import numpy as np
import pybamm
import numbers
from pprint import pformat
from warnings import warn
from collections import defaultdict
[docs]
class ParameterValues:
"""
The parameter values for a simulation.
Note that this class does not inherit directly from the python dictionary class as
this causes issues with saving and loading simulations.
Parameters
----------
values : dict or string
Explicit set of parameters, or reference to an inbuilt parameter set
If string and matches one of the inbuilt parameter sets, returns that parameter
set.
Examples
--------
>>> values = {"some parameter": 1, "another parameter": 2}
>>> param = pybamm.ParameterValues(values)
>>> param["some parameter"]
1
>>> param = pybamm.ParameterValues("Marquis2019")
>>> param["Reference temperature [K]"]
298.15
"""
def __init__(self, values):
# add physical constants as default values
self._dict_items = pybamm.FuzzyDict(
{
"Ideal gas constant [J.K-1.mol-1]": pybamm.constants.R.value,
"Faraday constant [C.mol-1]": pybamm.constants.F.value,
"Boltzmann constant [J.K-1]": pybamm.constants.k_b.value,
"Electron charge [C]": pybamm.constants.q_e.value,
}
)
if isinstance(values, (dict, ParameterValues)):
# remove the "chemistry" key if it exists
values.pop("chemistry", None)
self.update(values, check_already_exists=False)
else:
# Check if values is a named parameter set
if isinstance(values, str) and values in pybamm.parameter_sets.keys():
values = pybamm.parameter_sets[values]
values.pop("chemistry", None)
self.update(values, check_already_exists=False)
else:
valid_sets = "\n".join(pybamm.parameter_sets.keys())
raise ValueError(
f"'{values}' is not a valid parameter set. Parameter set must be one of:\n{valid_sets}"
)
# Initialise empty _processed_symbols dict (for caching)
self._processed_symbols = {}
# save citations
if "citations" in self._dict_items:
for citation in self._dict_items["citations"]:
pybamm.citations.register(citation)
@staticmethod
def _create_from_bpx(bpx, target_soc):
from bpx import get_electrode_concentrations
from bpx.schema import ElectrodeBlended, ElectrodeBlendedSPM
from .bpx import bpx_to_param_dict
if target_soc < 0 or target_soc > 1:
raise ValueError("Target SOC should be between 0 and 1")
pybamm_dict = bpx_to_param_dict(bpx)
if "Open-circuit voltage at 0% SOC [V]" not in pybamm_dict:
pybamm_dict["Open-circuit voltage at 0% SOC [V]"] = pybamm_dict[
"Lower voltage cut-off [V]"
]
warn(
"'Open-circuit voltage at 0% SOC [V]' not found in BPX file. Using "
"'Lower voltage cut-off [V]'.",
stacklevel=2,
)
if "Open-circuit voltage at 100% SOC [V]" not in pybamm_dict:
pybamm_dict["Open-circuit voltage at 100% SOC [V]"] = pybamm_dict[
"Upper voltage cut-off [V]"
]
warn(
"'Open-circuit voltage at 100% SOC [V]' not found in BPX file. Using "
"'Upper voltage cut-off [V]'.",
stacklevel=2,
)
# get initial concentrations based on SOC
# Note: we cannot set SOC for blended electrodes,
# see https://github.com/pybamm-team/PyBaMM/issues/2682
bpx_neg = bpx.parameterisation.negative_electrode
bpx_pos = bpx.parameterisation.positive_electrode
if isinstance(bpx_neg, (ElectrodeBlended, ElectrodeBlendedSPM)) or isinstance(
bpx_pos, (ElectrodeBlended, ElectrodeBlendedSPM)
):
pybamm.logger.warning(
"Initial concentrations cannot be set using stoichiometry limits for "
"blend electrodes. Please set the initial concentrations manually."
)
else:
c_n_init, c_p_init = get_electrode_concentrations(target_soc, bpx)
pybamm_dict["Initial concentration in negative electrode [mol.m-3]"] = (
c_n_init
)
pybamm_dict["Initial concentration in positive electrode [mol.m-3]"] = (
c_p_init
)
return pybamm.ParameterValues(pybamm_dict)
[docs]
@staticmethod
def create_from_bpx_obj(bpx_obj, target_soc: float = 1):
"""
Parameters
----------
bpx_obj: dict
A dictionary containing the parameters in the `BPX <https://bpxstandard.com/>`_ format
target_soc : float, optional
Target state of charge. Must be between 0 and 1. Default is 1.
Returns
-------
ParameterValues
A parameter values object with the parameters in the bpx file
"""
from bpx import parse_bpx_obj
bpx = parse_bpx_obj(bpx_obj)
return ParameterValues._create_from_bpx(bpx, target_soc)
[docs]
@staticmethod
def create_from_bpx(filename, target_soc: float = 1):
"""
Parameters
----------
filename: str
The filename of the `BPX <https://bpxstandard.com/>`_ file
target_soc : float, optional
Target state of charge. Must be between 0 and 1. Default is 1.
Returns
-------
ParameterValues
A parameter values object with the parameters in the bpx file
"""
from bpx import parse_bpx_file
bpx = parse_bpx_file(filename)
return ParameterValues._create_from_bpx(bpx, target_soc)
def __getitem__(self, key):
try:
return self._dict_items[key]
except KeyError as err:
if (
"Exchange-current density for lithium metal electrode [A.m-2]"
in err.args[0]
and "Exchange-current density for plating [A.m-2]" in self._dict_items
):
raise KeyError(
"'Exchange-current density for plating [A.m-2]' has been renamed "
"to 'Exchange-current density for lithium metal electrode [A.m-2]' "
"when referring to the reaction at the surface of a lithium metal "
"electrode. This is to avoid confusion with the exchange-current "
"density for the lithium plating reaction in a porous negative "
"electrode. To avoid this error, change your parameter file to use "
"the new name."
) from err
else:
raise err
[docs]
def get(self, key, default=None):
"""Return item corresponding to key if it exists, otherwise return default"""
try:
return self._dict_items[key]
except KeyError:
return default
def __setitem__(self, key, value):
"""Call the update functionality when doing a setitem"""
self.update({key: value})
def __delitem__(self, key):
del self._dict_items[key]
def __repr__(self):
return pformat(self._dict_items, width=1)
def __eq__(self, other):
return self._dict_items == other._dict_items
[docs]
def keys(self):
"""Get the keys of the dictionary"""
return self._dict_items.keys()
[docs]
def values(self):
"""Get the values of the dictionary"""
return self._dict_items.values()
[docs]
def items(self):
"""Get the items of the dictionary"""
return self._dict_items.items()
def pop(self, *args, **kwargs):
return self._dict_items.pop(*args, **kwargs)
[docs]
def copy(self):
"""Returns a copy of the parameter values. Makes sure to copy the internal
dictionary."""
new_copy = ParameterValues(self._dict_items.copy())
return new_copy
[docs]
def search(self, key, print_values=True):
"""
Search dictionary for keys containing 'key'.
See :meth:`pybamm.FuzzyDict.search()`.
"""
return self._dict_items.search(key, print_values)
[docs]
def update(self, values, check_conflict=False, check_already_exists=True, path=""):
"""
Update parameter dictionary, while also performing some basic checks.
Parameters
----------
values : dict
Dictionary of parameter values to update parameter dictionary with
check_conflict : bool, optional
Whether to check that a parameter in `values` has not already been defined
in the parameter class when updating it, and if so that its value does not
change. This is set to True during initialisation, when parameters are
combined from different sources, and is False by default otherwise
check_already_exists : bool, optional
Whether to check that a parameter in `values` already exists when trying to
update it. This is to avoid cases where an intended change in the parameters
is ignored due a typo in the parameter name, and is True by default but can
be manually overridden.
path : string, optional
Path from which to load functions
"""
# check if values is not a dictionary
if not isinstance(values, dict):
values = values._dict_items
# check parameter values
values = self.check_parameter_values(values)
# update
for name, value in values.items():
# check for conflicts
if (
check_conflict is True
and name in self.keys()
and not (self[name] == float(value) or self[name] == value)
):
raise ValueError(
f"parameter '{name}' already defined with value '{self[name]}'"
)
# check parameter already exists (for updating parameters)
if check_already_exists is True:
try:
self._dict_items[name]
except KeyError as err:
raise KeyError(
f"Cannot update parameter '{name}' as it does not "
+ f"have a default value. ({err.args[0]}). If you are "
+ "sure you want to update this parameter, use "
+ "param.update({name: value}, check_already_exists=False)"
) from err
if isinstance(value, str):
if (
value.startswith("[function]")
or value.startswith("[current data]")
or value.startswith("[data]")
or value.startswith("[2D data]")
):
raise ValueError(
"Specifying parameters via [function], [current data], [data] "
"or [2D data] is no longer supported. For functions, pass in a "
"python function object. For data, pass in a python function "
"that returns a pybamm Interpolant object. "
"See the Ai2020 parameter set for an example with both."
)
elif value == "[input]":
self._dict_items[name] = pybamm.InputParameter(name)
# Anything else should be a converted to a float
else:
self._dict_items[name] = float(value)
elif isinstance(value, tuple) and isinstance(value[1], np.ndarray):
# If data is provided as a 2-column array (1D data),
# convert to two arrays for compatibility with 2D data
# see #1805
func_name, data = value
data = ([data[:, 0]], data[:, 1])
self._dict_items[name] = (func_name, data)
else:
self._dict_items[name] = value
# reset processed symbols
self._processed_symbols = {}
[docs]
def set_initial_stoichiometry_half_cell(
self,
initial_value,
param=None,
known_value="cyclable lithium capacity",
inplace=True,
options=None,
inputs=None,
):
"""
Set the initial stoichiometry of the working electrode, based on the initial
SOC or voltage
"""
param = param or pybamm.LithiumIonParameters(options)
x = pybamm.lithium_ion.get_initial_stoichiometry_half_cell(
initial_value,
self,
param=param,
known_value=known_value,
options=options,
inputs=inputs,
)
if inplace:
parameter_values = self
else:
parameter_values = self.copy()
c_max = self.evaluate(param.p.prim.c_max)
parameter_values.update(
{
"Initial concentration in {} electrode [mol.m-3]".format(
options["working electrode"]
): x * c_max
}
)
return parameter_values
[docs]
def set_initial_stoichiometries(
self,
initial_value,
param=None,
known_value="cyclable lithium capacity",
inplace=True,
options=None,
inputs=None,
tol=1e-6,
):
"""
Set the initial stoichiometry of each electrode, based on the initial
SOC or voltage
"""
param = param or pybamm.LithiumIonParameters(options)
x, y = pybamm.lithium_ion.get_initial_stoichiometries(
initial_value,
self,
param=param,
known_value=known_value,
options=options,
tol=tol,
inputs=inputs,
)
if inplace:
parameter_values = self
else:
parameter_values = self.copy()
c_n_max = self.evaluate(param.n.prim.c_max)
c_p_max = self.evaluate(param.p.prim.c_max)
parameter_values.update(
{
"Initial concentration in negative electrode [mol.m-3]": x * c_n_max,
"Initial concentration in positive electrode [mol.m-3]": y * c_p_max,
}
)
return parameter_values
[docs]
def set_initial_ocps(
self,
initial_value,
param=None,
known_value="cyclable lithium capacity",
inplace=True,
options=None,
):
"""
Set the initial OCP of each electrode, based on the initial
SOC or voltage
"""
param = param or pybamm.LithiumIonParameters(options)
Un, Up = pybamm.lithium_ion.get_initial_ocps(
initial_value, self, param=param, known_value=known_value, options=options
)
if inplace:
parameter_values = self
else:
parameter_values = self.copy()
parameter_values.update(
{
"Initial voltage in negative electrode [V]": Un,
"Initial voltage in positive electrode [V]": Up,
}
)
return parameter_values
@staticmethod
def check_parameter_values(values):
for param in list(values.keys()):
if "propotional term" in param:
raise ValueError(
f"The parameter '{param}' has been renamed to "
"'... proportional term [s-1]', and its value should now be divided"
"by 3600 to get the same results as before."
)
# specific check for renamed parameter "1 + dlnf/dlnc"
if "1 + dlnf/dlnc" in param:
raise ValueError(
f"parameter '{param}' has been renamed to 'Thermodynamic factor'"
)
if "electrode diffusivity" in param:
new_param = param.replace("electrode", "particle")
warn(
f"The parameter '{param}' has been renamed to '{new_param}'",
DeprecationWarning,
stacklevel=2,
)
values[new_param] = values.get(param)
return values
[docs]
def process_model(self, unprocessed_model, inplace=True):
"""Assign parameter values to a model.
Currently inplace, could be changed to return a new model.
Parameters
----------
unprocessed_model : :class:`pybamm.BaseModel`
Model to assign parameter values for
inplace: bool, optional
If True, replace the parameters in the model in place. Otherwise, return a
new model with parameter values set. Default is True.
Raises
------
:class:`pybamm.ModelError`
If an empty model is passed (`model.rhs = {}` and `model.algebraic = {}` and
`model.variables = {}`)
"""
pybamm.logger.info(f"Start setting parameters for {unprocessed_model.name}")
# set up inplace vs not inplace
if inplace:
# any changes to unprocessed_model attributes will change model attributes
# since they point to the same object
model = unprocessed_model
else:
# create a copy of the model
model = unprocessed_model.new_copy()
if (
len(unprocessed_model.rhs) == 0
and len(unprocessed_model.algebraic) == 0
and len(unprocessed_model.variables) == 0
):
raise pybamm.ModelError("Cannot process parameters for empty model")
new_rhs = {}
for variable, equation in unprocessed_model.rhs.items():
pybamm.logger.verbose(f"Processing parameters for {variable!r} (rhs)")
new_variable = self.process_symbol(variable)
new_rhs[new_variable] = self.process_symbol(equation)
model.rhs = new_rhs
new_algebraic = {}
for variable, equation in unprocessed_model.algebraic.items():
pybamm.logger.verbose(f"Processing parameters for {variable!r} (algebraic)")
new_variable = self.process_symbol(variable)
new_algebraic[new_variable] = self.process_symbol(equation)
model.algebraic = new_algebraic
new_initial_conditions = {}
for variable, equation in unprocessed_model.initial_conditions.items():
pybamm.logger.verbose(
f"Processing parameters for {variable!r} (initial conditions)"
)
new_variable = self.process_symbol(variable)
new_initial_conditions[new_variable] = self.process_symbol(equation)
model.initial_conditions = new_initial_conditions
model.boundary_conditions = self.process_boundary_conditions(unprocessed_model)
new_variables = {}
for variable, equation in unprocessed_model.variables.items():
pybamm.logger.verbose(f"Processing parameters for {variable!r} (variables)")
new_variables[variable] = self.process_symbol(equation)
model.variables = new_variables
new_events = []
for event in unprocessed_model.events:
pybamm.logger.verbose(f"Processing parameters for event '{event.name}''")
new_events.append(
pybamm.Event(
event.name, self.process_symbol(event.expression), event.event_type
)
)
interpolant_events = self._get_interpolant_events(model)
for event in interpolant_events:
pybamm.logger.verbose(f"Processing parameters for event '{event.name}''")
new_events.append(
pybamm.Event(
event.name, self.process_symbol(event.expression), event.event_type
)
)
model.events = new_events
pybamm.logger.info(f"Finish setting parameters for {model.name}")
return model
def _get_interpolant_events(self, model):
"""Add events for functions that have been defined as parameters"""
# Define events to catch extrapolation. In these events the sign is
# important: it should be positive inside of the range and negative
# outside of it
interpolants = model._find_symbols(pybamm.Interpolant)
interpolant_events = []
for interpolant in interpolants:
xs = interpolant.x
children = interpolant.children
for x, child in zip(xs, children):
interpolant_events.extend(
[
pybamm.Event(
f"Interpolant '{interpolant.name}' lower bound",
pybamm.min(child - min(x)),
pybamm.EventType.INTERPOLANT_EXTRAPOLATION,
),
pybamm.Event(
f"Interpolant '{interpolant.name}' upper bound",
pybamm.min(max(x) - child),
pybamm.EventType.INTERPOLANT_EXTRAPOLATION,
),
]
)
return interpolant_events
[docs]
def process_boundary_conditions(self, model):
"""
Process boundary conditions for a model
Boundary conditions are dictionaries {"left": left bc, "right": right bc}
in general, but may be imposed on the tabs (or *not* on the tab) for a
small number of variables, e.g. {"negative tab": neg. tab bc,
"positive tab": pos. tab bc "no tab": no tab bc}.
"""
new_boundary_conditions = {}
sides = ["left", "right", "negative tab", "positive tab", "no tab"]
for variable, bcs in model.boundary_conditions.items():
processed_variable = self.process_symbol(variable)
new_boundary_conditions[processed_variable] = {}
for side in sides:
try:
bc, typ = bcs[side]
pybamm.logger.verbose(
f"Processing parameters for {variable!r} ({side} bc)"
)
processed_bc = (self.process_symbol(bc), typ)
new_boundary_conditions[processed_variable][side] = processed_bc
except KeyError as err:
# don't raise error if the key error comes from the side not being
# found
if err.args[0] in side:
pass
# do raise error otherwise (e.g. can't process symbol)
else:
raise err
return new_boundary_conditions
[docs]
def process_geometry(self, geometry):
"""
Assign parameter values to a geometry (inplace).
Parameters
----------
geometry : dict
Geometry specs to assign parameter values to
"""
def process_and_check(sym):
new_sym = self.process_symbol(sym)
leaves = new_sym.post_order(filter=lambda node: len(node.children) == 0)
for leaf in leaves:
if not isinstance(leaf, pybamm.Scalar) and not isinstance(
leaf, pybamm.InputParameter
):
raise ValueError(
"Geometry parameters must be Scalars or InputParameters after parameter processing"
)
return new_sym
for domain in geometry:
for spatial_variable, spatial_limits in geometry[domain].items():
# process tab information if using 1 or 2D current collectors
if spatial_variable == "tabs":
for tab, position_info in spatial_limits.items():
for position_size, sym in position_info.items():
geometry[domain]["tabs"][tab][position_size] = (
process_and_check(sym)
)
else:
for lim, sym in spatial_limits.items():
geometry[domain][spatial_variable][lim] = process_and_check(sym)
[docs]
def process_symbol(self, symbol):
"""Walk through the symbol and replace any Parameter with a Value.
If a symbol has already been processed, the stored value is returned.
Parameters
----------
symbol : :class:`pybamm.Symbol`
Symbol or Expression tree to set parameters for
Returns
-------
symbol : :class:`pybamm.Symbol`
Symbol with Parameter instances replaced by Value
"""
try:
return self._processed_symbols[symbol]
except KeyError:
processed_symbol = self._process_symbol(symbol)
self._processed_symbols[symbol] = processed_symbol
return processed_symbol
def _process_symbol(self, symbol):
"""See :meth:`ParameterValues.process_symbol()`."""
if isinstance(symbol, pybamm.Parameter):
value = self[symbol.name]
if isinstance(value, numbers.Number):
# Check not NaN (parameter in csv file but no value given)
if np.isnan(value):
raise ValueError(f"Parameter '{symbol.name}' not found")
# Scalar inherits name
return pybamm.Scalar(value, name=symbol.name)
elif isinstance(value, pybamm.Symbol):
new_value = self.process_symbol(value)
new_value.copy_domains(symbol)
return new_value
else:
raise TypeError(f"Cannot process parameter '{value}'")
elif isinstance(symbol, pybamm.FunctionParameter):
function_name = self[symbol.name]
if isinstance(
function_name,
(numbers.Number, pybamm.Interpolant, pybamm.InputParameter),
) or (
isinstance(function_name, pybamm.Symbol)
and function_name.size_for_testing == 1
):
# no need to process children, they will only be used for shape
new_children = symbol.children
else:
# process children
new_children = []
for child in symbol.children:
if symbol.diff_variable is not None and any(
x == symbol.diff_variable for x in child.pre_order()
):
# Wrap with NotConstant to avoid simplification,
# which would stop symbolic diff from working properly
new_child = pybamm.NotConstant(child)
new_children.append(self.process_symbol(new_child))
else:
new_children.append(self.process_symbol(child))
# Create Function or Interpolant or Scalar object
if isinstance(function_name, tuple):
if len(function_name) == 2: # CSV or JSON parsed data
# to create an Interpolant
name, data = function_name
if len(data[0]) == 1:
input_data = data[0][0], data[1]
else:
input_data = data
# For parameters provided as data we use a cubic interpolant
# Note: the cubic interpolant can be differentiated
function = pybamm.Interpolant(
input_data[0],
input_data[-1],
new_children,
name=name,
)
else: # pragma: no cover
raise ValueError(
f"Invalid function name length: {len(function_name)}"
)
elif isinstance(function_name, numbers.Number):
# Check not NaN (parameter in csv file but no value given)
if np.isnan(function_name):
raise ValueError(
f"Parameter '{symbol.name}' (possibly a function) not found"
)
# If the "function" is provided is actually a scalar, return a Scalar
# object instead of throwing an error.
function = pybamm.Scalar(function_name, name=symbol.name)
elif callable(function_name):
# otherwise evaluate the function to create a new PyBaMM object
function = function_name(*new_children)
elif isinstance(
function_name, (pybamm.Interpolant, pybamm.InputParameter)
) or (
isinstance(function_name, pybamm.Symbol)
and function_name.size_for_testing == 1
):
function = function_name
else:
raise TypeError(
f"Parameter provided for '{symbol.name}' "
+ "is of the wrong type (should either be scalar-like or callable)"
)
# Differentiate if necessary
if symbol.diff_variable is None:
# Use ones_like so that we get the right shapes
function_out = function * pybamm.ones_like(*new_children)
else:
# return differentiated function
new_diff_variable = self.process_symbol(symbol.diff_variable)
function_out = function.diff(new_diff_variable)
# Process again just to be sure
return self.process_symbol(function_out)
# Unary operators
elif isinstance(symbol, pybamm.UnaryOperator):
new_child = self.process_symbol(symbol.child)
new_symbol = symbol.create_copy(new_children=[new_child])
# x_average can sometimes create a new symbol with electrode thickness
# parameters, so we process again to make sure these parameters are set
if isinstance(symbol, pybamm.XAverage) and not isinstance(
new_symbol, pybamm.XAverage
):
new_symbol = self.process_symbol(new_symbol)
# f_a_dist in the size average needs to be processed
if isinstance(new_symbol, pybamm.SizeAverage):
new_symbol.f_a_dist = self.process_symbol(new_symbol.f_a_dist)
# position in evaluate at needs to be processed, and should be a Scalar
if isinstance(new_symbol, pybamm.EvaluateAt):
new_symbol_position = self.process_symbol(new_symbol.position)
if not isinstance(new_symbol_position, pybamm.Scalar):
raise ValueError(
"'position' in 'EvaluateAt' must evaluate to a scalar"
)
else:
new_symbol.position = new_symbol_position
return new_symbol
# Functions, BinaryOperators & Concatenations
elif (
isinstance(symbol, pybamm.Function)
or isinstance(symbol, pybamm.Concatenation)
or isinstance(symbol, pybamm.BinaryOperator)
):
new_children = [self.process_symbol(child) for child in symbol.children]
return symbol.create_copy(new_children)
# Variables: update scale
elif isinstance(symbol, pybamm.Variable):
new_symbol = symbol.create_copy()
new_symbol._scale = self.process_symbol(symbol.scale)
reference = self.process_symbol(symbol.reference)
if isinstance(reference, pybamm.Vector):
# address numpy 1.25 deprecation warning: array should have ndim=0
# before conversion
reference = pybamm.Scalar((reference.evaluate()).item())
new_symbol._reference = reference
new_symbol.bounds = tuple([self.process_symbol(b) for b in symbol.bounds])
return new_symbol
elif isinstance(symbol, numbers.Number):
return pybamm.Scalar(symbol)
else:
# Backup option: return the object
return symbol
[docs]
def evaluate(self, symbol, inputs=None):
"""
Process and evaluate a symbol.
Parameters
----------
symbol : :class:`pybamm.Symbol`
Symbol or Expression tree to evaluate
Returns
-------
number or array
The evaluated symbol
"""
processed_symbol = self.process_symbol(symbol)
if processed_symbol.is_constant():
return processed_symbol.evaluate()
else:
# In the case that the only issue is an input parameter contained in inputs,
# go ahead and try and evaluate it with the inputs. If it doesn't work, raise
# the value error.
try:
return processed_symbol.evaluate(inputs=inputs)
except Exception as exc:
raise ValueError(
"symbol must evaluate to a constant scalar or array"
) from exc
def _ipython_key_completions_(self):
return list(self._dict_items.keys())
[docs]
def print_parameters(self, parameters, output_file=None):
"""
Return dictionary of evaluated parameters, and optionally print these evaluated
parameters to an output file.
Parameters
----------
parameters : class or dict containing :class:`pybamm.Parameter` objects
Class or dictionary containing all the parameters to be evaluated
output_file : string, optional
The file to print parameters to. If None, the parameters are not printed,
and this function simply acts as a test that all the parameters can be
evaluated, and returns the dictionary of evaluated parameters.
Returns
-------
evaluated_parameters : defaultdict
The evaluated parameters, for further processing if needed
Notes
-----
A C-rate of 1 C is the current required to fully discharge the battery in 1
hour, 2 C is current to discharge the battery in 0.5 hours, etc
"""
# Set list of attributes to ignore, for when we are evaluating parameters from
# a class of parameters
ignore = [
"__name__",
"__doc__",
"__package__",
"__loader__",
"__spec__",
"__file__",
"__cached__",
"__builtins__",
"absolute_import",
"division",
"print_function",
"unicode_literals",
"pybamm",
"_options",
"constants",
"np",
"geo",
"elec",
"therm",
"half_cell",
"x",
"r",
]
# If 'parameters' is a class, extract the dict
if not isinstance(parameters, dict):
parameters_dict = {
k: v for k, v in parameters.__dict__.items() if k not in ignore
}
for domain in ["n", "s", "p"]:
domain_param = getattr(parameters, domain)
parameters_dict.update(
{
f"{domain}.{k}": v
for k, v in domain_param.__dict__.items()
if k not in ignore
}
)
parameters = parameters_dict
evaluated_parameters = defaultdict(list)
# Turn to regular dictionary for faster KeyErrors
self._dict_items = dict(self._dict_items)
for name, symbol in parameters.items():
if isinstance(symbol, pybamm.Symbol):
try:
proc_symbol = self.process_symbol(symbol)
except KeyError:
# skip parameters that don't have a value in that parameter set
proc_symbol = None
if not (
callable(proc_symbol)
or proc_symbol is None
or proc_symbol.has_symbol_of_classes(
(pybamm.Concatenation, pybamm.Broadcast)
)
):
evaluated_parameters[name] = proc_symbol.evaluate(t=0)
# Turn back to FuzzyDict
self._dict_items = pybamm.FuzzyDict(self._dict_items)
# Print the evaluated_parameters dict to output_file
if output_file:
self.print_evaluated_parameters(evaluated_parameters, output_file)
return evaluated_parameters
[docs]
def print_evaluated_parameters(self, evaluated_parameters, output_file):
"""
Print a dictionary of evaluated parameters to an output file
Parameters
----------
evaluated_parameters : defaultdict
The evaluated parameters, for further processing if needed
output_file : string, optional
The file to print parameters to. If None, the parameters are not printed,
and this function simply acts as a test that all the parameters can be
evaluated
"""
# Get column width for pretty printing
column_width = max(len(name) for name in evaluated_parameters.keys())
s = f"{{:>{column_width}}}"
with open(output_file, "w") as file:
for name, value in sorted(evaluated_parameters.items()):
if 0.001 < abs(value) < 1000:
file.write((s + " : {:10.4g}\n").format(name, value))
else:
file.write((s + " : {:10.3E}\n").format(name, value))
def __contains__(self, key):
return key in self._dict_items
def __iter__(self):
return iter(self._dict_items)