An interactive online version of this notebook is available, which can be accessed via Open this notebook in Google Colab

Alternatively, you may download this notebook and run it offline.

Tutorial 4 - Setting parameter values#

In Tutorial 1 and Tutorial 2, we saw how to run a PyBaMM model with all the default settings. However, PyBaMM also allows you to tweak these settings for your application. In this tutorial, we will see how to change the parameters in PyBaMM.

%pip install pybamm[plot,cite] -q    # install PyBaMM if it is not installed
import pybamm
import os
WARNING: You are using pip version 22.0.4; however, version 22.3.1 is available.
You should consider upgrading via the '/home/siegeljb/Documents/PyBaMM_Master/PyBaMM/.tox/dev/bin/python3.9 -m pip install --upgrade pip' command.
Note: you may need to restart the kernel to use updated packages.

Change the whole parameter set#

PyBaMM has a number of in-built parameter sets (check the list here), which can be selected doing

parameter_values = pybamm.ParameterValues("Chen2020")

We can see all the parameters stored in the dictionary

{'Thermodynamic factor': 1.0,
 'Ambient temperature [K]': 298.15,
 'Bulk solvent concentration [mol.m-3]': 2636.0,
 'Cation transference number': 0.2594,
 'Cell cooling surface area [m2]': 0.00531,
 'Cell thermal expansion coefficient [m.K-1]': 1.1e-06,
 'Cell volume [m3]': 2.42e-05,
 'Current function [A]': 5.0,
 'EC diffusivity [m2.s-1]': 2e-18,
 'EC initial concentration in electrolyte [mol.m-3]': 4541.0,
 'Electrode height [m]': 0.065,
 'Electrode width [m]': 1.58,
 'Electrolyte conductivity [S.m-1]': <function electrolyte_conductivity_Nyman2008 at 0x7fa179f81c10>,
 'Electrolyte diffusivity [m2.s-1]': <function electrolyte_diffusivity_Nyman2008 at 0x7fa179f81b80>,
 'Initial concentration in electrolyte [mol.m-3]': 1000.0,
 'Initial concentration in negative electrode [mol.m-3]': 29866.0,
 'Initial concentration in positive electrode [mol.m-3]': 17038.0,
 'Initial inner SEI thickness [m]': 2.5e-09,
 'Initial outer SEI thickness [m]': 2.5e-09,
 'Initial temperature [K]': 298.15,
 'Inner SEI electron conductivity [S.m-1]': 8.95e-14,
 'Inner SEI lithium interstitial diffusivity [m2.s-1]': 1e-20,
 'Inner SEI open-circuit potential [V]': 0.1,
 'Inner SEI partial molar volume [m3.mol-1]': 9.585e-05,
 'Inner SEI reaction proportion': 0.5,
 'Lithium interstitial reference concentration [mol.m-3]': 15.0,
 'Lower voltage cut-off [V]': 2.5,
 'Maximum concentration in negative electrode [mol.m-3]': 33133.0,
 'Maximum concentration in positive electrode [mol.m-3]': 63104.0,
 'Negative current collector conductivity [S.m-1]': 58411000.0,
 'Negative current collector density [kg.m-3]': 8960.0,
 'Negative current collector specific heat capacity [J.kg-1.K-1]': 385.0,
 'Negative current collector thermal conductivity [W.m-1.K-1]': 401.0,
 'Negative current collector thickness [m]': 1.2e-05,
 'Negative electrode Bruggeman coefficient (electrode)': 1.5,
 'Negative electrode Bruggeman coefficient (electrolyte)': 1.5,
 'Negative electrode OCP [V]': <function graphite_LGM50_ocp_Chen2020 at 0x7fa179f81940>,
 'Negative electrode OCP entropic change [V.K-1]': 0.0,
 'Negative electrode active material volume fraction': 0.75,
 'Negative electrode cation signed stoichiometry': -1.0,
 'Negative electrode charge transfer coefficient': 0.5,
 'Negative electrode conductivity [S.m-1]': 215.0,
 'Negative electrode density [kg.m-3]': 1657.0,
 'Negative electrode diffusivity [m2.s-1]': 3.3e-14,
 'Negative electrode double-layer capacity [F.m-2]': 0.2,
 'Negative electrode electrons in reaction': 1.0,
 'Negative electrode exchange-current density [A.m-2]': <function graphite_LGM50_electrolyte_exchange_current_density_Chen2020 at 0x7fa179f819d0>,
 'Negative electrode porosity': 0.25,
 'Negative electrode reaction-driven LAM factor [m3.mol-1]': 0.0,
 'Negative electrode specific heat capacity [J.kg-1.K-1]': 700.0,
 'Negative electrode thermal conductivity [W.m-1.K-1]': 1.7,
 'Negative electrode thickness [m]': 8.52e-05,
 'Negative particle radius [m]': 5.86e-06,
 'Nominal cell capacity [A.h]': 5.0,
 'Number of cells connected in series to make a battery': 1.0,
 'Number of electrodes connected in parallel to make a cell': 1.0,
 'Open-circuit voltage at 0% SOC [V]': 2.5,
 'Open-circuit voltage at 100% SOC [V]': 4.2,
 'Outer SEI open-circuit potential [V]': 0.8,
 'Outer SEI partial molar volume [m3.mol-1]': 9.585e-05,
 'Outer SEI solvent diffusivity [m2.s-1]': 2.5000000000000002e-22,
 'Positive current collector conductivity [S.m-1]': 36914000.0,
 'Positive current collector density [kg.m-3]': 2700.0,
 'Positive current collector specific heat capacity [J.kg-1.K-1]': 897.0,
 'Positive current collector thermal conductivity [W.m-1.K-1]': 237.0,
 'Positive current collector thickness [m]': 1.6e-05,
 'Positive electrode Bruggeman coefficient (electrode)': 1.5,
 'Positive electrode Bruggeman coefficient (electrolyte)': 1.5,
 'Positive electrode OCP [V]': <function nmc_LGM50_ocp_Chen2020 at 0x7fa179f81a60>,
 'Positive electrode OCP entropic change [V.K-1]': 0.0,
 'Positive electrode active material volume fraction': 0.665,
 'Positive electrode cation signed stoichiometry': -1.0,
 'Positive electrode charge transfer coefficient': 0.5,
 'Positive electrode conductivity [S.m-1]': 0.18,
 'Positive electrode density [kg.m-3]': 3262.0,
 'Positive electrode diffusivity [m2.s-1]': 4e-15,
 'Positive electrode double-layer capacity [F.m-2]': 0.2,
 'Positive electrode electrons in reaction': 1.0,
 'Positive electrode exchange-current density [A.m-2]': <function nmc_LGM50_electrolyte_exchange_current_density_Chen2020 at 0x7fa179f81af0>,
 'Positive electrode porosity': 0.335,
 'Positive electrode reaction-driven LAM factor [m3.mol-1]': 0.0,
 'Positive electrode specific heat capacity [J.kg-1.K-1]': 700.0,
 'Positive electrode thermal conductivity [W.m-1.K-1]': 2.1,
 'Positive electrode thickness [m]': 7.56e-05,
 'Positive particle radius [m]': 5.22e-06,
 'Ratio of lithium moles to SEI moles': 2.0,
 'Reference temperature [K]': 298.15,
 'SEI growth activation energy [J.mol-1]': 0.0,
 'SEI kinetic rate constant [m.s-1]': 1e-12,
 'SEI open-circuit potential [V]': 0.4,
 'SEI reaction exchange current density [A.m-2]': 1.5e-07,
 'SEI resistivity [Ohm.m]': 200000.0,
 'Separator Bruggeman coefficient (electrolyte)': 1.5,
 'Separator density [kg.m-3]': 397.0,
 'Separator porosity': 0.47,
 'Separator specific heat capacity [J.kg-1.K-1]': 700.0,
 'Separator thermal conductivity [W.m-1.K-1]': 0.16,
 'Separator thickness [m]': 1.2e-05,
 'Total heat transfer coefficient [W.m-2.K-1]': 10.0,
 'Typical current [A]': 5.0,
 'Typical electrolyte concentration [mol.m-3]': 1000.0,
 'Upper voltage cut-off [V]': 4.2,
 'citations': ['Chen2020']}

or we can search for a particular parameter

EC initial concentration in electrolyte [mol.m-3]       4541.0
Electrolyte conductivity [S.m-1]        <function electrolyte_conductivity_Nyman2008 at 0x7fa179f81c10>
Electrolyte diffusivity [m2.s-1]        <function electrolyte_diffusivity_Nyman2008 at 0x7fa179f81b80>
Initial concentration in electrolyte [mol.m-3]  1000.0
Negative electrode Bruggeman coefficient (electrolyte)  1.5
Positive electrode Bruggeman coefficient (electrolyte)  1.5
Separator Bruggeman coefficient (electrolyte)   1.5
Typical electrolyte concentration [mol.m-3]     1000.0

To run a simulation with this parameter set, we can proceed as usual but passing the parameters as a keyword argument

model = pybamm.lithium_ion.DFN()
sim = pybamm.Simulation(model, parameter_values=parameter_values)
sim.solve([0, 3600])
<pybamm.plotting.quick_plot.QuickPlot at 0x7fa179c67670>

More details on each subset can be found here.

Change individual parameters#

We often want to quickly change a small number of parameter values to investigate how the behaviour or the battery changes. In such cases, we can change parameter values without having to leave the notebook or script you are working in.

We start initialising the model and the parameter values

model = pybamm.lithium_ion.DFN()
parameter_values = pybamm.ParameterValues("Chen2020")

In this example we will change the current to 10 A

parameter_values["Current function [A]"] = 10
parameter_values["Open-circuit voltage at 100% SOC [V]"]=3.4
parameter_values["Open-circuit voltage at 0% SOC [V]"]=3.0

Now we just need to run the simulation with the new parameter values

sim = pybamm.Simulation(model,parameter_values=parameter_values)
sim.solve([0, 3600],initial_soc=1)
<pybamm.plotting.quick_plot.QuickPlot at 0x7fa172a55220>

Note that we still passed the interval [0, 3600] to sim.solve(), but the simulation terminated early as the lower voltage cut-off was reached.

Drive cycle#

You can implement drive cycles importing the dataset and creating an interpolant to pass as the current function.

[ ]:
import pandas as pd    # needed to read the csv data file

# Import drive cycle from file
drive_cycle = pd.read_csv("pybamm/input/drive_cycles/US06.csv", comment="#", header=None).to_numpy()

# Create interpolant
current_interpolant = pybamm.Interpolant(drive_cycle[:, 0], drive_cycle[:, 1], pybamm.t)

# Set drive cycle
parameter_values["Current function [A]"] = current_interpolant

Note that your drive cycle data can be stored anywhere, you just need to pass the path of the file. Then, again, the model can be solved as usual but notice that now, if t_eval is not specified, the solver will take the time points from the data set.

[ ]:
model = pybamm.lithium_ion.SPMe()
sim = pybamm.Simulation(model, parameter_values=parameter_values)
sim.plot(["Current [A]", "Voltage [V]"])
<pybamm.plotting.quick_plot.QuickPlot at 0x7f0fc0d85790>

Custom current function#

Alternatively, we can define the current to be an arbitrary function of time

[ ]:
import numpy as np

def my_current(t):
    return pybamm.sin(2 * np.pi * t / 60)

parameter_values["Current function [A]"] = my_current

and we can now solve the model again. In this case, we can pass t_eval to the solver to make sure we have enough time points to resolve the function in our output.

[ ]:
model = pybamm.lithium_ion.SPMe()
sim = pybamm.Simulation(model, parameter_values=parameter_values)
t_eval = np.arange(0, 121, 1)
sim.plot(["Current [A]", "Voltage [V]"])
<pybamm.plotting.quick_plot.QuickPlot at 0x7f0fc5d3de80>

In this notebook we have seen how we can change the parameters of our model. In Tutorial 5 we show how can we define and run experiments.


The relevant papers for this notebook are:

[ ]:
[1] Weilong Ai, Ludwig Kraft, Johannes Sturm, Andreas Jossen, and Billy Wu. Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells. Journal of The Electrochemical Society, 167(1):013512, 2019. doi:10.1149/2.0122001JES.
[2] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and Moritz Diehl. CasADi – A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, 11(1):1–36, 2019. doi:10.1007/s12532-018-0139-4.
[3] Chang-Hui Chen, Ferran Brosa Planella, Kieran O'Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8):080534, 2020. doi:10.1149/1945-7111/ab9050.
[4] Rutooj Deshpande, Mark Verbrugge, Yang-Tse Cheng, John Wang, and Ping Liu. Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. Journal of the Electrochemical Society, 159(10):A1730, 2012. doi:10.1149/2.049210jes.
[5] Marc Doyle, Thomas F. Fuller, and John Newman. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. Journal of the Electrochemical society, 140(6):1526–1533, 1993. doi:10.1149/1.2221597.
[6] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, and others. Array programming with NumPy. Nature, 585(7825):357–362, 2020. doi:10.1038/s41586-020-2649-2.
[7] Scott G. Marquis, Valentin Sulzer, Robert Timms, Colin P. Please, and S. Jon Chapman. An asymptotic derivation of a single particle model with electrolyte. Journal of The Electrochemical Society, 166(15):A3693–A3706, 2019. doi:10.1149/2.0341915jes.
[8] Valentin Sulzer, Scott G. Marquis, Robert Timms, Martin Robinson, and S. Jon Chapman. Python Battery Mathematical Modelling (PyBaMM). Journal of Open Research Software, 9(1):14, 2021. doi:10.5334/jors.309.