Parameters Sets

PyBaMM provides pre-defined parameters for common chemistries, as well as, a growing set of third-party parameter sets.

class pybamm.parameters.parameter_sets.ParameterSets[source]

Dict-like interface for accessing registered pybamm parameter sets. Access via pybamm.parameter_sets

Examples

Listing available parameter sets:

>>> import pybamm
>>> list(pybamm.parameter_sets)
['Ai2020', 'Chen2020', ...]

Get the docstring for a parameter set:

>>> import pybamm
>>> print(pybamm.parameter_sets.get_docstring("Ai2020"))

Parameters for the Enertech cell (Ai2020), from the papers:
...

See also: Adding Parameter Sets

get_docstring(key)[source]

Return the docstring for the key parameter set

Adding Parameter Sets

Parameter sets can be added to PyBaMM by creating a python package, and registering a entry point to pybamm_parameter_sets. At a minimum, the package (cell_parameters) should consist of the following:

cell_parameters
├── pyproject.toml        # and/or setup.cfg, setup.py
└── src
    └── cell_parameters
        └── cell_alpha.py

The actual parameter set is defined within cell_alpha.py, as shown below. For an example, see the Marquis2019 parameter sets.

1import pybamm
2
3def get_parameter_values():
4    """ Doc string for cell-alpha """
5    return {
6        "chemistry": "lithium_ion",
7        "citation": "@book{van1995python, title={Python reference manual}}",
8        ...
9    }

Then register get_parameter_values to pybamm_parameter_sets in pyproject.toml:

[project.entry-points.pybamm_parameter_sets]
cell_alpha = "cell_parameters.cell_alpha:get_parameter_values"

If you are using setup.py or setup.cfg to setup your package, please see SetupTools’ documentation for registering entry points.

If you’re willing to open-source your parameter set, let us know, and we can add an entry to Third-Party Parameter Sets.

Third-Party Parameter Sets

Registered a new parameter set to pybamm_parameter_sets? Let us know, and we’ll update our list.

Bundled Parameter Sets

PyBaMM provides pre-defined parameter sets for several common chemistries, listed below. See Adding Parameter Sets for information on registering new parameter sets with PyBaMM.

Lead-acid Parameter Sets

Sulzer2019

Parameters for BBOXX lead-acid cells, from the paper

Valentin Sulzer, S. Jon Chapman, Colin P. Please, David A. Howey, and Charles W. Monroe. Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: Part I. Physical Model. Journal of The Electrochemical Society, 166(12):A2363-A2371, 2019. doi:10.1149/2.0301910jes.

and references therein.

Lithium-ion Parameter Sets

Ai2020

Parameters for the Enertech cell (Ai2020), from the papers:

Ai, W., Kraft, L., Sturm, J., Jossen, A., & Wu, B. (2020). Electrochemical Thermal-Mechanical Modelling of Stress Inhomogeneity in Lithium-Ion Pouch Cells. Journal of The Electrochemical Society, 167(1), 013512. DOI: 10.1149/2.0122001JES.

Rieger, B., Erhard, S. V., Rumpf, K., & Jossen, A. (2016). A new method to model the thickness change of a commercial pouch cell during discharge. Journal of The Electrochemical Society, 163(8), A1566-A1575.

and references therein.

SEI parameters are example parameters for SEI growth from the papers:

Ramadass, P., Haran, B., Gomadam, P. M., White, R., & Popov, B. N. (2004). Development of first principles capacity fade model for Li-ion cells. Journal of the Electrochemical Society, 151(2), A196-A203.

Ploehn, H. J., Ramadass, P., & White, R. E. (2004). Solvent diffusion model for aging of lithium-ion battery cells. Journal of The Electrochemical Society, 151(3), A456-A462.

Single, F., Latz, A., & Horstmann, B. (2018). Identifying the mechanism of continued growth of the solid-electrolyte interphase. ChemSusChem, 11(12), 1950-1955.

Safari, M., Morcrette, M., Teyssot, A., & Delacour, C. (2009). Multimodal Physics- Based Aging Model for Life Prediction of Li-Ion Batteries. Journal of The Electrochemical Society, 156(3).

Yang, X., Leng, Y., Zhang, G., Ge, S., Wang, C. (2017). Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging. Journal of Power Sources, 360, 28-40.

Note: this parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

Chen2020

Parameters for an LG M50 cell, from the paper

Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.

and references therein.

SEI parameters are example parameters for SEI growth from the papers:

Ramadass, P., Haran, B., Gomadam, P. M., White, R., & Popov, B. N. (2004). Development of first principles capacity fade model for Li-ion cells. Journal of the Electrochemical Society, 151(2), A196-A203.

Ploehn, H. J., Ramadass, P., & White, R. E. (2004). Solvent diffusion model for aging of lithium-ion battery cells. Journal of The Electrochemical Society, 151(3), A456-A462.

Single, F., Latz, A., & Horstmann, B. (2018). Identifying the mechanism of continued growth of the solid-electrolyte interphase. ChemSusChem, 11(12), 1950-1955.

Safari, M., Morcrette, M., Teyssot, A., & Delacour, C. (2009). Multimodal Physics- Based Aging Model for Life Prediction of Li-Ion Batteries. Journal of The Electrochemical Society, 156(3),

Yang, X., Leng, Y., Zhang, G., Ge, S., Wang, C. (2017). Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging. Journal of Power Sources, 360, 28-40.

Note: this parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

Chen2020_composite

Parameters for a composite graphite/silicon negative electrode, from the paper

Weilong Ai, Niall Kirkaldy, Yang Jiang, Gregory Offer, Huizhi Wang, and Billy Wu. A composite electrode model for lithium-ion batteries with silicon/graphite negative electrodes. Journal of Power Sources, 527:231142, 2022. URL: https://www.sciencedirect.com/science/article/pii/S0378775322001604, doi:https://doi.org/10.1016/j.jpowsour.2022.231142.

based on the paper

Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.

and references therein.

SEI parameters are example parameters for composite SEI on silicon/graphite. Both phases use the same values, from the paper.

Xiao Guang Yang, Yongjun Leng, Guangsheng Zhang, Shanhai Ge, and Chao Yang Wang. Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging. Journal of Power Sources, 360:28–40, 2017. doi:10.1016/j.jpowsour.2017.05.110.

Ecker2015

Parameters for a Kokam SLPB 75106100 cell, from the papers

Ecker, Madeleine, et al. “Parameterization of a physico-chemical model of a lithium-ion battery I. determination of parameters.” Journal of the Electrochemical Society 162.9 (2015): A1836-A1848.

Ecker, Madeleine, et al. “Parameterization of a physico-chemical model of a lithium-ion battery II. Model validation.” Journal of The Electrochemical Society 162.9 (2015): A1849-A1857.

The tab placement parameters are taken from measurements in

Hales, Alastair, et al. “The cell cooling coefficient: a standard to define heat rejection from lithium-ion batteries.” Journal of The Electrochemical Society 166.12 (2019): A2383.

The thermal material properties are for a 5 Ah power pouch cell by Kokam. The data are extracted from

Zhao, Y., et al. “Modeling the effects of thermal gradients induced by tab and surface cooling on lithium ion cell performance.”” Journal of The Electrochemical Society, 165.13 (2018): A3169-A3178.

Graphite negative electrode parameters

The fits to data for the electrode and electrolyte properties are those provided by Dr. Simon O’Kane in the paper:

Richardson, Giles, et. al. “Generalised single particle models for high-rate operation of graded lithium-ion electrodes: Systematic derivation and validation.” Electrochemica Acta 339 (2020): 135862

SEI parameters are example parameters for SEI growth from the papers:

Ramadass, P., Haran, B., Gomadam, P. M., White, R., & Popov, B. N. (2004). Development of first principles capacity fade model for Li-ion cells. Journal of the Electrochemical Society, 151(2), A196-A203.

Ploehn, H. J., Ramadass, P., & White, R. E. (2004). Solvent diffusion model for aging of lithium-ion battery cells. Journal of The Electrochemical Society, 151(3), A456-A462.

Single, F., Latz, A., & Horstmann, B. (2018). Identifying the mechanism of continued growth of the solid-electrolyte interphase. ChemSusChem, 11(12), 1950-1955.

Safari, M., Morcrette, M., Teyssot, A., & Delacour, C. (2009). Multimodal Physics- Based Aging Model for Life Prediction of Li-Ion Batteries. Journal of The Electrochemical Society, 156(3),

Yang, X., Leng, Y., Zhang, G., Ge, S., Wang, C. (2017). Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging. Journal of Power Sources, 360, 28-40.

Note: this parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

Marquis2019

Parameters for a Kokam SLPB78205130H cell, from the paper

Scott G. Marquis, Valentin Sulzer, Robert Timms, Colin P. Please, and S. Jon Chapman. An asymptotic derivation of a single particle model with electrolyte. Journal of The Electrochemical Society, 166(15):A3693-A3706, 2019. doi:10.1149/2.0341915jes.

and references therein.

SEI parameters are example parameters for SEI growth from the papers:

Ramadass, P., Haran, B., Gomadam, P. M., White, R., & Popov, B. N. (2004). Development of first principles capacity fade model for Li-ion cells. Journal of the Electrochemical Society, 151(2), A196-A203.

Ploehn, H. J., Ramadass, P., & White, R. E. (2004). Solvent diffusion model for aging of lithium-ion battery cells. Journal of The Electrochemical Society, 151(3), A456-A462.

Single, F., Latz, A., & Horstmann, B. (2018). Identifying the mechanism of continued growth of the solid-electrolyte interphase. ChemSusChem, 11(12), 1950-1955.

Safari, M., Morcrette, M., Teyssot, A., & Delacour, C. (2009). Multimodal Physics- Based Aging Model for Life Prediction of Li-Ion Batteries. Journal of The Electrochemical Society, 156(3),

Yang, X., Leng, Y., Zhang, G., Ge, S., Wang, C. (2017). Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging. Journal of Power Sources, 360, 28-40.

Note: this parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

Mohtat2020

Parameters for a graphite/NMC532 pouch cell from the paper

Peyman Mohtat, Suhak Lee, Valentin Sulzer, Jason B. Siegel, and Anna G. Stefanopoulou. Differential Expansion and Voltage Model for Li-ion Batteries at Practical Charging Rates. Journal of The Electrochemical Society, 167(11):110561, 2020. doi:10.1149/1945-7111/aba5d1.

and references therein.

Some example parameters for SEI growth from the papers:

Ramadass, P., Haran, B., Gomadam, P. M., White, R., & Popov, B. N. (2004). Development of first principles capacity fade model for Li-ion cells. Journal of the Electrochemical Society, 151(2), A196-A203.

Ploehn, H. J., Ramadass, P., & White, R. E. (2004). Solvent diffusion model for aging of lithium-ion battery cells. Journal of The Electrochemical Society, 151(3), A456-A462.

Single, F., Latz, A., & Horstmann, B. (2018). Identifying the mechanism of continued growth of the solid-electrolyte interphase. ChemSusChem, 11(12), 1950-1955.

Safari, M., Morcrette, M., Teyssot, A., & Delacour, C. (2009). Multimodal Physics- Based Aging Model for Life Prediction of Li-Ion Batteries. Journal of The Electrochemical Society, 156(3),

Yang, X., Leng, Y., Zhang, G., Ge, S., Wang, C. (2017). Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging. Journal of Power Sources, 360, 28-40.

Note: this parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

SEI parameters

Parameters for lithium plating are from the paper:

Yang, X., Leng, Y., Zhang, G., Ge, S., Wang, C. (2017). Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging. Journal of Power Sources, 360, 28-40.

Note: this parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

NCA_Kim2011

Parameters for a “Nominal Design” graphite/NCA pouch cell, from the paper

Kim, G. H., Smith, K., Lee, K. J., Santhanagopalan, S., & Pesaran, A. (2011). Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales. Journal of The Electrochemical Society, 158(8), A955-A969.

Note, only an effective cell volumetric heat capacity is provided in the paper. We therefore used the values for the density and specific heat capacity reported in the

Marquis2019 parameter set in each region and multiplied each density by the ratio

of the volumetric heat capacity provided in smith to the calculated value. This ensures that the values produce the same effective cell volumetric heat capacity. This works fine for thermal models that are averaged over the x-direction but not for full (PDE in x direction) thermal models. We do the same for the planar effective thermal conductivity.

SEI parameters are example parameters for SEI growth from the papers:

Ramadass, P., Haran, B., Gomadam, P. M., White, R., & Popov, B. N. (2004). Development of first principles capacity fade model for Li-ion cells. Journal of the Electrochemical Society, 151(2), A196-A203.

Ploehn, H. J., Ramadass, P., & White, R. E. (2004). Solvent diffusion model for aging of lithium-ion battery cells. Journal of The Electrochemical Society, 151(3), A456-A462.

Single, F., Latz, A., & Horstmann, B. (2018). Identifying the mechanism of continued growth of the solid–electrolyte interphase. ChemSusChem, 11(12), 1950-1955.

Safari, M., Morcrette, M., Teyssot, A., & Delacour, C. (2009). Multimodal Physics- Based Aging Model for Life Prediction of Li-Ion Batteries. Journal of The Electrochemical Society, 156(3),

Yang, X., Leng, Y., Zhang, G., Ge, S., Wang, C. (2017). Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging. Journal of Power Sources, 360, 28-40.

Note: this parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

OKane2022

Parameters for an LG M50 cell, from the paper

Simon E. J. O’Kane, Weilong Ai, Ganesh Madabattula, Diego Alonso-Alvarez, Robert Timms, Valentin Sulzer, Jacqueline Sophie Edge, Billy Wu, Gregory J. Offer, and Monica Marinescu. Lithium-ion battery degradation: how to model it. Phys. Chem. Chem. Phys., 24:7909-7922, 2022. URL: http://dx.doi.org/10.1039/D2CP00417H, doi:10.1039/D2CP00417H.

based on the paper

Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.

and references therein.

Note: the SEI and plating parameters do not claim to be representative of the true parameter values. These are merely the parameter values that were used in the referenced papers.

ORegan2022

Parameters for an LG M50 cell, from the paper

Kieran O’Regan, Ferran Brosa Planella, W. Dhammika Widanage, and Emma Kendrick. Thermal-electrochemical parameters of a high energy lithium-ion cylindrical battery. Electrochimica Acta, 425:140700, 2022. doi:10.1016/j.electacta.2022.140700.

Parameters for a LiPF6 in EC:EMC (3:7 w:w) electrolyte are from the paper

Johannes Landesfeind and Hubert A. Gasteiger, Temperature and Concentration Dependence of the Ionic Transport Properties of Lithium-Ion Battery Electrolytes. Journal of the Electrochemical Society 166 (2019): A3079. doi:10.1149/2.0571912jes

and references therein.

Prada2013

Parameters for an A123 LFP cell, from the paper

Michael J. Lain, James Brandon, and Emma Kendrick. Design strategies for high power vs. high energy lithium ion cells. Batteries, 5(4):64, 2019. doi:10.3390/batteries5040064.

LG M50 Graphite negative electrode parameters

Parameters for negative electrode (graphite) and separator are from the paper

Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.

and references therein.

Parameters for positive electrode (LFP) are from the paper

Eric Prada, D. Di Domenico, Y. Creff, J. Bernard, Valérie Sauvant-Moynot, and François Huet. A simplified electrochemical and thermal aging model of LiFePO4-graphite Li-ion batteries: power and capacity fade simulations. Journal of The Electrochemical Society, 160(4):A616, 2013. doi:10.1149/2.053304jes.

and references therein. The functions used for OCP and exchange-current density are from separate references (documented within the functions), to provide better fit to data

Parameters for a LiPF6 electrolyte are from the paper

Andreas Nyman, Mårten Behm, and Göran Lindbergh. Electrochemical characterisation and modelling of the mass transport phenomena in lipf6-ec-emc electrolyte. Electrochimica Acta, 53(22):6356-6365, 2008.

and references therein.

Ramadass2004

Ramadass2004 parameter set. This is a bit of a Frankenstein parameter set and should be used with caution.

Parameters for a graphite negative electrode, Lithium Cobalt Oxide positive electrode, and LiPF6 electrolyte are from the papers

Scott G. Marquis, Valentin Sulzer, Robert Timms, Colin P. Please, and S. Jon Chapman. An asymptotic derivation of a single particle model with electrolyte. Journal of The Electrochemical Society, 166(15):A3693-A3706, 2019. doi:10.1149/2.0341915jes.

P Ramadass, Bala Haran, Parthasarathy M Gomadam, Ralph White, and Branko N Popov. Development of first principles capacity fade model for li-ion cells. Journal of the Electrochemical Society, 151(2):A196, 2004. doi:10.1149/1.1634273.

and references therein.

Parameters for the separator are from the papers

Ecker, Madeleine, et al. “Parameterization of a physico-chemical model of a lithium-ion battery i. determination of parameters.” Journal of the Electrochemical Society 162.9 (2015): A1836-A1848.

The thermal material properties are for a 5 Ah power pouch cell by Kokam. The data are extracted from

Zhao, Y., et al. “Modeling the effects of thermal gradients induced by tab and surface cooling on lithium ion cell performance.”” Journal of The Electrochemical Society, 165.13 (2018): A3169-A3178. # Lithium Cobalt Oxide positive electrode parameters

Parameters for SEI growth are from the papers

Ramadass, P., Haran, B., Gomadam, P. M., White, R., & Popov, B. N. (2004). Development of first principles capacity fade model for Li-ion cells. Journal of the Electrochemical Society, 151(2), A196-A203.

Safari, M., Morcrette, M., Teyssot, A., & Delacour, C. (2009). Multimodal Physics- Based Aging Model for Life Prediction of Li-Ion Batteries. Journal of The Electrochemical Society, 156(3),

Note: Ramadass 2004 has mistakes in units and values of SEI parameters, corrected by Safari 2009.

Xu2019

Parameters for a Kokam SLPB78205130H half-cell, from the paper. Anode is graphite MCMB 2528. Separator is Celgard 2325. Cathode is lithium Cobalt Oxide. Electrolyte is LiPF6.

Xu, Shanshan, Chen, Kuan-Hung, Dasgupta, Neil P., Siegel, Jason B. and Stefanopoulou, Anna G. “Evolution of Dead Lithium Growth in Lithium Metal Batteries: Experimentally Validated Model of the Apparent Capacity Loss.” Journal of The Electrochemical Society 166.14 (2019): A3456-A3463.

and references therein.

Parameters for a LiPF6 electrolyte are from the paper

Lars Ole Valøen and Jan N Reimers. Transport properties of lipf6-based li-ion battery electrolytes. Journal of The Electrochemical Society, 152(5):A882, 2005.

1C discharge from full

SEI parameters are example parameters for SEI growth from the papers:

Ramadass, P., Haran, B., Gomadam, P. M., White, R., & Popov, B. N. (2004). Development of first principles capacity fade model for Li-ion cells. Journal of the Electrochemical Society, 151(2), A196-A203.

Ploehn, H. J., Ramadass, P., & White, R. E. (2004). Solvent diffusion model for aging of lithium-ion battery cells. Journal of The Electrochemical Society, 151(3), A456-A462.

Single, F., Latz, A., & Horstmann, B. (2018). Identifying the mechanism of continued growth of the solid–electrolyte interphase. ChemSusChem, 11(12), 1950-1955.

Safari, M., Morcrette, M., Teyssot, A., & Delacour, C. (2009). Multimodal Physics- Based Aging Model for Life Prediction of Li-Ion Batteries. Journal of The Electrochemical Society, 156(3),

Yang, X., Leng, Y., Zhang, G., Ge, S., Wang, C. (2017). Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging. Journal of Power Sources, 360, 28-40.

Note: this parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.