Parameters Sets

Parameter sets from papers. The ‘citation’ entry provides a reference to the appropriate paper in the file “pybamm/CITATIONS.txt”. To see which parameter sets have been used in your simulation, add the line “pybamm.print_citations()” to your script.

Lead-acid parameter sets

  • Sulzer2019 :
    • Valentin Sulzer, S. Jon Chapman, Colin P. Please, David A. Howey, and Charles W. Monroe. Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: Part I. Physical Model. Journal of The Electrochemical Society, 166(12):A2363–A2371, 2019. doi:10.1149/2.0301910jes.

Lithium-ion parameter sets

  • Ai2020 :
    • Weilong Ai, Ludwig Kraft, Johannes Sturm, Andreas Jossen, and Billy Wu. Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells. Journal of The Electrochemical Society, 167(1):013512, 2019. doi:10.1149/2.0122001JES.
  • Chen2020 :
    • Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.
  • Chen2020_plating :
    • Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.
  • Ecker2015 :
    • Madeleine Ecker, Stefan Käbitz, Izaro Laresgoiti, and Dirk Uwe Sauer. Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery: II. Model Validation. Journal of The Electrochemical Society, 162(9):A1849–A1857, 2015. doi:10.1149/2.0541509jes.
    • Madeleine Ecker, Thi Kim Dung Tran, Philipp Dechent, Stefan Käbitz, Alexander Warnecke, and Dirk Uwe Sauer. Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery: I. Determination of Parameters. Journal of the Electrochemical Society, 162(9):A1836–A1848, 2015. doi:10.1149/2.0551509jes.
    • Giles Richardson, Ivan Korotkin, Rahifa Ranom, Michael Castle, and Jamie M. Foster. Generalised single particle models for high-rate operation of graded lithium-ion electrodes: systematic derivation and validation. Electrochimica Acta, 339:135862, 2020. doi:10.1016/j.electacta.2020.135862.
  • Marquis2019 :
    • Scott G. Marquis, Valentin Sulzer, Robert Timms, Colin P. Please, and S. Jon Chapman. An asymptotic derivation of a single particle model with electrolyte. Journal of The Electrochemical Society, 166(15):A3693–A3706, 2019. doi:10.1149/2.0341915jes.
  • Mohtat2020 :
    • Peyman Mohtat, Suhak Lee, Valentin Sulzer, Jason B. Siegel, and Anna G. Stefanopoulou. Differential Expansion and Voltage Model for Li-ion Batteries at Practical Charging Rates. Journal of The Electrochemical Society, 167(11):110561, 2020. doi:10.1149/1945-7111/aba5d1.
  • NCA_Kim2011 :
    • Gi-Heon Kim, Kandler Smith, Kyu-Jin Lee, Shriram Santhanagopalan, and Ahmad Pesaran. Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales. Journal of the Electrochemical Society, 158(8):A955–A969, 2011. doi:10.1149/1.3597614.
  • ORegan2021 :
    • Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.
    • Kieran O’Regan, Ferran Brosa Planella, W. Dhammika Widanage, and Emma Kendrick. Thermal-electrochemical parametrisation of a lithium-ion battery: mapping Li concentration and temperature dependencies. Journal of The Electrochemical Society, ():, 2021. doi:.
  • Prada2013 :
    • Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.
    • Michael J. Lain, James Brandon, and Emma Kendrick. Design strategies for high power vs. high energy lithium ion cells. Batteries, 5(4):64, 2019. doi:10.3390/batteries5040064.
    • Eric Prada, D. Di Domenico, Y. Creff, J. Bernard, Valérie Sauvant-Moynot, and François Huet. A simplified electrochemical and thermal aging model of LiFePO4-graphite Li-ion batteries: power and capacity fade simulations. Journal of The Electrochemical Society, 160(4):A616, 2013. doi:10.1149/2.053304jes.
  • Ramadass2004 :
    • P Ramadass, Bala Haran, Parthasarathy M Gomadam, Ralph White, and Branko N Popov. Development of first principles capacity fade model for li-ion cells. Journal of the Electrochemical Society, 151(2):A196, 2004. doi:10.1149/1.1634273.
  • Xu2019 :
    • Shanshan Xu, Kuan-Hung Chen, Neil P Dasgupta, Jason B Siegel, and Anna G Stefanopoulou. Evolution of dead lithium growth in lithium metal batteries: experimentally validated model of the apparent capacity loss. Journal of The Electrochemical Society, 166(14):A3456, 2019.