Parameters Sets#

PyBaMM provides pre-defined parameters for common chemistries, as well as, a growing set of third-party parameter sets.

class pybamm.parameters.parameter_sets.ParameterSets[source]#

Dict-like interface for accessing registered pybamm parameter sets. Access via pybamm.parameter_sets

Examples

Listing available parameter sets:

>>> import pybamm
>>> list(pybamm.parameter_sets)
['Ai2020', 'Chen2020', ...]

Get the docstring for a parameter set:

>>> import pybamm
>>> print(pybamm.parameter_sets.get_docstring("Ai2020"))

Parameters for the Enertech cell (Ai2020), from the papers :footcite:t:`Ai2019`,
:footcite:t:`rieger2016new` and references therein.
...

See also: Adding Parameter Sets

Extends: collections.abc.Mapping

get_docstring(key)[source]#

Return the docstring for the key parameter set

Adding Parameter Sets#

Parameter sets can be added to PyBaMM by creating a python package, and registering a entry point to pybamm_parameter_sets. At a minimum, the package (cell_parameters) should consist of the following:

cell_parameters
├── pyproject.toml        # and/or setup.cfg, setup.py
└── src
    └── cell_parameters
        └── cell_alpha.py

The actual parameter set is defined within cell_alpha.py, as shown below. For an example, see the Marquis2019 parameter sets.

 1import pybamm
 2
 3
 4def get_parameter_values():
 5    """Doc string for cell-alpha"""
 6    return {
 7        "chemistry": "lithium_ion",
 8        "citation": "@book{van1995python, title={Python reference manual}}",
 9        # ...
10    }

Then register get_parameter_values to pybamm_parameter_sets in pyproject.toml:

[project.entry-points.pybamm_parameter_sets]
cell_alpha = "cell_parameters.cell_alpha:get_parameter_values"

If you are using setup.py or setup.cfg to setup your package, please see SetupTools’ documentation for registering entry points.

If you’re willing to open-source your parameter set, let us know, and we can add an entry to Third-Party Parameter Sets.

Third-Party Parameter Sets#

Registered a new parameter set to pybamm_parameter_sets? Let us know, and we’ll update our list.

Bundled Parameter Sets#

PyBaMM provides pre-defined parameter sets for several common chemistries, listed below. See Adding Parameter Sets for information on registering new parameter sets with PyBaMM.

Lead-acid Parameter Sets#

Sulzer2019#

Parameters for BBOXX lead-acid cells, from the paper Sulzer et al.[1] and references therein.

Lithium-ion Parameter Sets#

Ai2020#

Parameters for the Enertech cell (Ai2020), from the papers Ai et al.[2], Rieger et al.[3] and references therein.

SEI parameters are example parameters for SEI growth from the papers Ramadass et al.[4], Ploehn et al.[5], Single et al.[6], Safari et al.[7], and Yang et al.[8]

Note

This parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

Chen2020#

Parameters for an LG M50 cell, from the paper Chen et al.[9] and references therein.

SEI parameters are example parameters for SEI growth from the papers Ramadass et al.[4], Ploehn et al.[5], Single et al.[6], Safari et al.[7], and Yang et al.[8]

Note

This parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

Chen2020_composite#

Parameters for a composite graphite/silicon negative electrode, from the paper Ai et al.[10], based on the paper Chen et al.[9], and references therein.

SEI parameters are example parameters for composite SEI on silicon/graphite. Both phases use the same values, from the paper Yang et al.[8]

Ecker2015#

Parameters for a Kokam SLPB 75106100 cell, from the papers Ecker et al.[11] and Ecker et al.[12]

The tab placement parameters are taken from measurements in Hales et al.[13]

The thermal material properties are for a 5 Ah power pouch cell by Kokam. The data are extracted from Zhao et al.[14]

Graphite negative electrode parameters#

The fits to data for the electrode and electrolyte properties are those provided by Dr. Simon O’Kane in the paper Richardson et al.[15]

SEI parameters are example parameters for SEI growth from the papers Ramadass et al.[4], Ploehn et al.[5], Single et al.[6], Safari et al.[7], and Yang et al.[8]

Note

This parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

Ecker2015_graphite_halfcell#

Parameters for a graphite half-cell based on a Kokam SLPB 75106100 cell, from papers

Ecker, Madeleine, et al. “Parameterization of a physico-chemical model of a lithium-ion battery I. determination of parameters.” Journal of the Electrochemical Society 162.9 (2015): A1836-A1848.

Ecker, Madeleine, et al. “Parameterization of a physico-chemical model of a lithium-ion battery II. Model validation.” Journal of The Electrochemical Society 162.9 (2015): A1849-A1857.

The tab placement parameters are taken from measurements in

Hales, Alastair, et al. “The cell cooling coefficient: a standard to define heat rejection from lithium-ion batteries.” Journal of The Electrochemical Society 166.12 (2019): A2383.

The thermal material properties are for a 5 Ah power pouch cell by Kokam. The data are extracted from

Zhao, Y., et al. “Modeling the effects of thermal gradients induced by tab and surface cooling on lithium ion cell performance.”” Journal of The Electrochemical Society, 165.13 (2018): A3169-A3178.

Graphite electrode parameters#

The fits to data for the electrode and electrolyte properties are those provided by Dr. Simon O’Kane in the paper:

Richardson, Giles, et. al. “Generalised single particle models for high-rate operation of graded lithium-ion electrodes: Systematic derivation and validation.” Electrochemica Acta 339 (2020): 135862

SEI parameters are example parameters for SEI growth from the papers:

Ramadass, P., Haran, B., Gomadam, P. M., White, R., & Popov, B. N. (2004). Development of first principles capacity fade model for Li-ion cells. Journal of the Electrochemical Society, 151(2), A196-A203.

Ploehn, H. J., Ramadass, P., & White, R. E. (2004). Solvent diffusion model for aging of lithium-ion battery cells. Journal of The Electrochemical Society, 151(3), A456-A462.

Single, F., Latz, A., & Horstmann, B. (2018). Identifying the mechanism of continued growth of the solid-electrolyte interphase. ChemSusChem, 11(12), 1950-1955.

Safari, M., Morcrette, M., Teyssot, A., & Delacour, C. (2009). Multimodal Physics- Based Aging Model for Life Prediction of Li-Ion Batteries. Journal of The Electrochemical Society, 156(3),

Yang, X., Leng, Y., Zhang, G., Ge, S., Wang, C. (2017). Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging. Journal of Power Sources, 360, 28-40.

Note: this parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

MSMR_Example#

Example parameter values for use with MSMR models. The thermodynamic parameters are for Graphite and NMC622, and are taken from Table 1 of the paper

Mark Verbrugge, Daniel Baker, Brian Koch, Xingcheng Xiao and Wentian Gu. Thermodynamic Model for Substitutional Materials: Application to Lithiated Graphite, Spinel Manganese Oxide, Iron Phosphate, and Layered Nickel-Manganese-Cobalt Oxide. Journal of The Electrochemical Society, 164(11):3243-3253, 2017. doi:10.1149/2.0341708jes.

The remaining value are based on a parameterization of the LG M50 cell, from the paper

Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.

and references therein. Verbrugge et al. (2017) does not provide kinetic parameters so we set the reference exchange current density to 5 A.m-2 for the positive electrode reactions and 2.7 A.m-2 for the negative electrode reactions, which are the values used in the Chen et al. (2020) paper. We also assume that the exchange-current density is symmetric. Note: the 4th reaction in the positive electrode gave unphysical results so we set the reference exchange current density and symmetry factor to 1e6 and 1, respectively. The parameter values are intended to serve as an example set to use with the MSMR model and do not claim to match any experimental cycling data.

Marquis2019#

Parameters for a Kokam SLPB78205130H cell, from the paper Marquis et al.[16] and references therein.

SEI parameters are example parameters for SEI growth from the papers Ramadass et al.[4], Ploehn et al.[5], Single et al.[6], Safari et al.[7], and Yang et al.[8]

Note

This parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

Mohtat2020#

Parameters for a graphite/NMC532 pouch cell from the paper Mohtat et al.[17] and references therein.

SEI parameters are example parameters for SEI growth from the papers Ramadass et al.[4], Ploehn et al.[5], Single et al.[6], Safari et al.[7], and Yang et al.[8]

SEI parameters#

Parameters for lithium plating are from the paper Yang et al.[8]

Note

This parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

NCA_Kim2011#

Parameters for a “Nominal Design” graphite/NCA pouch cell, from the paper Kim et al.[18]

Note

Only an effective cell volumetric heat capacity is provided in the paper. We therefore used the values for the density and specific heat capacity reported in the Marquis2019 parameter set in each region and multiplied each density by the ratio of the volumetric heat capacity provided in smith to the calculated value. This ensures that the values produce the same effective cell volumetric heat capacity. This works fine for thermal models that are averaged over the x-direction but not for full (PDE in x direction) thermal models. We do the same for the planar effective thermal conductivity.

SEI parameters are example parameters for SEI growth from the papers Ramadass et al.[4], Ploehn et al.[5], Single et al.[6], Safari et al.[7], and Yang et al.[8]

Note

This parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

OKane2022#

Parameters for an LG M50 cell, from the paper O’Kane et al.[19], based on the paper Chen et al.[9] and references therein.

Note

This parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

OKane2022_graphite_SiOx_halfcell#

Parameters for the graphite+SiOx negative electrode of a LG M50 cell, from the paper

Simon E. J. O’Kane, Weilong Ai, Ganesh Madabattula, Diego Alonso-Alvarez, Robert Timms, Valentin Sulzer, Jacqueline Sophie Edge, Billy Wu, Gregory J. Offer, and Monica Marinescu. Lithium-ion battery degradation: how to model it. Phys. Chem. Chem. Phys., 24:7909-7922, 2022. URL: http://dx.doi.org/10.1039/D2CP00417H, doi:10.1039/D2CP00417H.

based on the paper

Chang-Hui Chen, Ferran Brosa Planella, Kieran O’Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.

and references therein.

Note: the SEI, plating and mechanical parameters do not claim to be representative of the true parameter values. These are merely the parameter values that were used in the referenced papers.

ORegan2022#

Parameters for an LG M50 cell, from the paper O’Regan et al.[20]

Parameters for a LiPF6 in EC:EMC (3:7 w:w) electrolyte are from the paper Landesfeind and Gasteiger[21] and references therein.

Prada2013#

Parameters for an LFP cell, from the paper Prada et al.[22]

Ramadass2004#

Ramadass2004 parameter set. This is a bit of a Frankenstein parameter set and should be used with caution.

Parameters for a graphite negative electrode, Lithium Cobalt Oxide positive electrode, and LiPF6 electrolyte are from the papers Marquis et al.[16], Ramadass et al.[4], and references therein.

Parameters for the separator are from the papers Ecker et al.[11]

The thermal material properties are for a 5 Ah power pouch cell by Kokam. The data are extracted from Lithium Cobalt Oxide positive electrode parameters in Zhao et al.[14]

Parameters for SEI growth are from the papers Ramadass et al.[4] and Safari et al.[7]

Note

Ramadass 2004 has mistakes in units and values of SEI parameters, corrected by Safari2009.

Xu2019#

Parameters for a Kokam SLPB78205130H half-cell, from the paper Xu et al.[23] and references therein. Anode is graphite MCMB 2528. Separator is Celgard 2325. Cathode is lithium Cobalt Oxide. Electrolyte is LiPF6.

Parameters for a LiPF6 electrolyte are from the paper Valøen and Reimers[24]

1C discharge from full#

SEI parameters are example parameters for SEI growth from the papers Ramadass et al.[4], Ploehn et al.[5], Single et al.[6], Safari et al.[7], and Yang et al.[8].

Note

This parameter set does not claim to be representative of the true parameter values. Instead these are parameter values that were used to fit SEI models to observed experimental data in the referenced papers.

References