Source code for pybamm.models.base_model

from __future__ import annotations

import numbers
import warnings
from collections import OrderedDict

import copy
import casadi
import numpy as np

import pybamm
from pybamm.expression_tree.operations.serialise import Serialise


[docs] class BaseModel: """ Base model class for other models to extend. Attributes ---------- name: str A string representing the name of the model. submodels: dict A dictionary of submodels that the model is composed of. use_jacobian: bool Whether to use the Jacobian when solving the model (default is True). convert_to_format: str Specifies the format to convert the expression trees representing the RHS, algebraic equations, Jacobian, and events. Options are: - None: retain PyBaMM expression tree structure. - "python": convert to Python code for evaluating `evaluate(t, y)` on expressions. - "casadi": convert to CasADi expression tree for Jacobian calculation. - "jax": convert to JAX expression tree. Default is "casadi". is_discretised: bool Indicates whether the model has been discretised (default is False). y_slices: None or list Slices of the concatenated state vector after discretisation, used to track different submodels in the full concatenated solution vector. """ def __init__(self, name="Unnamed model"): self.name = name self._options = {} self._built = False self._built_fundamental = False # Initialise empty model self.submodels = {} self._rhs = {} self._algebraic = {} self._initial_conditions = {} self._boundary_conditions = {} self._variables_by_submodel = {} self._variables = pybamm.FuzzyDict({}) self._coupled_variables = {} self._summary_variables = [] self._events = [] self._concatenated_rhs = None self._concatenated_algebraic = None self._concatenated_initial_conditions = None self._mass_matrix = None self._mass_matrix_inv = None self._jacobian = None self._jacobian_algebraic = None self._parameters = None self._input_parameters = None self._parameter_info = None self._variables_casadi = {} self._geometry = pybamm.Geometry({}) # Default behaviour is to use the jacobian self.use_jacobian = True self.convert_to_format = "casadi" # Model is not initially discretised self.is_discretised = False self.y_slices = None
[docs] @classmethod def deserialise(cls, properties: dict): """ Create a model instance from a serialised object. """ # append the model name with _saved to differentiate instance = cls(name=properties["name"] + "_saved") instance.options = properties["options"] return cls.generic_deserialise(instance, properties)
@classmethod def generic_deserialise(cls, instance, properties): # Initialise model with stored variables that have already been discretised instance._concatenated_rhs = properties["concatenated_rhs"] instance._concatenated_algebraic = properties["concatenated_algebraic"] instance._concatenated_initial_conditions = properties[ "concatenated_initial_conditions" ] instance.len_rhs = instance.concatenated_rhs.size instance.len_alg = instance.concatenated_algebraic.size instance.len_rhs_and_alg = instance.len_rhs + instance.len_alg instance.bounds = properties["bounds"] instance.events = properties["events"] instance.mass_matrix = properties["mass_matrix"] instance.mass_matrix_inv = properties["mass_matrix_inv"] # add optional properties not required for model to solve if properties["variables"]: instance._variables = pybamm.FuzzyDict(properties["variables"]) # assign meshes to each variable for var in instance._variables.values(): if var.domain != []: var.mesh = properties["mesh"][var.domain] if var.domains["secondary"] != []: var.secondary_mesh = properties["mesh"][var.domains["secondary"]] else: var.secondary_mesh = None if properties["geometry"]: instance._geometry = pybamm.Geometry(properties["geometry"]) else: # Delete the default variables which have not been discretised instance._variables = pybamm.FuzzyDict({}) # Model has already been discretised instance.is_discretised = True return instance @property def name(self): return self._name @name.setter def name(self, value): self._name = value @property def rhs(self): """Returns a dictionary mapping expressions (variables) to expressions that represent the right-hand side (RHS) of the model's differential equations.""" return self._rhs @rhs.setter def rhs(self, rhs): self._rhs = EquationDict("rhs", rhs) @property def algebraic(self): """Returns a dictionary mapping expressions (variables) to expressions that represent the algebraic equations of the model.""" return self._algebraic @algebraic.setter def algebraic(self, algebraic): self._algebraic = EquationDict("algebraic", algebraic) @property def initial_conditions(self): """Returns a dictionary mapping expressions (variables) to expressions that represent the initial conditions for the state variables.""" return self._initial_conditions @initial_conditions.setter def initial_conditions(self, initial_conditions): self._initial_conditions = EquationDict( "initial_conditions", initial_conditions ) @property def boundary_conditions(self): """Returns a dictionary mapping expressions (variables) to expressions representing the boundary conditions of the model.""" return self._boundary_conditions @boundary_conditions.setter def boundary_conditions(self, boundary_conditions): self._boundary_conditions = BoundaryConditionsDict(boundary_conditions) @property def coupled_variables(self): """Returns a dictionary mapping strings to expressions representing variables needed by the model but whose equations were set by other models.""" return self._coupled_variables @coupled_variables.setter def coupled_variables(self, coupled_variables): for name, var in coupled_variables.items(): if ( isinstance(var, pybamm.CoupledVariable) and var.name != name # Exception if the variable is also there under its own name and not ( var.name in coupled_variables and coupled_variables[var.name] == var ) ): raise ValueError( f"Coupled variable with name '{var.name}' is in coupled variables dictionary with " f"name '{name}'. Names must match." ) self._coupled_variables = coupled_variables def list_coupled_variables(self): return list(self._coupled_variables.keys()) @property def variables(self): """Returns a dictionary mapping strings to expressions representing the model's useful variables.""" return self._variables @variables.setter def variables(self, variables): for name, var in variables.items(): if ( isinstance(var, pybamm.Variable) and var.name != name # Exception if the variable is also there under its own name and not (var.name in variables and variables[var.name] == var) ): raise ValueError( f"Variable with name '{var.name}' is in variables dictionary with " f"name '{name}'. Names must match." ) self._variables = pybamm.FuzzyDict(variables) def variable_names(self): return list(self._variables.keys()) @property def variables_and_events(self): """Returns a dictionary containing both models variables and events.""" try: return self._variables_and_events except AttributeError: self._variables_and_events = self.variables.copy() self._variables_and_events.update( {f"Event: {event.name}": event.expression for event in self.events} ) return self._variables_and_events @property def events(self): """Returns a dictionary mapping expressions (variables) to expressions that represent the initial conditions for the state variables.""" return self._events @events.setter def events(self, events): self._events = events @property def concatenated_rhs(self): """Returns the concatenated right-hand side (RHS) expressions for the model after discretisation.""" return self._concatenated_rhs @concatenated_rhs.setter def concatenated_rhs(self, concatenated_rhs): self._concatenated_rhs = concatenated_rhs @property def concatenated_algebraic(self): """Returns the concatenated algebraic equations for the model after discretisation.""" return self._concatenated_algebraic @concatenated_algebraic.setter def concatenated_algebraic(self, concatenated_algebraic): self._concatenated_algebraic = concatenated_algebraic @property def concatenated_initial_conditions(self): """Returns the initial conditions for all variables after discretization, providing the initial values for the state variables.""" return self._concatenated_initial_conditions @concatenated_initial_conditions.setter def concatenated_initial_conditions(self, concatenated_initial_conditions): self._concatenated_initial_conditions = concatenated_initial_conditions @property def mass_matrix(self): """Returns the mass matrix for the system of differential equations after discretisation.""" return self._mass_matrix @mass_matrix.setter def mass_matrix(self, mass_matrix): self._mass_matrix = mass_matrix @property def mass_matrix_inv(self): """Returns the inverse of the mass matrix for the differential equations after discretisation.""" return self._mass_matrix_inv @mass_matrix_inv.setter def mass_matrix_inv(self, mass_matrix_inv): self._mass_matrix_inv = mass_matrix_inv @property def jacobian(self): """Returns the Jacobian matrix for the model, computed automatically if `use_jacobian` is True.""" return self._jacobian @jacobian.setter def jacobian(self, jacobian): self._jacobian = jacobian @property def jacobian_rhs(self): """Returns the Jacobian matrix for the right-hand side (RHS) part of the model, computed if `use_jacobian` is True.""" return self._jacobian_rhs @jacobian_rhs.setter def jacobian_rhs(self, jacobian_rhs): self._jacobian_rhs = jacobian_rhs @property def jacobian_algebraic(self): """Returns the Jacobian matrix for the algebraic part of the model, computed automatically during solver setup if `use_jacobian` is True.""" return self._jacobian_algebraic @jacobian_algebraic.setter def jacobian_algebraic(self, jacobian_algebraic): self._jacobian_algebraic = jacobian_algebraic @property def param(self): """Returns a dictionary to store parameter values for the model.""" return self._param @param.setter def param(self, values): self._param = values @property def options(self): """Returns the model options dictionary that allows customization of the model's behavior.""" return self._options @options.setter def options(self, options): self._options = options @property def timescale(self): raise NotImplementedError( "timescale has been removed since models are now dimensional" ) @timescale.setter def timescale(self, value): raise NotImplementedError( "timescale has been removed since models are now dimensional" ) @property def length_scales(self): raise NotImplementedError( "length_scales has been removed since models are now dimensional" ) @length_scales.setter def length_scales(self, values): raise NotImplementedError( "length_scales has been removed since models are now dimensional" ) @property def geometry(self): """Returns the geometry of the model.""" return self._geometry @property def default_var_pts(self): """Returns a dictionary of the default variable points for the model, which is empty by default.""" return {} @property def default_geometry(self): """Returns a dictionary of the default geometry for the model, which is empty by default.""" return {} @property def default_submesh_types(self): """Returns a dictionary of the default submesh types for the model, which is empty by default.""" return {} @property def default_spatial_methods(self): """Returns a dictionary of the default spatial methods for the model, which is empty by default.""" return {} @property def default_solver(self): """Returns the default solver for the model, based on whether it is an ODE/DAE or algebraic model.""" if len(self.rhs) == 0 and len(self.algebraic) != 0: return pybamm.CasadiAlgebraicSolver() else: return pybamm.CasadiSolver(mode="safe") @property def default_quick_plot_variables(self): """Returns the default variables for quick plotting (None by default).""" return None @property def default_parameter_values(self): """Returns the default parameter values for the model (an empty set of parameters by default).""" return pybamm.ParameterValues({}) @property def parameters(self): """Returns a list of all parameter symbols used in the model.""" self._parameters = self._find_symbols( (pybamm.Parameter, pybamm.InputParameter, pybamm.FunctionParameter) ) return self._parameters @property def input_parameters(self): """Returns a list of all input parameter symbols used in the model.""" if self._input_parameters is None: self._input_parameters = self._find_symbols(pybamm.InputParameter) return self._input_parameters
[docs] def get_parameter_info(self, by_submodel=False): """ Extracts the parameter information and returns it as a dictionary. To get a list of all parameter-like objects without extra information, use :py:attr:`model.parameters`. Parameters ---------- by_submodel : bool, optional Whether to return the parameter info sub-model wise or not (default False) """ parameter_info = {} if by_submodel: for submodel_name, submodel_vars in self._variables_by_submodel.items(): submodel_info = {} for var_name, var_symbol in submodel_vars.items(): if isinstance(var_symbol, pybamm.Parameter): submodel_info[var_name] = (var_symbol, "Parameter") elif isinstance(var_symbol, pybamm.InputParameter): if not var_symbol.domain: submodel_info[var_name] = (var_symbol, "InputParameter") else: submodel_info[var_name] = ( var_symbol, f"InputParameter in {var_symbol.domain}", ) elif isinstance(var_symbol, pybamm.FunctionParameter): input_names = "', '".join(var_symbol.input_names) submodel_info[var_name] = ( var_symbol, f"FunctionParameter with inputs(s) '{input_names}'", ) else: submodel_info[var_name] = (var_symbol, "Unknown Type") parameters = self._find_symbols_by_submodel( pybamm.Parameter, submodel_name ) for param in parameters: submodel_info[param.name] = (param, "Parameter") input_parameters = self._find_symbols_by_submodel( pybamm.InputParameter, submodel_name ) for input_param in input_parameters: if not input_param.domain: submodel_info[input_param.name] = ( input_param, "InputParameter", ) else: submodel_info[input_param.name] = ( input_param, f"InputParameter in {input_param.domain}", ) function_parameters = self._find_symbols_by_submodel( pybamm.FunctionParameter, submodel_name ) for func_param in function_parameters: if func_param.name not in parameter_info: input_names = "', '".join(func_param.input_names) submodel_info[func_param.name] = ( func_param, f"FunctionParameter with inputs(s) '{input_names}'", ) parameter_info[submodel_name] = submodel_info else: parameters = self._find_symbols(pybamm.Parameter) for param in parameters: parameter_info[param.name] = (param, "Parameter") input_parameters = self._find_symbols(pybamm.InputParameter) for input_param in input_parameters: if not input_param.domain: parameter_info[input_param.name] = (input_param, "InputParameter") else: parameter_info[input_param.name] = ( input_param, f"InputParameter in {input_param.domain}", ) function_parameters = self._find_symbols(pybamm.FunctionParameter) for func_param in function_parameters: if func_param.name not in parameter_info: input_names = "', '".join(func_param.input_names) parameter_info[func_param.name] = ( func_param, f"FunctionParameter with inputs(s) '{input_names}'", ) return parameter_info
def _calculate_max_lengths(self, parameter_dict): """ Calculate the maximum length of parameters and parameter type in a dictionary Parameters ---------- parameter_dict : dict The dict from which maximum lengths are calculated """ max_name_length = max( len(getattr(parameter, "name", str(parameter))) for parameter, _ in parameter_dict.values() ) max_type_length = max( len(parameter_type) for _, parameter_type in parameter_dict.values() ) return max_name_length, max_type_length def _format_table_row( self, param_name, param_type, max_name_length, max_type_length ): """ Format the parameter information in a formatted table Parameters ---------- param_name : str The name of the parameter param_type : str The type of the parameter max_name_length : int The maximum length of the parameter in the dictionary max_type_length : int The maximum length of the parameter type in the dictionary """ param_name_lines = [ param_name[i : i + max_name_length] for i in range(0, len(param_name), max_name_length) ] param_type_lines = [ param_type[i : i + max_type_length] for i in range(0, len(param_type), max_type_length) ] max_lines = max(len(param_name_lines), len(param_type_lines)) return [ f"│ {param_name_lines[i]:<{max_name_length}}{param_type_lines[i]:<{max_type_length}} │" for i in range(max_lines) ]
[docs] def print_parameter_info(self, by_submodel=False): """ Print parameter information in a formatted table from a dictionary of parameters Parameters ---------- by_submodel : bool, optional Whether to print the parameter info sub-model wise or not (default False) """ if by_submodel: parameter_info = self.get_parameter_info(by_submodel=True) for submodel_name, submodel_vars in parameter_info.items(): if not submodel_vars: print(f"'{submodel_name}' submodel parameters: \nNo parameters\n") else: print(f"'{submodel_name}' submodel parameters:") ( max_param_name_length, max_param_type_length, ) = self._calculate_max_lengths(submodel_vars) table = [ f"┌─{'─' * max_param_name_length}─┬─{'─' * max_param_type_length}─┐", f"│ {'Parameter':<{max_param_name_length}}{'Type of parameter':<{max_param_type_length}} │", f"├─{'─' * max_param_name_length}─┼─{'─' * max_param_type_length}─┤", ] for param, param_type in submodel_vars.values(): param_name = getattr(param, "name", str(param)) table.extend( self._format_table_row( param_name, param_type, max_param_name_length, max_param_type_length, ) ) table.extend( [ f"└─{'─' * max_param_name_length}─┴─{'─' * max_param_type_length}─┘", ] ) table = "\n".join(table) + "\n" table.encode("utf-8") print(table) else: info = self.get_parameter_info() max_param_name_length, max_param_type_length = self._calculate_max_lengths( info ) table = [ f"┌─{'─' * max_param_name_length}─┬─{'─' * max_param_type_length}─┐", f"│ {'Parameter':<{max_param_name_length}}{'Type of parameter':<{max_param_type_length}} │", f"├─{'─' * max_param_name_length}─┼─{'─' * max_param_type_length}─┤", ] for param, param_type in info.values(): param_name = getattr(param, "name", str(param)) table.extend( self._format_table_row( param_name, param_type, max_param_name_length, max_param_type_length, ) ) table.extend( [ f"└─{'─' * max_param_name_length}─┴─{'─' * max_param_type_length}─┘", ] ) table = "\n".join(table) + "\n" table.encode("utf-8") print(table)
def _find_symbols(self, typ): """Find all the instances of `typ` in the model""" unpacker = pybamm.SymbolUnpacker(typ) all_input_parameters = unpacker.unpack_list_of_symbols( list(self.rhs.values()) + list(self.algebraic.values()) + list(self.initial_conditions.values()) + [ x[side][0] for x in self.boundary_conditions.values() for side in x.keys() ] + list(self.variables.values()) + [event.expression for event in self.events] ) return list(all_input_parameters) def _find_symbols_by_submodel(self, typ, submodel): """Find all the instances of `typ` in the submodel""" unpacker = pybamm.SymbolUnpacker(typ) all_input_parameters = unpacker.unpack_list_of_symbols( list(self.submodels[submodel].rhs.values()) + list(self.submodels[submodel].algebraic.values()) + list(self.submodels[submodel].initial_conditions.values()) + [ x[side][0] for x in self.submodels[submodel].boundary_conditions.values() for side in x.keys() ] + list(self._variables_by_submodel[submodel].values()) + [event.expression for event in self.submodels[submodel].events] ) return list(all_input_parameters)
[docs] def new_copy(self): """ Creates a copy of the model, explicitly copying all the mutable attributes to avoid issues with shared objects. """ new_model = copy.copy(self) new_model._rhs = self.rhs.copy() new_model._algebraic = self.algebraic.copy() new_model._initial_conditions = self.initial_conditions.copy() new_model._boundary_conditions = self.boundary_conditions.copy() new_model._variables = self.variables.copy() new_model._events = self.events.copy() new_model._variables_casadi = self._variables_casadi.copy() return new_model
[docs] def update(self, *submodels): """ Update model to add new physics from submodels Parameters ---------- submodel : iterable of :class:`pybamm.BaseModel` The submodels from which to create new model """ for submodel in submodels: # check and then update dicts self.check_and_combine_dict(self._rhs, submodel.rhs) self.check_and_combine_dict(self._algebraic, submodel.algebraic) self.check_and_combine_dict( self._initial_conditions, submodel.initial_conditions ) self.check_and_combine_dict( self._boundary_conditions, submodel.boundary_conditions ) self.variables.update(submodel.variables) # keys are strings so no check self._events += submodel.events
def build_fundamental(self): # Get the fundamental variables self._variables_by_submodel = {submodel: {} for submodel in self.submodels} for submodel_name, submodel in self.submodels.items(): pybamm.logger.debug( f"Getting fundamental variables for {submodel_name} submodel ({self.name})" ) submodel_fundamental_variables = submodel.get_fundamental_variables() self._variables_by_submodel[submodel_name].update( submodel_fundamental_variables ) self.variables.update(submodel_fundamental_variables) self._built_fundamental = True def build_coupled_variables(self): # Note: pybamm will try to get the coupled variables for the submodels in the # order they are set by the user. If this fails for a particular submodel, # return to it later and try again. If setting coupled variables fails and # there are no more submodels to try, raise an error. submodels = list(self.submodels.keys()) count = 0 # For this part the FuzzyDict of variables is briefly converted back into a # normal dictionary for speed with KeyErrors self._variables = dict(self._variables) while len(submodels) > 0: count += 1 for submodel_name, submodel in self.submodels.items(): if submodel_name in submodels: pybamm.logger.debug( f"Getting coupled variables for {submodel_name} submodel ({self.name})" ) try: model_var_copy = self.variables.copy() updated_variables = submodel.get_coupled_variables( self.variables ) self._variables_by_submodel[submodel_name].update( { key: updated_variables[key] for key in updated_variables if key not in model_var_copy } ) self.variables.update(updated_variables) submodels.remove(submodel_name) except KeyError as key: if len(submodels) == 1 or count == 100: # no more submodels to try raise pybamm.ModelError( f"Missing variable for submodel '{submodel_name}': {key}.\n" + "Check the selected " "submodels provide all of the required variables." ) from key else: # try setting coupled variables on next loop through pybamm.logger.debug( f"Can't find {key}, trying other submodels first" ) # Convert variables back into FuzzyDict self.variables = pybamm.FuzzyDict(self._variables) def build_model_equations(self): # Set model equations for submodel_name, submodel in self.submodels.items(): pybamm.logger.verbose( f"Setting rhs for {submodel_name} submodel ({self.name})" ) submodel.set_rhs(self.variables) pybamm.logger.verbose( f"Setting algebraic for {submodel_name} submodel ({self.name})" ) submodel.set_algebraic(self.variables) pybamm.logger.verbose( f"Setting boundary conditions for {submodel_name} submodel ({self.name})" ) submodel.set_boundary_conditions(self.variables) pybamm.logger.verbose( f"Setting initial conditions for {submodel_name} submodel ({self.name})" ) submodel.set_initial_conditions(self.variables) submodel.add_events_from(self.variables) pybamm.logger.verbose(f"Updating {submodel_name} submodel ({self.name})") self.update(submodel) self.check_no_repeated_keys() def build_model(self): self._build_model() self._built = True pybamm.logger.info(f"Finish building {self.name}") def _build_model(self): # Check if already built if self._built: raise pybamm.ModelError( """Model already built. If you are adding a new submodel, try using `model.update` instead.""" ) pybamm.logger.info(f"Start building {self.name}") if self._built_fundamental is False: self.build_fundamental() self.build_coupled_variables() self.build_model_equations()
[docs] def set_initial_conditions_from(self, solution, inplace=True, return_type="model"): """ Update initial conditions with the final states from a Solution object or from a dictionary. This assumes that, for each variable in self.initial_conditions, there is a corresponding variable in the solution with the same name and size. Parameters ---------- solution : :class:`pybamm.Solution`, or dict The solution to use to initialize the model inplace : bool, optional Whether to modify the model inplace or create a new model (default True) return_type : str, optional Whether to return the model (default) or initial conditions ("ics") """ initial_conditions = {} if isinstance(solution, pybamm.Solution): solution = solution.last_state for var in self.initial_conditions: if isinstance(var, pybamm.Variable): try: final_state = solution[var.name] except KeyError as e: raise pybamm.ModelError( "To update a model from a solution, each variable in " "model.initial_conditions must appear in the solution with " "the same key as the variable name. In the solution provided, " f"'{e.args[0]}' was not found." ) from e if isinstance(solution, pybamm.Solution): final_state = final_state.data if final_state.ndim == 0: final_state_eval = np.array([final_state]) elif final_state.ndim == 1: final_state_eval = final_state[-1:] elif final_state.ndim == 2: final_state_eval = final_state[:, -1] elif final_state.ndim == 3: final_state_eval = final_state[:, :, -1].flatten(order="F") else: raise NotImplementedError("Variable must be 0D, 1D, or 2D") elif isinstance(var, pybamm.Concatenation): children = [] for child in var.orphans: try: final_state = solution[child.name] except KeyError as e: raise pybamm.ModelError( "To update a model from a solution, each variable in " "model.initial_conditions must appear in the solution with " "the same key as the variable name. In the solution " f"provided, {e.args[0]}" ) from e if isinstance(solution, pybamm.Solution): final_state = final_state.data if final_state.ndim == 2: final_state_eval = final_state[:, -1] else: raise NotImplementedError( "Variable in concatenation must be 1D" ) children.append(final_state_eval) final_state_eval = np.concatenate(children) else: raise NotImplementedError( "Variable must have type 'Variable' or 'Concatenation'" ) # If the model is already discretised, then the initial conditions must # be scaled and offset (otherwise, this is done when the model is # discretised) if self.is_discretised: scale, reference = var.scale, var.reference else: scale, reference = 1, 0 initial_conditions[var] = ( pybamm.Vector(final_state_eval) - reference ) / scale # Also update the concatenated initial conditions if the model is already # discretised if self.is_discretised: # Unpack slices for sorting y_slices = {var: slce for var, slce in self.y_slices.items()} slices = [] for symbol in self.initial_conditions.keys(): if isinstance(symbol, pybamm.Concatenation): # must append the slice for the whole concatenation, so that # equations get sorted correctly slices.append( slice( y_slices[symbol.children[0]][0].start, y_slices[symbol.children[-1]][0].stop, ) ) else: slices.append(y_slices[symbol][0]) equations = list(initial_conditions.values()) # sort equations according to slices sorted_equations = [eq for _, eq in sorted(zip(slices, equations))] concatenated_initial_conditions = pybamm.NumpyConcatenation( *sorted_equations ) else: concatenated_initial_conditions = None if return_type == "model": if inplace is True: model = self else: model = self.new_copy() model.initial_conditions = initial_conditions model.concatenated_initial_conditions = concatenated_initial_conditions return model elif return_type == "ics": return initial_conditions, concatenated_initial_conditions
def check_and_combine_dict(self, dict1, dict2): # check that the key ids are distinct ids1 = set(x for x in dict1.keys()) ids2 = set(x for x in dict2.keys()) if len(ids1.intersection(ids2)) != 0: variables = ids1.intersection(ids2) raise pybamm.ModelError( f"Submodel incompatible: duplicate variables '{variables}'" ) dict1.update(dict2)
[docs] def check_well_posedness(self, post_discretisation=False): """ Check that the model is well-posed by executing the following tests: - Model is not over- or underdetermined, by comparing keys and equations in rhs and algebraic. Overdetermined if more equations than variables, underdetermined if more variables than equations. - There is an initial condition in self.initial_conditions for each variable/equation pair in self.rhs - There are appropriate boundary conditions in self.boundary_conditions for each variable/equation pair in self.rhs and self.algebraic Parameters ---------- post_discretisation : boolean A flag indicating tests to be skipped after discretisation """ self.check_for_time_derivatives() self.check_well_determined(post_discretisation) self.check_algebraic_equations(post_discretisation) self.check_ics_bcs() self.check_no_repeated_keys() # Can't check variables after discretising, since Variable objects get replaced # by StateVector objects # Checking variables is slow, so only do it in debug mode if pybamm.settings.debug_mode is True and post_discretisation is False: self.check_variables()
def check_for_time_derivatives(self): # Check that no variable time derivatives exist in the rhs equations for key, eq in self.rhs.items(): for node in eq.pre_order(): if isinstance(node, pybamm.VariableDot): raise pybamm.ModelError( "time derivative of variable found " f"({node}) in rhs equation {key}" ) if isinstance(node, pybamm.StateVectorDot): raise pybamm.ModelError( "time derivative of state vector found " f"({node}) in rhs equation {key}" ) # Check that no variable time derivatives exist in the algebraic equations for key, eq in self.algebraic.items(): for node in eq.pre_order(): if isinstance(node, pybamm.VariableDot): raise pybamm.ModelError( f"time derivative of variable found ({node}) in algebraic" f"equation {key}" ) if isinstance(node, pybamm.StateVectorDot): raise pybamm.ModelError( f"time derivative of state vector found ({node}) in algebraic" f"equation {key}" )
[docs] def check_well_determined(self, post_discretisation): """Check that the model is not under- or over-determined.""" # Equations (differential and algebraic) # Get all the variables from differential and algebraic equations all_vars_in_rhs_keys = set() all_vars_in_algebraic_keys = set() all_vars_in_eqns = set() # Get all variables ids from rhs and algebraic keys and equations, and # from boundary conditions # For equations we look through the whole expression tree. # "Variables" can be Concatenations so we also have to look in the whole # expression tree unpacker = pybamm.SymbolUnpacker((pybamm.Variable, pybamm.VariableDot)) for var, eqn in self.rhs.items(): # Find all variables and variabledot objects vars_in_rhs_keys = unpacker.unpack_symbol(var) vars_in_eqns = unpacker.unpack_symbol(eqn) # Look only for Variable (not VariableDot) in rhs keys all_vars_in_rhs_keys.update( [var for var in vars_in_rhs_keys if isinstance(var, pybamm.Variable)] ) all_vars_in_eqns.update(vars_in_eqns) for var, eqn in self.algebraic.items(): # Find all variables and variabledot objects vars_in_algebraic_keys = unpacker.unpack_symbol(var) vars_in_eqns = unpacker.unpack_symbol(eqn) # Store ids only # Look only for Variable (not VariableDot) in algebraic keys all_vars_in_algebraic_keys.update( [ var for var in vars_in_algebraic_keys if isinstance(var, pybamm.Variable) ] ) all_vars_in_eqns.update(vars_in_eqns) for _, side_eqn in self.boundary_conditions.items(): for _, (eqn, _) in side_eqn.items(): vars_in_eqns = unpacker.unpack_symbol(eqn) all_vars_in_eqns.update(vars_in_eqns) # If any keys are repeated between rhs and algebraic then the model is # overdetermined if not set(all_vars_in_rhs_keys).isdisjoint(all_vars_in_algebraic_keys): raise pybamm.ModelError("model is overdetermined (repeated keys)") # If any algebraic keys don't appear in the eqns (or bcs) then the model is # overdetermined (but rhs keys can be absent from the eqns, e.g. dcdt = -1 is # fine) # Skip this step after discretisation, as any variables in the equations will # have been discretised to slices but keys will still be variables extra_algebraic_keys = all_vars_in_algebraic_keys.difference(all_vars_in_eqns) if extra_algebraic_keys and not post_discretisation: raise pybamm.ModelError("model is overdetermined (extra algebraic keys)") # If any variables in the equations don't appear in the keys then the model is # underdetermined all_vars_in_keys = all_vars_in_rhs_keys.union(all_vars_in_algebraic_keys) extra_variables_in_equations = all_vars_in_eqns.difference(all_vars_in_keys) if extra_variables_in_equations: raise pybamm.ModelError("model is underdetermined (too many variables)")
[docs] def check_algebraic_equations(self, post_discretisation): """ Check that the algebraic equations are well-posed. After discretisation, there must be at least one StateVector in each algebraic equation. """ if post_discretisation: # Check that each algebraic equation contains some StateVector for eqn in self.algebraic.values(): if not eqn.has_symbol_of_classes(pybamm.StateVector): raise pybamm.ModelError( "each algebraic equation must contain at least one StateVector" ) else: # We do not perfom any checks before discretisation (most problematic # cases should be caught by `check_well_determined`) pass
[docs] def check_ics_bcs(self): """Check that the initial and boundary conditions are well-posed.""" # Initial conditions for var in self.rhs.keys(): if var not in self.initial_conditions.keys(): raise pybamm.ModelError( f"no initial condition given for variable '{var}'" )
def check_variables(self): # Create list of all Variable nodes that appear in the model's list of variables unpacker = pybamm.SymbolUnpacker(pybamm.Variable) all_vars = unpacker.unpack_list_of_symbols(self.variables.values()) vars_in_keys = set() model_keys = list(self.rhs.keys()) + list(self.algebraic.keys()) for var in model_keys: if isinstance(var, pybamm.Variable): vars_in_keys.add(var) # Key can be a concatenation elif isinstance(var, pybamm.Concatenation): vars_in_keys.update(var.children) for var in all_vars: if var not in vars_in_keys: raise pybamm.ModelError( f"No key set for variable '{var}'. Make sure it is included in either " "model.rhs or model.algebraic, in an unmodified form " "(e.g. not Broadcasted)" )
[docs] def check_no_repeated_keys(self): """Check that no equation keys are repeated.""" rhs_keys = set(self.rhs.keys()) alg_keys = set(self.algebraic.keys()) if not rhs_keys.isdisjoint(alg_keys): raise pybamm.ModelError( f"Multiple equations specified for variables {rhs_keys.intersection(alg_keys)}" )
[docs] def info(self, symbol_name): """ Provides helpful summary information for a symbol. Parameters ---------- symbol_name : str """ # Should we deprecate this? Not really sure how it's used? div = "-----------------------------------------" symbol = find_symbol_in_model(self, symbol_name) if symbol is None: return None print(div) print(symbol_name, "\n") print(type(symbol)) if isinstance(symbol, pybamm.FunctionParameter): print("") print("Inputs:") symbol.print_input_names() print(div)
[docs] def check_discretised_or_discretise_inplace_if_0D(self): """ Discretise model if it isn't already discretised This only works with purely 0D models, as otherwise the mesh and spatial method should be specified by the user """ if self.is_discretised is False: try: disc = pybamm.Discretisation() disc.process_model(self) except pybamm.DiscretisationError as e: raise pybamm.DiscretisationError( "Cannot automatically discretise model, model should be " f"discretised before exporting casadi functions ({e})" ) from e
[docs] def export_casadi_objects(self, variable_names, input_parameter_order=None): """ Export the constituent parts of the model (rhs, algebraic, initial conditions, etc) as casadi objects. Parameters ---------- variable_names : list Variables to be exported alongside the model structure input_parameter_order : list, optional Order in which the input parameters should be stacked. If input_parameter_order=None and len(self.input_parameters) > 1, a ValueError is raised (this helps to avoid accidentally using the wrong order) Returns ------- casadi_dict : dict Dictionary of {str: casadi object} pairs representing the model in casadi format """ self.check_discretised_or_discretise_inplace_if_0D() # Create casadi functions for the model t_casadi = casadi.MX.sym("t") y_diff = casadi.MX.sym("y_diff", self.concatenated_rhs.size) y_alg = casadi.MX.sym("y_alg", self.concatenated_algebraic.size) y_casadi = casadi.vertcat(y_diff, y_alg) # Read inputs inputs_wrong_order = {} for input_param in self.input_parameters: name = input_param.name inputs_wrong_order[name] = casadi.MX.sym(name, input_param._expected_size) # Sort according to input_parameter_order if input_parameter_order is None: if len(inputs_wrong_order) > 1: raise ValueError( "input_parameter_order must be specified if there is more than one " "input parameter" ) inputs = inputs_wrong_order else: inputs = {name: inputs_wrong_order[name] for name in input_parameter_order} # Set up inputs inputs_stacked = casadi.vertcat(*[p for p in inputs.values()]) # Convert initial conditions to casadi form y0 = self.concatenated_initial_conditions.to_casadi( t_casadi, y_casadi, inputs=inputs ) x0 = y0[: self.concatenated_rhs.size] z0 = y0[self.concatenated_rhs.size :] # Convert rhs and algebraic to casadi form and calculate jacobians rhs = self.concatenated_rhs.to_casadi(t_casadi, y_casadi, inputs=inputs) jac_rhs = casadi.jacobian(rhs, y_casadi) algebraic = self.concatenated_algebraic.to_casadi( t_casadi, y_casadi, inputs=inputs ) jac_algebraic = casadi.jacobian(algebraic, y_casadi) # For specified variables, convert to casadi variables = OrderedDict() for name in variable_names: var = self.variables[name] variables[name] = var.to_casadi(t_casadi, y_casadi, inputs=inputs) casadi_dict = { "t": t_casadi, "x": y_diff, "z": y_alg, "inputs": inputs_stacked, "rhs": rhs, "algebraic": algebraic, "jac_rhs": jac_rhs, "jac_algebraic": jac_algebraic, "variables": variables, "x0": x0, "z0": z0, } return casadi_dict
[docs] def generate( self, filename, variable_names, input_parameter_order=None, cg_options=None ): """ Generate the model in C, using CasADi. Parameters ---------- filename : str Name of the file to which to save the code variable_names : list Variables to be exported alongside the model structure input_parameter_order : list, optional Order in which the input parameters should be stacked. If input_parameter_order=None and len(self.input_parameters) > 1, a ValueError is raised (this helps to avoid accidentally using the wrong order) cg_options : dict Options to pass to the code generator. See https://web.casadi.org/docs/#generating-c-code """ model = self.export_casadi_objects(variable_names, input_parameter_order) # Read the exported objects t, x, z, p = model["t"], model["x"], model["z"], model["inputs"] x0, z0 = model["x0"], model["z0"] rhs, alg = model["rhs"], model["algebraic"] variables = model["variables"] jac_rhs, jac_alg = model["jac_rhs"], model["jac_algebraic"] # Create functions rhs_fn = casadi.Function("rhs_", [t, x, z, p], [rhs]) alg_fn = casadi.Function("alg_", [t, x, z, p], [alg]) jac_rhs_fn = casadi.Function("jac_rhs", [t, x, z, p], [jac_rhs]) jac_alg_fn = casadi.Function("jac_alg", [t, x, z, p], [jac_alg]) # Call these functions to initialize initial conditions # (initial conditions are not yet consistent at this stage) x0_fn = casadi.Function("x0", [p], [x0]) z0_fn = casadi.Function("z0", [p], [z0]) # Variables variables_stacked = casadi.vertcat(*variables.values()) variables_fn = casadi.Function("variables", [t, x, z, p], [variables_stacked]) # Write C files cg_options = cg_options or {} C = casadi.CodeGenerator(filename, cg_options) C.add(rhs_fn) C.add(alg_fn) C.add(jac_rhs_fn) C.add(jac_alg_fn) C.add(x0_fn) C.add(z0_fn) C.add(variables_fn) C.generate()
[docs] def latexify(self, filename=None, newline=True, output_variables=None): """ Converts all model equations in latex. Parameters ---------- filename: str (optional) Accepted file formats - any image format, pdf and tex Default is None, When None returns all model equations in latex If not None, returns all model equations in given file format. newline: bool (optional) Default is True, If True, returns every equation in a new line. If False, returns the list of all the equations. Load model >>> model = pybamm.lithium_ion.SPM() This will returns all model equations in png >>> model.latexify("equations.png") # doctest: +SKIP This will return all the model equations in latex >>> model.latexify() # doctest: +SKIP This will return the list of all the model equations >>> model.latexify(newline=False) # doctest: +SKIP This will return first five model equations >>> model.latexify(newline=False)[1:5] # doctest: +SKIP """ from pybamm.expression_tree.operations.latexify import Latexify return Latexify(self, filename, newline).latexify( output_variables=output_variables )
[docs] def process_parameters_and_discretise(self, symbol, parameter_values, disc): """ Process parameters and discretise a symbol using supplied parameter values and discretisation. Note: care should be taken if using spatial operators on dimensional symbols. Operators in pybamm are written in non-dimensional form, so may need to be scaled by the appropriate length scale. It is recommended to use this method on non-dimensional symbols. Parameters ---------- symbol : :class:`pybamm.Symbol` Symbol to be processed parameter_values : :class:`pybamm.ParameterValues` The parameter values to use during processing disc : :class:`pybamm.Discretisation` The discrisation to use Returns ------- :class:`pybamm.Symbol` Processed symbol """ # Set y slices if disc.y_slices == {}: variables = list(self.rhs.keys()) + list(self.algebraic.keys()) for variable in variables: variable.bounds = tuple( [ parameter_values.process_symbol(bound) for bound in variable.bounds ] ) disc.set_variable_slices(variables) # Set boundary conditions (also requires setting parameter values) if disc.bcs == {}: self.boundary_conditions = parameter_values.process_boundary_conditions( self ) disc.bcs = disc.process_boundary_conditions(self) # Process param_symbol = parameter_values.process_symbol(symbol) disc_symbol = disc.process_symbol(param_symbol) return disc_symbol
[docs] def save_model(self, filename=None, mesh=None, variables=None): """ Write out a discretised model to a JSON file Parameters ---------- filename: str, optional The desired name of the JSON file. If no name is provided, one will be created based on the model name, and the current datetime. """ if variables and not mesh: warnings.warn( """ Serialisation: Variables are being saved without a mesh. Plotting may not be available. """, pybamm.ModelWarning, stacklevel=2, ) Serialise().save_model(self, filename=filename, mesh=mesh, variables=variables)
def load_model(filename, battery_model: BaseModel | None = None): """ Load in a saved model from a JSON file Parameters ---------- filename: str Path to the JSON file containing the serialised model file battery_model: :class: pybamm.BaseBatteryModel, optional PyBaMM model to be created (e.g. pybamm.lithium_ion.SPM), which will override any model names within the file. If None, the function will look for the saved object path, present if the original model came from PyBaMM. """ return Serialise().load_model(filename, battery_model) # helper functions for finding symbols def find_symbol_in_tree(tree, name): if name == tree.name: return tree elif len(tree.children) > 0: for child in tree.children: child_return = find_symbol_in_tree(child, name) if child_return is not None: return child_return def find_symbol_in_dict(dic, name): for tree in dic.values(): tree_return = find_symbol_in_tree(tree, name) if tree_return is not None: return tree_return def find_symbol_in_model(model, name): dics = [model.rhs, model.algebraic, model.variables] for dic in dics: dic_return = find_symbol_in_dict(dic, name) if dic_return is not None: return dic_return class EquationDict(dict): def __init__(self, name, equations): self.name = name equations = self.check_and_convert_equations(equations) super().__init__(equations) def __setitem__(self, key, value): """Call the update functionality when doing a setitem.""" self.update({key: value}) def update(self, equations): equations = self.check_and_convert_equations(equations) super().update(equations) def check_and_convert_equations(self, equations): """ Convert any scalar equations in dict to 'pybamm.Scalar' and check that domains are consistent """ # Convert any numbers to a pybamm.Scalar for var, eqn in equations.items(): if isinstance(eqn, numbers.Number): eqn = pybamm.Scalar(eqn) equations[var] = eqn if not (var.domain == eqn.domain or var.domain == [] or eqn.domain == []): raise pybamm.DomainError( f"variable and equation in '{self.name}' must have the same domain" ) # For initial conditions, check that the equation doesn't contain any # Variable objects # skip this if the dictionary has no "name" attribute (which will be the case # after pickling) if hasattr(self, "name") and self.name == "initial_conditions": for var, eqn in equations.items(): if eqn.has_symbol_of_classes(pybamm.Variable): unpacker = pybamm.SymbolUnpacker(pybamm.Variable) variable_in_equation = next(iter(unpacker.unpack_symbol(eqn))) raise TypeError( "Initial conditions cannot contain 'Variable' objects, " f"but '{variable_in_equation!r}' found in initial conditions for '{var}'" ) return equations class BoundaryConditionsDict(dict): def __init__(self, bcs): bcs = self.check_and_convert_bcs(bcs) super().__init__(bcs) def __setitem__(self, key, value): """Call the update functionality when doing a setitem.""" self.update({key: value}) def update(self, bcs): bcs = self.check_and_convert_bcs(bcs) super().update(bcs) def check_and_convert_bcs(self, boundary_conditions): """Convert any scalar bcs in dict to 'pybamm.Scalar', and check types.""" # Convert any numbers to a pybamm.Scalar for var, bcs in boundary_conditions.items(): for side, bc in bcs.items(): if isinstance(bc[0], numbers.Number): # typ is the type of the bc, e.g. "Dirichlet" or "Neumann" eqn, typ = boundary_conditions[var][side] boundary_conditions[var][side] = (pybamm.Scalar(eqn), typ) # Check types if bc[1] not in ["Dirichlet", "Neumann"]: raise pybamm.ModelError( f"boundary condition types must be Dirichlet or Neumann, not '{bc[1]}'" ) return boundary_conditions