Source code for pybamm.simulation

#
# Simulation class
#
import pickle
import pybamm
import numpy as np
import copy
import warnings
import sys


def is_notebook():
    try:
        shell = get_ipython().__class__.__name__
        if shell == "ZMQInteractiveShell":  # pragma: no cover
            # Jupyter notebook or qtconsole
            cfg = get_ipython().config
            nb = len(cfg["InteractiveShell"].keys()) == 0
            return nb
        elif shell == "TerminalInteractiveShell":  # pragma: no cover
            return False  # Terminal running IPython
        elif shell == "Shell":  # pragma: no cover
            return True  # Google Colab notebook
        else:
            return False  # Other type (?)
    except NameError:
        return False  # Probably standard Python interpreter


def constant_current_constant_voltage_constant_power(variables):
    I = variables["Current [A]"]
    V = variables["Terminal voltage [V]"]
    s_I = pybamm.InputParameter("Current switch")
    s_V = pybamm.InputParameter("Voltage switch")
    s_P = pybamm.InputParameter("Power switch")
    n_cells = pybamm.Parameter("Number of cells connected in series to make a battery")
    return (
        s_I * (I - pybamm.InputParameter("Current input [A]"))
        + s_V * (V - pybamm.InputParameter("Voltage input [V]") / n_cells)
        + s_P * (V * I - pybamm.InputParameter("Power input [W]") / n_cells)
    )


[docs]class Simulation: """A Simulation class for easy building and running of PyBaMM simulations. Parameters ---------- model : :class:`pybamm.BaseModel` The model to be simulated experiment : :class:`pybamm.Experiment` (optional) The experimental conditions under which to solve the model geometry: :class:`pybamm.Geometry` (optional) The geometry upon which to solve the model parameter_values: :class:`pybamm.ParameterValues` (optional) Parameters and their corresponding numerical values. submesh_types: dict (optional) A dictionary of the types of submesh to use on each subdomain var_pts: dict (optional) A dictionary of the number of points used by each spatial variable spatial_methods: dict (optional) A dictionary of the types of spatial method to use on each domain (e.g. pybamm.FiniteVolume) solver: :class:`pybamm.BaseSolver` (optional) The solver to use to solve the model. output_variables: list (optional) A list of variables to plot automatically C_rate: float (optional) The C-rate at which you would like to run a constant current (dis)charge. """ def __init__( self, model, experiment=None, geometry=None, parameter_values=None, submesh_types=None, var_pts=None, spatial_methods=None, solver=None, output_variables=None, C_rate=None, ): self.parameter_values = parameter_values or model.default_parameter_values if isinstance(model, pybamm.lithium_ion.BasicDFNHalfCell): if experiment is not None: raise NotImplementedError( "BasicDFNHalfCell is not compatible " "with experiment simulations yet." ) if experiment is None: # Check to see if the current is provided as data (i.e. drive cycle) current = self._parameter_values.get("Current function [A]") if isinstance(current, pybamm.Interpolant): self.operating_mode = "drive cycle" elif isinstance(current, tuple): raise NotImplementedError( "Drive cycle from data has been deprecated. " + "Define an Interpolant instead." ) else: self.operating_mode = "without experiment" if C_rate: self.C_rate = C_rate self._parameter_values.update( { "Current function [A]": self.C_rate * self._parameter_values["Nominal cell capacity [A.h]"] } ) self._unprocessed_model = model self.model = model else: self.set_up_experiment(model, experiment) self.geometry = geometry or self.model.default_geometry self.submesh_types = submesh_types or self.model.default_submesh_types self.var_pts = var_pts or self.model.default_var_pts self.spatial_methods = spatial_methods or self.model.default_spatial_methods self.solver = solver or self.model.default_solver self.output_variables = output_variables # Initialize empty built states self._model_with_set_params = None self._built_model = None self._built_initial_soc = None self.op_conds_to_built_models = None self._mesh = None self._disc = None self._solution = None # ignore runtime warnings in notebooks if is_notebook(): # pragma: no cover import warnings warnings.filterwarnings("ignore")
[docs] def set_up_experiment(self, model, experiment): """ Set up a simulation to run with an experiment. This creates a dictionary of inputs (current/voltage/power, running time, stopping condition) for each operating condition in the experiment. The model will then be solved by integrating the model successively with each group of inputs, one group at a time. This needs to be done here and not in the Experiment class because the nominal cell capacity (from the parameters) is used to convert C-rate to current. """ self.operating_mode = "with experiment" if not isinstance(experiment, pybamm.Experiment): raise TypeError("experiment must be a pybamm `Experiment` instance") # Save the experiment self.experiment = experiment # Update parameter values with experiment parameters self._parameter_values.update(experiment.parameters) # Create a new submodel for each set of operating conditions and update # parameters and events accordingly self._experiment_inputs = [] self._experiment_times = [] for op, events in zip(experiment.operating_conditions, experiment.events): operating_inputs = { "Current switch": 0, "Voltage switch": 0, "Power switch": 0, "CCCV switch": 0, "Current input [A]": 0, "Voltage input [V]": 0, # doesn't matter "Power input [W]": 0, # doesn't matter } op_control = op["electric"][1] if op_control in ["A", "C"]: capacity = self._parameter_values["Nominal cell capacity [A.h]"] if op_control == "A": I = op["electric"][0] Crate = I / capacity else: # Scale C-rate with capacity to obtain current Crate = op["electric"][0] I = Crate * capacity if len(op["electric"]) == 4: # Update inputs for CCCV op_control = "CCCV" # change to CCCV V = op["electric"][2] operating_inputs.update( { "CCCV switch": 1, "Current input [A]": I, "Voltage input [V]": V, } ) else: # Update inputs for constant current operating_inputs.update( {"Current switch": 1, "Current input [A]": I} ) elif op_control == "V": # Update inputs for constant voltage V = op["electric"][0] operating_inputs.update({"Voltage switch": 1, "Voltage input [V]": V}) elif op_control == "W": # Update inputs for constant power P = op["electric"][0] operating_inputs.update({"Power switch": 1, "Power input [W]": P}) # Update period operating_inputs["period"] = op["period"] # Update events if events is None: # make current and voltage values that won't be hit operating_inputs.update( {"Current cut-off [A]": -1e10, "Voltage cut-off [V]": -1e10} ) elif events[1] in ["A", "C"]: # update current cut-off, make voltage a value that won't be hit if events[1] == "A": I = events[0] else: # Scale C-rate with capacity to obtain current capacity = self._parameter_values["Nominal cell capacity [A.h]"] I = events[0] * capacity operating_inputs.update( {"Current cut-off [A]": I, "Voltage cut-off [V]": -1e10} ) elif events[1] == "V": # update voltage cut-off, make current a value that won't be hit V = events[0] operating_inputs.update( {"Current cut-off [A]": -1e10, "Voltage cut-off [V]": V} ) self._experiment_inputs.append(operating_inputs) # Add time to the experiment times dt = op["time"] if dt is None: if op_control in ["A", "C", "CCCV"]: # Current control: max simulation time: 3 * max simulation time # based on C-rate dt = 3 / abs(Crate) * 3600 # seconds if op_control == "CCCV": dt *= 5 # 5x longer for CCCV else: # max simulation time: 1 day dt = 24 * 3600 # seconds self._experiment_times.append(dt) # Set up model for experiment if experiment.use_simulation_setup_type == "old": self.set_up_model_for_experiment_old(model) elif experiment.use_simulation_setup_type == "new": self.set_up_model_for_experiment_new(model)
[docs] def set_up_model_for_experiment_old(self, model): """ Set up self.model to be able to run the experiment (old version). In this version, a single model is created which can then be called with different inputs for current-control, voltage-control, or power-control. This reduces set-up time since only one model needs to be processed, but increases simulation time since the model formulation is inefficient """ # Create a new model where the current density is now a variable # To do so, we replace all instances of the current density in the # model with a current density variable, which is obtained from the # FunctionControl submodel # create the FunctionControl submodel and extract variables external_circuit_variables = pybamm.external_circuit.FunctionControl( model.param, None ).get_fundamental_variables() # Perform the replacement symbol_replacement_map = { model.variables[name]: variable for name, variable in external_circuit_variables.items() } replacer = pybamm.SymbolReplacer(symbol_replacement_map) new_model = replacer.process_model(model, inplace=False) # Update the algebraic equation and initial conditions for FunctionControl # This creates an algebraic equation for the current to allow current, voltage, # or power control, together with the appropriate guess for the # initial condition. # External circuit submodels are always equations on the current # The external circuit function should fix either the current, or the voltage, # or a combination (e.g. I*V for power control) i_cell = new_model.variables["Total current density"] new_model.initial_conditions[i_cell] = new_model.param.current_with_time new_model.algebraic[i_cell] = constant_current_constant_voltage_constant_power( new_model.variables ) # Remove upper and lower voltage cut-offs that are *not* part of the experiment new_model.events = [ event for event in model.events if event.name not in ["Minimum voltage", "Maximum voltage"] ] # add current and voltage events to the model # current events both negative and positive to catch specification new_model.events.extend( [ pybamm.Event( "Current cut-off (positive) [A] [experiment]", new_model.variables["Current [A]"] - abs(pybamm.InputParameter("Current cut-off [A]")), ), pybamm.Event( "Current cut-off (negative) [A] [experiment]", new_model.variables["Current [A]"] + abs(pybamm.InputParameter("Current cut-off [A]")), ), pybamm.Event( "Voltage cut-off [V] [experiment]", new_model.variables["Terminal voltage [V]"] - pybamm.InputParameter("Voltage cut-off [V]") / model.param.n_cells, ), ] ) self.model = new_model operating_conditions = set( x["electric"] + (x["time"],) + (x["period"],) for x in self.experiment.operating_conditions ) self.op_conds_to_model_and_param = { op_cond[:2]: (new_model, self.parameter_values) for op_cond in operating_conditions }
[docs] def set_up_model_for_experiment_new(self, model): """ Set up self.model to be able to run the experiment (new version). In this version, a new model is created for each step. This increases set-up time since several models to be processed, but reduces simulation time since the model formulation is efficient. """ self.op_conds_to_model_and_param = {} for op_cond, op_inputs in zip( self.experiment.operating_conditions, self._experiment_inputs ): # Create model for this operating condition if it has not already been seen # before if op_cond["electric"] not in self.op_conds_to_model_and_param: if op_inputs["Current switch"] == 1: # Current control # Make a new copy of the model (we will update events later)) new_model = model.new_copy() else: # Voltage or power control # Create a new model where the current density is now a variable # To do so, we replace all instances of the current density in the # model with a current density variable, which is obtained from the # FunctionControl submodel # check which kind of external circuit model we need (differential # or algebraic) if op_inputs["CCCV switch"] == 1: control = "differential" else: control = "algebraic" # create the FunctionControl submodel and extract variables external_circuit_variables = ( pybamm.external_circuit.FunctionControl( model.param, None, control=control ).get_fundamental_variables() ) # Perform the replacement symbol_replacement_map = { model.variables[name]: variable for name, variable in external_circuit_variables.items() } replacer = pybamm.SymbolReplacer(symbol_replacement_map) new_model = replacer.process_model(model, inplace=False) # Update the rhs or algebraic equation and initial conditions for # FunctionControl # This creates a differential or algebraic equation for the current # to allow current, voltage, or power control, together with the # appropriate guess for the initial condition. # External circuit submodels are always equations on the current # The external circuit function should fix either the current, or # the voltage, or a combination (e.g. I*V for power control) i_cell = new_model.variables["Current density variable"] new_model.initial_conditions[ i_cell ] = new_model.param.current_with_time # add current events to the model # current events both negative and positive to catch specification new_model.events.extend( [ pybamm.Event( "Current cut-off (positive) [A] [experiment]", new_model.variables["Current [A]"] - abs(pybamm.InputParameter("Current cut-off [A]")), ), pybamm.Event( "Current cut-off (negative) [A] [experiment]", new_model.variables["Current [A]"] + abs(pybamm.InputParameter("Current cut-off [A]")), ), ] ) if op_inputs["Voltage switch"] == 1: new_model.algebraic[ i_cell ] = pybamm.external_circuit.VoltageFunctionControl( new_model.param ).constant_voltage( new_model.variables ) elif op_inputs["Power switch"] == 1: new_model.algebraic[ i_cell ] = pybamm.external_circuit.PowerFunctionControl( new_model.param ).constant_power( new_model.variables ) elif op_inputs["CCCV switch"] == 1: new_model.algebraic[ i_cell ] = pybamm.external_circuit.CCCVFunctionControl( new_model.param ).cccv( new_model.variables ) # add voltage events to the model if op_inputs["Power switch"] == 1 or op_inputs["Current switch"] == 1: new_model.events.append( pybamm.Event( "Voltage cut-off [V] [experiment]", new_model.variables["Terminal voltage [V]"] - pybamm.InputParameter("Voltage cut-off [V]") / model.param.n_cells, ) ) # Keep the min and max voltages as safeguards but add some tolerances # so that they are not triggered before the voltage limits in the # experiment for event in new_model.events: if event.name == "Minimum voltage": event._expression += 1 elif event.name == "Maximum voltage": event._expression -= 1 # Update parameter values new_parameter_values = self.parameter_values.copy() if op_inputs["Current switch"] == 1: new_parameter_values.update( {"Current function [A]": op_inputs["Current input [A]"]} ) elif op_inputs["Voltage switch"] == 1: new_parameter_values.update( {"Voltage function [V]": op_inputs["Voltage input [V]"]}, check_already_exists=False, ) elif op_inputs["Power switch"] == 1: new_parameter_values.update( {"Power function [W]": op_inputs["Power input [W]"]}, check_already_exists=False, ) elif op_inputs["CCCV switch"] == 1: new_parameter_values.update( { "Current function [A]": op_inputs["Current input [A]"], "Voltage function [V]": op_inputs["Voltage input [V]"], }, check_already_exists=False, ) self.op_conds_to_model_and_param[op_cond["electric"]] = ( new_model, new_parameter_values, ) self.model = model
[docs] def set_parameters(self): """ A method to set the parameters in the model and the associated geometry. """ if self.model_with_set_params: return None if self._parameter_values._dict_items == {}: # Don't process if parameter values is empty self._model_with_set_params = self._unprocessed_model else: self._model_with_set_params = self._parameter_values.process_model( self._unprocessed_model, inplace=False ) self._parameter_values.process_geometry(self._geometry) self.model = self._model_with_set_params
[docs] def build(self, check_model=True): """ A method to build the model into a system of matrices and vectors suitable for performing numerical computations. If the model has already been built or solved then this function will have no effect. This method will automatically set the parameters if they have not already been set. Parameters ---------- check_model : bool, optional If True, model checks are performed after discretisation (see :meth:`pybamm.Discretisation.process_model`). Default is True. """ if self.built_model: return None elif self.model.is_discretised: self._model_with_set_params = self.model self._built_model = self.model else: self.set_parameters() self._mesh = pybamm.Mesh(self._geometry, self._submesh_types, self._var_pts) self._disc = pybamm.Discretisation(self._mesh, self._spatial_methods) self._built_model = self._disc.process_model( self._model_with_set_params, inplace=False, check_model=check_model )
[docs] def build_for_experiment(self, check_model=True): """ Similar to :meth:`Simulation.build`, but for the case of simulating an experiment, where there may be several models to build """ if self.op_conds_to_built_models: return None else: # Can process geometry with default parameter values (only electrical # parameters change between parameter values) self._parameter_values.process_geometry(self._geometry) # Only needs to set up mesh and discretisation once self._mesh = pybamm.Mesh(self._geometry, self._submesh_types, self._var_pts) self._disc = pybamm.Discretisation(self._mesh, self._spatial_methods) # Process all the different models self.op_conds_to_built_models = {} processed_models = {} for op_cond, ( unbuilt_model, parameter_values, ) in self.op_conds_to_model_and_param.items(): if unbuilt_model in processed_models: built_model = processed_models[unbuilt_model] else: # It's ok to modify the models in-place as they are not accessible # from outside the simulation model_with_set_params = parameter_values.process_model( unbuilt_model, inplace=True ) built_model = self._disc.process_model( model_with_set_params, inplace=True, check_model=check_model ) processed_models[unbuilt_model] = built_model self.op_conds_to_built_models[op_cond] = built_model
[docs] def solve( self, t_eval=None, solver=None, check_model=True, save_at_cycles=None, calc_esoh=True, starting_solution=None, initial_soc=None, **kwargs, ): """ A method to solve the model. This method will automatically build and set the model parameters if not already done so. Parameters ---------- t_eval : numeric type, optional The times (in seconds) at which to compute the solution. Can be provided as an array of times at which to return the solution, or as a list `[t0, tf]` where `t0` is the initial time and `tf` is the final time. If provided as a list the solution is returned at 100 points within the interval `[t0, tf]`. If not using an experiment or running a drive cycle simulation (current provided as data) `t_eval` *must* be provided. If running an experiment the values in `t_eval` are ignored, and the solution times are specified by the experiment. If None and the parameter "Current function [A]" is read from data (i.e. drive cycle simulation) the model will be solved at the times provided in the data. solver : :class:`pybamm.BaseSolver`, optional The solver to use to solve the model. If None, Simulation.solver is used check_model : bool, optional If True, model checks are performed after discretisation (see :meth:`pybamm.Discretisation.process_model`). Default is True. save_at_cycles : int or list of ints, optional Which cycles to save the full sub-solutions for. If None, all cycles are saved. If int, every multiple of save_at_cycles is saved. If list, every cycle in the list is saved. The first cycle (cycle 1) is always saved. calc_esoh : bool, optional Whether to include eSOH variables in the summary variables. If `False` then only summary variables that do not require the eSOH calculation are calculated. Default is True. starting_solution : :class:`pybamm.Solution` The solution to start stepping from. If None (default), then self._solution is used. Must be None if not using an experiment. initial_soc : float, optional Initial State of Charge (SOC) for the simulation. Must be between 0 and 1. If given, overwrites the initial concentrations provided in the parameter set. **kwargs Additional key-word arguments passed to `solver.solve`. See :meth:`pybamm.BaseSolver.solve`. """ # Setup if solver is None: solver = self.solver if initial_soc is not None: if self._built_initial_soc != initial_soc: # reset self._model_with_set_params = None self._built_model = None self.op_conds_to_built_models = None c_n_init = self.parameter_values[ "Initial concentration in negative electrode [mol.m-3]" ] c_p_init = self.parameter_values[ "Initial concentration in positive electrode [mol.m-3]" ] param = pybamm.LithiumIonParameters() c_n_max = self.parameter_values.evaluate(param.c_n_max) c_p_max = self.parameter_values.evaluate(param.c_p_max) x, y = pybamm.lithium_ion.get_initial_stoichiometries( initial_soc, self.parameter_values ) self.parameter_values.update( { "Initial concentration in negative electrode [mol.m-3]": x * c_n_max, "Initial concentration in positive electrode [mol.m-3]": y * c_p_max, } ) # For experiments also update the following if hasattr(self, "op_conds_to_model_and_param"): for key, (model, param) in self.op_conds_to_model_and_param.items(): param.update( { "Initial concentration in negative electrode [mol.m-3]": x * c_n_max, "Initial concentration in positive electrode [mol.m-3]": y * c_p_max, } ) # Save solved initial SOC in case we need to re-build the model self._built_initial_soc = initial_soc if self.operating_mode in ["without experiment", "drive cycle"]: self.build(check_model=check_model) if save_at_cycles is not None: raise ValueError( "'save_at_cycles' option can only be used if simulating an " "Experiment " ) if starting_solution is not None: raise ValueError( "starting_solution can only be provided if simulating an Experiment" ) if self.operating_mode == "without experiment": if t_eval is None: raise pybamm.SolverError( "'t_eval' must be provided if not using an experiment or " "simulating a drive cycle. 't_eval' can be provided as an " "array of times at which to return the solution, or as a " "list [t0, tf] where t0 is the initial time and tf is the " "final time. " "For a constant current (dis)charge the suggested 't_eval' " "is [0, 3700/C] where C is the C-rate. " "For example, run\n\n" "\tsim.solve([0, 3700])\n\n" "for a 1C discharge." ) elif self.operating_mode == "drive cycle": # For drive cycles (current provided as data) we perform additional # tests on t_eval (if provided) to ensure the returned solution # captures the input. time_data = self._parameter_values["Current function [A]"].x[0] # If no t_eval is provided, we use the times provided in the data. if t_eval is None: pybamm.logger.info("Setting t_eval as specified by the data") t_eval = time_data # If t_eval is provided we first check if it contains all of the # times in the data to within 10-12. If it doesn't, we then check # that the largest gap in t_eval is smaller than the smallest gap in # the time data (to ensure the resolution of t_eval is fine enough). # We only raise a warning here as users may genuinely only want # the solution returned at some specified points. elif ( set(np.round(time_data, 12)).issubset(set(np.round(t_eval, 12))) ) is False: warnings.warn( """ t_eval does not contain all of the time points in the data set. Note: passing t_eval = None automatically sets t_eval to be the points in the data. """, pybamm.SolverWarning, ) dt_data_min = np.min(np.diff(time_data)) dt_eval_max = np.max(np.diff(t_eval)) if dt_eval_max > dt_data_min + sys.float_info.epsilon: warnings.warn( """ The largest timestep in t_eval ({}) is larger than the smallest timestep in the data ({}). The returned solution may not have the correct resolution to accurately capture the input. Try refining t_eval. Alternatively, passing t_eval = None automatically sets t_eval to be the points in the data. """.format( dt_eval_max, dt_data_min ), pybamm.SolverWarning, ) self._solution = solver.solve(self.built_model, t_eval, **kwargs) elif self.operating_mode == "with experiment": self.build_for_experiment(check_model=check_model) if t_eval is not None: pybamm.logger.warning( "Ignoring t_eval as solution times are specified by the experiment" ) # Re-initialize solution, e.g. for solving multiple times with different # inputs without having to build the simulation again self._solution = starting_solution # Step through all experimental conditions inputs = kwargs.get("inputs", {}) pybamm.logger.info("Start running experiment") timer = pybamm.Timer() if starting_solution is None: starting_solution_cycles = [] starting_solution_summary_variables = [] else: starting_solution_cycles = starting_solution.cycles.copy() starting_solution_summary_variables = ( starting_solution.all_summary_variables.copy() ) cycle_offset = len(starting_solution_cycles) all_cycle_solutions = starting_solution_cycles all_summary_variables = starting_solution_summary_variables current_solution = starting_solution # Set up eSOH model (for summary variables) if calc_esoh is True: esoh_model = pybamm.lithium_ion.ElectrodeSOH() esoh_sim = pybamm.Simulation( esoh_model, parameter_values=self.parameter_values ) else: esoh_sim = None idx = 0 num_cycles = len(self.experiment.cycle_lengths) feasible = True # simulation will stop if experiment is infeasible for cycle_num, cycle_length in enumerate( self.experiment.cycle_lengths, start=1 ): pybamm.logger.notice( f"Cycle {cycle_num+cycle_offset}/{num_cycles+cycle_offset} " f"({timer.time()} elapsed) " + "-" * 20 ) steps = [] cycle_solution = None # Decide whether we should save this cycle save_this_cycle = ( # always save cycle 1 cycle_num == 1 # None: save all cycles or save_at_cycles is None # list: save all cycles in the list or ( isinstance(save_at_cycles, list) and cycle_num + cycle_offset in save_at_cycles ) # int: save all multiples or ( isinstance(save_at_cycles, int) and (cycle_num + cycle_offset) % save_at_cycles == 0 ) ) for step_num in range(1, cycle_length + 1): exp_inputs = self._experiment_inputs[idx] dt = self._experiment_times[idx] op_conds_str = self.experiment.operating_conditions_strings[idx] op_conds_elec = self.experiment.operating_conditions[idx][ "electric" ] model = self.op_conds_to_built_models[op_conds_elec] # Use 1-indexing for printing cycle number as it is more # human-intuitive pybamm.logger.notice( f"Cycle {cycle_num+cycle_offset}/{num_cycles+cycle_offset}, " f"step {step_num}/{cycle_length}: {op_conds_str}" ) inputs.update(exp_inputs) kwargs["inputs"] = inputs # Make sure we take at least 2 timesteps npts = max(int(round(dt / exp_inputs["period"])) + 1, 2) step_solution = solver.step( current_solution, model, dt, npts=npts, save=False, **kwargs, ) steps.append(step_solution) current_solution = step_solution cycle_solution = cycle_solution + step_solution # Only allow events specified by experiment if not ( step_solution is None or step_solution.termination == "final time" or "[experiment]" in step_solution.termination ): feasible = False break # Increment index for next iteration idx += 1 # Break if the experiment is infeasible if feasible is False: pybamm.logger.warning( "\n\n\tExperiment is infeasible: '{}' ".format( step_solution.termination ) + "was triggered during '{}'. ".format( self.experiment.operating_conditions_strings[idx] ) + "The returned solution only contains the first " "{} cycles. ".format(cycle_num - 1 + cycle_offset) + "Try reducing the current, shortening the time interval, " "or reducing the period.\n\n" ) break if save_this_cycle: self._solution = self._solution + cycle_solution # At the final step of the inner loop we save the cycle cycle_solution, cycle_summary_variables = pybamm.make_cycle_solution( steps, esoh_sim, save_this_cycle=save_this_cycle, ) all_cycle_solutions.append(cycle_solution) all_summary_variables.append(cycle_summary_variables) # Calculate capacity_start using the first cycle if cycle_num == 1: if "capacity" in self.experiment.termination: # Note capacity_start could be defined as # self.parameter_values["Nominal cell capacity [A.h]"] instead capacity_start = all_summary_variables[0]["Capacity [A.h]"] value, typ = self.experiment.termination["capacity"] if typ == "Ah": capacity_stop = value elif typ == "%": capacity_stop = value / 100 * capacity_start else: capacity_stop = None if capacity_stop is not None: capacity_now = cycle_summary_variables["Capacity [A.h]"] if np.isnan(capacity_now) or capacity_now > capacity_stop: pybamm.logger.notice( f"Capacity is now {capacity_now:.3f} Ah " f"(originally {capacity_start:.3f} Ah, " f"will stop at {capacity_stop:.3f} Ah)" ) else: pybamm.logger.notice( "Stopping experiment since capacity " f"({capacity_now:.3f} Ah) " f"is below stopping capacity ({capacity_stop:.3f} Ah)." ) break if self.solution is not None and len(all_cycle_solutions) > 0: self.solution.cycles = all_cycle_solutions self.solution.set_summary_variables(all_summary_variables) pybamm.logger.notice( "Finish experiment simulation, took {}".format(timer.time()) ) # reset parameter values if initial_soc is not None: self.parameter_values.update( { "Initial concentration in negative electrode [mol.m-3]": c_n_init, "Initial concentration in positive electrode [mol.m-3]": c_p_init, } ) return self.solution
[docs] def step( self, dt, solver=None, npts=2, save=True, starting_solution=None, **kwargs ): """ A method to step the model forward one timestep. This method will automatically build and set the model parameters if not already done so. Parameters ---------- dt : numeric type The timestep over which to step the solution solver : :class:`pybamm.BaseSolver` The solver to use to solve the model. npts : int, optional The number of points at which the solution will be returned during the step dt. Default is 2 (returns the solution at t0 and t0 + dt). save : bool Turn on to store the solution of all previous timesteps starting_solution : :class:`pybamm.Solution` The solution to start stepping from. If None (default), then self._solution is used **kwargs Additional key-word arguments passed to `solver.solve`. See :meth:`pybamm.BaseSolver.step`. """ if self.operating_mode in ["without experiment", "drive cycle"]: self.build() if solver is None: solver = self.solver if starting_solution is None: starting_solution = self._solution self._solution = solver.step( starting_solution, self.built_model, dt, npts=npts, save=save, **kwargs ) return self.solution
[docs] def plot(self, output_variables=None, quick_plot_vars=None, **kwargs): """ A method to quickly plot the outputs of the simulation. Creates a :class:`pybamm.QuickPlot` object (with keyword arguments 'kwargs') and then calls :meth:`pybamm.QuickPlot.dynamic_plot`. Parameters ---------- output_variables: list, optional A list of the variables to plot. quick_plot_vars: list, optional A list of the variables to plot. Deprecated, use output_variables instead. **kwargs Additional keyword arguments passed to :meth:`pybamm.QuickPlot.dynamic_plot`. For a list of all possible keyword arguments see :class:`pybamm.QuickPlot`. """ if quick_plot_vars is not None: raise NotImplementedError( "'quick_plot_vars' has been deprecated. Use 'output_variables' instead." ) if self._solution is None: raise ValueError( "Model has not been solved, please solve the model before plotting." ) if output_variables is None: output_variables = self.output_variables self.quick_plot = pybamm.dynamic_plot( self._solution, output_variables=output_variables, **kwargs ) return self.quick_plot
@property def model(self): return self._model @model.setter def model(self, model): self._model = copy.copy(model) self._model_class = model.__class__ @property def model_with_set_params(self): return self._model_with_set_params @property def built_model(self): return self._built_model @property def geometry(self): return self._geometry @geometry.setter def geometry(self, geometry): self._geometry = geometry.copy() @property def parameter_values(self): return self._parameter_values @parameter_values.setter def parameter_values(self, parameter_values): self._parameter_values = parameter_values.copy() @property def submesh_types(self): return self._submesh_types @submesh_types.setter def submesh_types(self, submesh_types): self._submesh_types = submesh_types.copy() @property def mesh(self): return self._mesh @property def var_pts(self): return self._var_pts @var_pts.setter def var_pts(self, var_pts): self._var_pts = var_pts.copy() @property def spatial_methods(self): return self._spatial_methods @spatial_methods.setter def spatial_methods(self, spatial_methods): self._spatial_methods = spatial_methods.copy() @property def solver(self): return self._solver @solver.setter def solver(self, solver): self._solver = solver.copy() @property def output_variables(self): return self._output_variables @output_variables.setter def output_variables(self, output_variables): self._output_variables = copy.copy(output_variables) @property def solution(self): return self._solution
[docs] def specs( self, geometry=None, parameter_values=None, submesh_types=None, var_pts=None, spatial_methods=None, solver=None, output_variables=None, C_rate=None, ): "Deprecated method for setting specs" raise NotImplementedError( "The 'specs' method has been deprecated. " "Create a new simulation for each different case instead." )
[docs] def save(self, filename): """Save simulation using pickle""" if self.model.convert_to_format == "python": # We currently cannot save models in the 'python' format raise NotImplementedError( """ Cannot save simulation if model format is python. Set model.convert_to_format = 'casadi' instead. """ ) # Clear solver problem (not pickle-able, will automatically be recomputed) if ( isinstance(self._solver, pybamm.CasadiSolver) and self._solver.integrator_specs != {} ): self._solver.integrator_specs = {} if self.solution is not None: self.solution.clear_casadi_attributes() with open(filename, "wb") as f: pickle.dump(self, f, pickle.HIGHEST_PROTOCOL)
def load_sim(filename): """Load a saved simulation""" return pybamm.load(filename)