in module pybamm), 132

S

save () (pybamm._BaseSolution method), 124
save () (pybamm.Simulation method), 128
save_data () (pybamm._BaseSolution method), 124
Scalar (class in pybamm), 22
ScikitChebyshev2DSubMesh (class in pybamm),
104
ScikitExponential2DSubMesh (class
bamm), 103
ScikitFiniteElement (class in pybamm), 116
ScikitsDaeSolver (class in pybamm), 122
ScikitsOdeSolver (class in pybamm), 122
ScikitSubMesh2D (class in pybamm), 103
ScikitUniform2DSubMesh (class in pybamm), 103
ScipySolver (class in pybamm), 122
search () (pybamm.ParameterValues method), 98
secondary_domain (pybamm.Symbol attribute), 19
SecondaryBroadcast (class in pybamm), 34
SecondaryBroadcastToEdges (class in pybamm),

py-

in py-

35

sensitivity () (py-
bamm.ProcessedSymbolicVariable method),
126

set_algebraic () (pybamm.BaseSubModel method),
51

set_algebraic () (py-
bamm.convection.through_cell. Full — method),
57

set_algebraic() (py-
bamm.convection.transverse.Full method),
59

set_algebraic () (py-

bamm.current_collector. BasePotential Pair
method), 54

set_algebraic() (py-
bamm.current_collector.BaseQuiteConductive Potential Pair

method), 55

set_algebraic /() (pybamm.electrode.ohm.Full
method), 62

set_algebraic () (py-
bamm.electrolyte_conductivity.Full — method),
65

set_algebraic () (py-

bamm.electrolyte_conductivity.surface_potential_form.FullAlgeb

method), 66

set_algebraic()

(py-

bamm.electrolyte_conductivity.surface_potential_form.Leading O

method), 67
set_algebraic()
bamm.external_circuit. FunctionControl

(py-

method), 71

set_algebraic () (pybamm.interface.BaseKinetics
method), 73

set_algebraic () (pybamm.sei.EcReactionLimited
method), 81

set_boundary_conditions () (py-
bamm.BaseSubModel method), 51

set_boundary_conditions () (py-
bamm.convection.through_cell. Full — method),
57

set_boundary_conditions () (py-
bamm.convection.transverse.Full method),
59

set_boundary_conditions () (py-

bamm.current_collector. Potential PairIplus1D
method), 54

set_boundary_conditions () (py-
bamm.current_collector. Potential Pair2plus 1D
method), 54

set_boundary_conditions () (py-
bamm.electrode.ohm.BaseModel method),
60

set_boundary_conditions () (py-
bamm.electrode.ohm.Composite method),
61

set_boundary_conditions () (py-
bamm.electrode.ohm. Full method), 62

set_boundary_conditions () (py-
bamm.electrode.ohm.LeadingOrder method),
60

set_boundary_conditions () (py-

bamm.electrolyte_conductivity. BaseElectrolyteConductivity
method), 63

set_boundary_conditions () (py-
bamm.electrolyte_conductivity.Full — method),
65

set_boundary_conditions () (py-

bamm.electrolyte_diffusion. Composite

160

Index

PyBaMM Documentation, Release 0.2.3

method), 69

set_boundary_conditions () (py-
bamm.electrolyte_diffusion. Full method),
70

set_boundary_conditions () (py-
bamm.oxygen_diffusion.Full method), 83

set_boundary_conditions () (py-

bamm.particle.FickianManyParticles method),
86

set_boundary_conditions () (py-
bamm.particle. FickianSingleParticle method),
86

set_boundary_conditions () (py-
bamm.thermal.pouch_cell. CurrentCollectorl D
method), 94

set_boundary_conditions () (py-
bamm.thermal.pouch_cell. CurrentCollector2D
method), 95

set_boundary_conditions ()
bamm.thermal.x_full. OneDimensionalX
method), 93

set_events () (pybamm.BaseSubModel method), 51

set_events () (pybamm.electrolyte_conductivity. Full

(py-

set_id () (pybamm.Boundarylntegral method), 30
set_id () (pybamm.BoundaryOperator method), 31
set_id () (pybamm.DefinitelntegralVector method), 30
set_id () (pybamm.DeltaFunction method), 30
set_1id () (pybamm.FunctionParameter method), 20
set_1id () (pybamm.Index method), 28

set_id () (pybamm.Integral method), 29

set_id () (pybamm.Interpolant method), 37

set_id () (pybamm.Scalar method), 22

set_id () (pybamm.Symbol method), 19

set_initial_conditions () (py-
bamm.BaseSubModel method), 52

set_initial_conditions () (py-
bamm.convection.through_cell. Full —method),
57

set_initial conditions () (py-
bamm.convection.transverse.Full method),
59

set_initial_conditions () (py-
bamm.current_collector.BasePotential Pair
method), 54

set_initial_ conditions () (py-

bamm.current_collector. BaseQuiteConductive Potential Pair

method), 65 method), 55
set_events () (pybamm.electrolyte_diffusion. BaseElectrobite Diffiusiom1_conditions () (py-
method), 67 bamm.electrode.ohm.Full method), 62
set_events () (pybamm.external_circuit. ExperimentEvestst _initial_conditions () (py-
method), 72 bamm.electrolyte_conductivity.Full — method),
set_events () (pybamm.particle.BaseParticle 66
method), 85 set_initial_conditions () (py-
set_events () (pybamm.porosity.BaseModel bamm.electrolyte_diffusion. Composite
method), 88 method), 70
set_expected_size () (pybamm.InputParameter set_initial_conditions () (py-
method), 36 bamm.electrolyte_diffusion. Full method),
set_external_circuit_submodel () (py- 70
bamm.BaseBatteryModel method), 45 set_initial_conditions () (py-
set_external circuit_submodel () (py- bamm.electrolyte_diffusion.LeadingOrder
bamm.lead_acid. LOQS method), 48 method), 69
set_external_variables () (py- set_initial_conditions () (py-
bamm.Discretisation method), 107 bamm.external_circuit. FunctionControl
set_full_convection_submodel () (py- method), 72
bamm.lead_acid.BaseHigherOrderModel set_initial_conditions () (py-
method), 48 bamm.interface.BaseKinetics method), 73
set_full interface_submodel () (py- set_initial_conditions () (py-
bamm.lead_acid.BaseHigherOrderModel bamm.oxygen_diffusion. Full method), 83
method), 48 set_initial_conditions () (py-
set_full_porosity_submodel () (py- bamm.oxygen_diffusion.LeadingOrder
bamm.lead_acid.BaseHigherOrderModel method), 84
method), 48 set_initial_conditions () (py-
set_full_porosity_submodel () (py- bamm.particle. FastManyParticles method),
bamm.lead_acid. Composite method), 49 88
set_full_porosity_submodel () (py- set_initial_conditions () (py-
bamm.lead_acid. FOQS method), 49 bamm.particle. FastSingleParticle method),
set_id () (pybamm.Array method), 23 87
Index 161

PyBaMM Documentation, Release 0.2.3

set_initial_conditions () (py-
bamm.particle. FickianManyParticles method),
87

set_initial_conditions () (py-
bamm.particle.FickianSingleParticle method),
86

set_initial_conditions () (py-
bamm.porosity.Full method), 90
set_initial_conditions () (py-
bamm.porosity.LeadingOrder method), 89
set_initial_conditions () (py-
bamm.sei.EcReactionLimited method), 81
set_initial_conditions () (py-

bamm.sei.ElectronMigrationLimited method),
77

set_initial conditions () (py-
bamm.sei.InterstitialDiffusionLimited method),
78

set_initial_conditions () (py-
bamm.sei.ReactionLimited method), 79

set_initial conditions () (py-
bamm.sei.SolventDiffusionLimited method),
80

set_initial_conditions () (py-
bamm.thermal.lumped. Lumped method),
92

set_initial_conditions () (py-

bamm.thermal.pouch_cell. CurrentCollector1 D
method), 94

set_initial_conditions () (py-
bamm.thermal.pouch_cell. CurrentCollector2D
method), 95

set_initial_conditions ()
bamm.thermal. x_full. OneDimensionalX
method), 93

set_internal_boundary_conditions ()
(pybamm.Discretisation method), 107

set_parameters () (pybamm.Simulation method),
128

set_rhs () (pybamm.BaseSubModel method), 52

set_rhs () (pybamm.electrolyte_conductivity. Full
method), 66

(py-

set_rhs () (pybamm.oxygen_diffusion.Full method),
83

set_rhs () (pybamm.oxygen_diffusion.LeadingOrder
method), 84

set_rhs () (pybamm.particle. FastManyParticles
method), 88

set_rhs () (pybamm.particle. FastSingleParticle
method), 87

set_rhs () (pybamm.particle.FickianManyParticles
method), 87

set_rhs () (pybamm.particle.FickianSingleParticle
method), 86

set_rhs () (pybamm.porosity.Full method), 90
set_rhs () (pybamm.porosity.LeadingOrder method),

89

set_rhs () (pybamm.sei.EcReactionLimited method),
81

set_rhs () (pybamm.sei.ElectronMigrationLimited
method), 77

set_rhs () (pybamm.sei.InterstitialDiffusionLimited
method), 78

set_rhs () (pybamm.sei.ReactionLimited method), 79

set_rhs () (pybamm.sei.SolventDiffusionLimited
method), 80

set_rhs () (pybamm.thermal.lumped. Lumped
method), 92

set_rhs () (pybamm.thermal.pouch_cell. CurrentCollector1 D
method), 94

set_rhs () (pybamm.thermal.pouch_cell. CurrentCollector2D
method), 95

set_rhs () (pybamm.thermal.x_full. OneDimensionalX
method), 93

set_soc_variables () (py-
bamm.BaseBatteryModel method), 45

set_soc_variables () (py-

bamm.lead_acid.BaseModel method), 47
set_up () (pybamm.BaseSolver method), 121
set_up_experiment () (pybamm.Simulation

method), 128
set_variable_slices()

method), 107
shape (pybamm.Array attribute), 23

(pybamm.Discretisation

set_rhs () (pybamm.electrolyte_conductivity.surface_potentag fépybbmibDSforbatiattribute), 19

method), 66

shape_for_testing (pybamm.Symbol attribute), 19

set_rhs () (pybamm.electrolyte_conductivity.surface_potemtiad tfoynighduding QidieNofferentivethod), 115

method), 67
set_rhs () (pybamm.electrolyte_diffusion. Composite
method), 70
set_rhs ()
method), 71

(pybamm.electrolyte_diffusion. Full

set_rhs () (pybamm.electrolyte_diffusion.LeadingOrder simplify_addition_subtraction ()

method), 69
set_rhs () (pybamm.oxygen_diffusion. Composite
method), 82

Sign (class in pybamm), 277

sign () (in module pybamm), 32

Simplification (class in pybamm), 37

simplify () (pybamm.Simplification method), 37

simplify () (pybamm.Symbol method), 19

(in mod-
ule pybamm), 37

simplify if constant ()
37

(in module pybamm),

162

Index

PyBaMM Documentation, Release 0.2.3

simplify _multiplication_division () (in
module pybamm), 38

Simulation (class in pybamm), 127

Sin (class in pybamm), 36

sin () (in module pybamm), 36

Sinh (class in pybamm), 36

sinh () (in module pybamm), 36

size (pybamm.ExternalVariable attribute), 21

size (pybamm.Symbol attribute), 19

size_for_testing (pybamm.Symbol attribute), 19

slider_update () (pybamm.QuickPlot method), 130

Solution (class in pybamm), 125

solve () (pybamm.BaseSolver method), 121

solve () (pybamm.Simulation method), 128

SolventDiffusionLimited (class in pybamm.sei),
80

source () (in module pybamm), 26

SparseStack (class in pybamm), 33

spatial_variable () (pybamm. FiniteVolume
method), 116

spatial_variable () (pybamm.ScikitFiniteElement

method), 119
spatial_variable () (pybamm.SpatialMethod
method), 111

SpatialMethod (class in pybamm), 107
SpatialOperator (class in pybamm), 28
SpatialVariable (class in pybamm), 22
SpecificFunction (class in pybamm), 35
specs () (pybamm.Simulation method), 129
SPM (class in pybamm.lithium_ion), 45

SPMe (class in pybamm.lithium_ion), 46
StateVector (class in pybamm), 24
StateVectorDot (class in pybamm), 24

time () (pybamm.Timer method), 132

Timer (class in pybamm), 132

timescale (pybamm.BaseModel attribute), 43

timescale (pybamm.electrolyte_conductivity.Full at-
tribute), 66

to_casadi () (pybamm.Symbol method), 19

U

UnaryOperator (class in pybamm), 27

Uniform (class in pybamm.convection.transverse), 58
Uniform (class in pybamm.current_collector), 53
UniformlDSubMesh (class in pybamm), 101

unpack_list_of_symbols () (py-
bamm.SymbolUnpacker method), 40
unpack_symbol () (pybamm.SymbolUnpacker

method), 40
update () (pybamm._BaseSolution method), 125
update () (pybamm.BaseModel method), 43
update () (pybamme.electrolyte_conductivity.Full
method), 66
update () (pybamm.ParameterValues method), 98
update_from_chemistry ()
bamm.ParameterValues method), 98
use_jacobian (pybamm.BaseModel attribute), 42
use_simplify (pybamm.BaseModel attribute), 42
UserSuppliedlDSubMesh (class in pybamm), 103
UserSupplied2DSubMesh (class in pybamm), 104

Vv

value (pybamm.Scalar attribute), 23
value () (pybamm.ProcessedSymbolicVariable
method), 126

(py-

value_and_sensitivity () (py-
step () (py bamm.Bgs eSol.ver method), 121 bamm.ProcessedSymbolicVariable =~ method),
step () (pybamm.Simulation method), 129 126
stiffness_matrix () (pybamm.ScikitFiniteElement values () (pybamm.ParameterValues method), 98

metﬁod), 119) . Variable (class in pybamm), 20

sub_solut ions (pybamm.Solution attribute), 125 VariableDot (class in pybamm), 20
SubMesh (class in pybamm), 101 variables (pybamm.BaseModel attribute), 41
SubMesh0D (class m pybamm), 101 variables (pybamm.BaseSubModel attribute), 51
SubMesh 1]? (class in p.ybamm), 101 Vector (class in pybamm), 24
Subt rac’.c ion (class in pybamm), 25 visualise () (pybamm.Symbol method), 19
surf () (in modulepyl?amm), 31 VoltageFunctionControl (class in py-
SurfaceForm (class in pybamm.electrode.ohm), 62 bamm.external_circuit), 72
Symbol (class in pybamm), 15
SymbolUnpacker (class in pybamm), 39 X
T x_average () (in module pybamm), 32
t (in module pybamm), 22 Y
& (pybamm. _BaseSolution attrlb.ute), 12.5 y (pybamm._BaseSolution attribute), 125
t_event (pybamm._BaseSolution attribute), 125 . .
termination (pybamm._BaseSolution attribute), 125 y_event (py bamm._BaseSolutton attribute), 125
test_shape () (pybamm.Symbol method), 19 yz_average () (in module pybamm), 32
Time (class in pybamm), 22
Index 163

PyBaMM Documentation, Release 0.2.3

Z

z_average () (in module pybamm), 32
ZeroDimensionalSpatialMethod (class in py-
bamm), 119

164 Index

	Quickstart
	Installation
	API documentation
	Examples
	Contributing
	Python Module Index
	Index

